	Theoretical			Experimental		Theoretical (this work)			
Bond	C-O	C-N	C-S	C-C	$Au-S^{\dagger}$	C-S	C-S	C-C	Deslipping
					Au-Au	(TTF)	(TTF^{2+})	(TTF^{2+})	
Bond energy,	85-91	69-75	61	83-85	44	55	55	55	46
kcal•mol ⁻¹									
Rupture	1.43	1.38	1.82	1.54	2.4	1.77	1.68	1.47	8.61
distance, Å									
Rupture	4.3	4.1	3.7*	2-13	1.4	>1.0 [‡]	>1.0*	>1.0*	0.074 [§]
force, nN									

Table 2. Comparison of covalent bond rupture energies, distances, and forces for all

covalent single bonds present in the experiment as well as for the Au-S bond.

[†]Room temperature experiments measuring the rupture of alkane-thiols on Au surfaces and of gold nanowires have both given rupture forces of $1.4-1.5 \pm 0.3$ nN. It is unclear whether the Au-S bond is rupturing in experiment involving alkane-thiols on Au surfaces or whether Au-Au rupture is being observed.

[‡]The experimental loading rate for rupture of the C-S bond was not reported. Rupture values for the C-S bonds in TTF as well as C-S and C-C bonds in TTF²⁺ are expected to require >1 nN given the similarities in bond energies and distances to experimental data for the C-S bond and the fact that all published accounts of covalent bond rupture indicate rupture forces much greater than 1 nN.

[§]The value of 0.074 nN is taken from the experimental AFM measurements presented in this work, which has been attributed to deslipping based on experimental and theoretical studies.