
Supporting Text

Estimating the Strength of Interference Between Foci

The genetic and cytological coefficients of coincidence. In genetic experiments, the

coefficient of coincidence (CC) is frequently used for the detection of crossover

interference. If recombination is analyzed in two adjacent chromosomal segments (e.g.,

in a triple backcross), CC is defined as R12/R1R2, with R1 and R2 representing the

recombination fractions over the first and second segments and with R12 representing the

frequency of recombination in both the first and the second segments simultaneously.

Interference has been defined as 1 – CC, so if CC < 1, there is (positive crossover)

interference. Although it is possible to detect interference using CC as a metric, it is not

possible to estimate the strength of interference from the CC value alone, because CC is a

function of the recombination frequencies in the analyzed segments. As the length of the

analyzed segments increases, R1 and R2 approach ½ and R12 approaches ¼, so that CC

approaches 1, even if there is interference. This relation has recently been discussed in

detail for the mouse (see Fig. 3A in ref. 1).

Fung et al. (2) used a metric similar to CC for the detection of cytological interference

between Zip2 foci along SCs in yeast. They divided SCs into segments of equal length

and determined for each segment the frequency of finding a focus. For two adjacent

segments, they defined the cytological coefficient of coincidence (named Z) as F12/F1F2,

with F1 and F2 representing the frequencies of finding a focus in, respectively, the first

and second segment, and with F12 representing the frequency of finding a focus in both

segments on the same SC. The strength of cytological interference (Ic) was defined as 1 –

Z. However, like CC, Z has important drawbacks as a metric for interference.

Obviously, the assignment of foci to segments leads to loss of resolution. More

importantly, the length of the chromosomal segments to which foci are assigned

influences the estimate of Z in two ways. If one assigns foci to segments that are long

compared with the average interfocus distance, many segments will have more than one

focus, whereas F1 and F2 have not been defined for more than one focus in a segment.

Fung et al. (2) assigned one of the two foci to an adjacent segment if they encountered



two foci in a segment. However, this changes the distribution of foci and thus affects the

estimation of the strength of interference. Moreover, it leaves unsolved the problem of

what to do if both adjacent segments have already a focus, or if there are several foci in a

segment. If one redefines F1 and F2 as the frequencies of finding at least one focus in the

relevant segments, then F1, F2, F12 and thus Z will all approach 1 as the segment size

increases, so that little or no interference will be detected if the segments are about as

long or longer than the average interfocus distance; this is illustrated by the simulations

shown in Fig. 2. This effect is comparable to the effect of segment size on the estimate of

CC. However, if one assigns foci to short chromosomal segments, other complications

arise. If the segments are not much longer than the minimal interfocus distance that can

be observed by light microscopy (~0.18 µm), a substantial proportion of segment pairs

with a focus in each segment will go unnoticed because the two foci are too close; this

leads to underestimation of Z and detection of interference even if there is none (Fig. 2).

Fig. 3 shows the Z values obtained for MSH4 foci on chromosome 2 of female Sycp1

knockout mice for three different segment sizes. The dependency of Z on the segment

size prohibits the estimation of the strength of interference between MSH4 foci from the

Z value alone. It also precludes a comparison of the strength of interference between

MLH1 foci with that between MSH4 foci on the same chromosome based on Z values:

Because the average distance between MSH4 foci is far smaller than that between MLH1

foci, the segment size will influence the Z values for MSH4 and MLH1 foci differently.

Using the gamma model for estimating the strength of interference. In genetic studies, the

precise positions of crossovers are usually not known; rather, only the segments

(delimited by genetic markers) within which crossover(s) must have occurred are known.

In such studies, crossover interference is necessarily analyzed in chromosomal segments.

In cytological studies, in contrast, there is no need to study interference in chromosomal

segments, because the precise positions of foci are known. Several models have been

considered for estimating the strength of interference from the precise positions of

chiasmata/crossovers/foci, and the gamma distribution has repeatedly emerged as a most

useful model for this purpose (e.g., 3–5). The gamma distribution is commonly used for



the analysis of distances between events along a linear axis, and the properties of this

distribution can be found in most textbooks on probability theory and/or stochastic

processes.

The gamma model for interference of crossover events in meiosis can adequately be

described as a modification of the Poisson process. In a Poisson process, events occur at

random along an (imaginary) time or physical axis. The probability of an event in any

interval does not depend on the occurrence or nonoccurrence in adjacent intervals. This

property is sometimes referred to as “lack of memory” of the Poisson process.

Denoting the rate of occurrence (i.e., the mean number of events per unit of distance) by

λ, the probability density function (p.d.f.) of interevent distances for a given value of λ

reads
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Notice that the gamma distribution describes a Poisson process in which only every nth

event is realized. One could also state that after every event in a Poisson process, the next

n – 1 events are suppressed. As described by Stam (4) and McPeek and Speed (3), the

concept of interference nicely corresponds with the “suppression” of events in a Poisson

process. The result of (positive) interference is that events are more evenly distributed

along the “axis” (i.e., the chromosome) than in a Poisson process.

Mathematically, the value of the parameter n is not restricted to integer values. Thus, a

more general form of the gamma p.d.f. reads
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where ν is equivalent to n, except that ν is not necessarily an integer, whereas )(Γ is the

so-called gamma function. (The gamma function can be seen as a normalizing constant,

such that the integral 
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 equals unity, as it should for a probability density

function.)

When fitting a gamma distribution to a number of observed interevent distances, one

obtains an estimate of both λ and ν.

The estimated value of ν can be taken as a measure of the level of interference [cf. Stam

(4) and McPeek and Speed (3)]. The higher the value of ν, the more events are

suppressed in the underlying Poisson process, and the stronger the interference is.

Thus, by comparing values of ν for different classes of foci, we may infer about different

levels of interference among these classes.



The mean and variance of gamma-distributed interevent distances read
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Rescaling the distances such that the mean interevent distance equals unity, we observe

that the ratio of mean and variance equals
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Thus, as is illustrated in Fig. 1A of the main text, as the level of interference (ν) increases,

the variance (relative to the mean) gets smaller, meaning that events are becoming more

and more equidistant. This again nicely captures the concept of (positive) interference.
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