
Methods

Training Set

Level of QM Calculations. The QM calculations of molecular and dimer properties were

performed with the core electrons frozen (except for Li+, Na+, Ca2+, and Mg2+), using

GAMESS software. Molecular geometries were optimized at the MP2/TZ(-hp) level,

which is the MP2/cc-pVTZ level with the highest orbital momentum functions removed

(d-functions for hydrogens and f-functions for heavy atoms). The geometries of

optimized dimer conformations also were found with this basis set, the monomers being

considered as rigid molecules during the optimization. In all other calculations (dimer

energies, molecular dipoles, quadrupole, and polarizability tensors) the higher-level

MP2/aTZ(-hp) was used. Our choice of the QM level is a compromise between accuracy

and numerical efficiency of the calculations. In contrast to QMPFF1, in the present

version QMPFF2 dimer calculations were performed with the counterpoising of the basis

set superposition error and the intermolecular bond functions added, which allowed

essentially more accurate evaluations of the intermolecular potential energies, especially

its dispersion component in the case of nonpolar molecules. The electrostatic (ES)

component of dimer energy was calculated by direct averaging of the intermolecular

potential by using MP2/aTZ(-hp) density matrixes of the unperturbed monomers.

Exchange (EX) terms was calculated by using HF/aTZ(-hp) level and then corrected by

multiplying by the ratio of MP2 and HF density overlaps. The dispersion component was

approximated as the difference between the QM dimer energy and the sum of the QM

electrostatics, QM EX, and QMPFF induction terms fitted to reproduce QM polarizability

tensors.

Generation of Dimer Conformation Training Sets. The training set for each

representative dimer is composed in a usual manner of several conformational sets. Each

set starts from some locally optimized dimer geometry, and then the distance between the



monomers is varied while retaining the fixed orientation of the monomers. Similar

procedure of generation of the training set was used for parameterization of e.g., TTM

water model (1).

Typical energy dependence on the distance between the monomers is illustrated in Fig. 6

by example of the water homodimer conformation sets used (along with other dimers) in

parameterization of the atom/bond types found in water molecule.

Atom/Bond Type Classification

Table 4 presents the QMPFF2 atom type classification scheme for atom types found in

proteins. Table 5 shows some additional atom types. There are a total of 63 atom types

(43 heavy atoms and 20 hydrogen atoms). The bond types are determined by the types of

bonded atoms, aromaticity attribute, and bond multiplicity; the total number of bond

types is 94.

The Functional Form

The total potential energy of a molecule or molecular complex in QMPFF2 is given by:
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The first line represents nonbonded terms. The vectors Ra and ra define, respectively, the

positions of the atomic core and the center of electron cloud for atom a in the reference

coordinate system; ababr rr −≡ , ababR RR −≡ . The four interaction terms, ES, EX,

induction (IN), and dispersion (DS), are summed over interacting atoms assuming the 1-3

rule with the terms being dropped for atom pairs separated by one or two chemical bonds

(along with the interaction of the clouds with their nuclear cores). For 1-4 interactions, a

special renormalization is used (see below).



The second line of the relation (1) represents the potential energy caused by  valence

interactions as a sum of commonly used terms for stretching, UST, bend deformation UBN

of valence angles θabc, and torsion strain UTR of chemically bonded atom quartets

characterized by torsion angle ϕabcd. In Eq. 1 the sign {.} indicates summation over

bonded atom groups.

The functional form of each component is presented below.

Nonbonded Interactions

The functional form of the components of intermolecular energy is closely linked to the

model of atomic charge density, which is approximated as a superposition of the positive

atomic core point charge (representing the atomic nucleus and inner electrons) and the

negatively charged exponential electron density (the electron cloud), their positions, R

and r, being the QMPFF dynamic variables.

Electrostatic interaction is derived by using an explicit expression for the charge density

of atom a:
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where aZ~  is the atom core charge, aQ is the charge of the electron cloud, and aw~  is the

scale parameter of the cloud of atom type a. Here and below the QMPFF2 parameters are

marked by tilde signs, with the subscript(s) referring to atom types rather than atoms.

Note that the electron cloud charge aQ  is not a parameter but depends on the atoms

bonded to atom a, through the following formula based on the bond charge transfer

parameters, abQ~ :
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where the summation is over all atoms bonded to atom a; calculating the ES term for 1-4

interactions the sum over bonded atoms is dropped in this equation for pairs 1-2 and 3-4.

In accordance with Eq. 2, ES interaction between two atoms, a and b, includes core-core,

core-cloud, and cloud-cloud terms:
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all expressed through the potential ),;( 21 wwRϕ  of electrostatic interaction of two

exponentially distributed charge densities with scale parameters w1 and w2 separated by a

distance R; the analytical expression for ϕ when w1 and w2 are nonzero can be found for

instance in ref. 2:
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In the case of interactions of point and diffuse charges or of two diffuse charges with the

same value of the scale parameter, we have respectively:
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EX repulsion is known to decay exponentially in the asymptotic region. Hence, the EX

interaction of two atoms, a and b, is represented as:
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In the case of v1 = v2 = v this formula reduces to vRevvR /),;( −=χ .

The QMPFF parameters av~  are associated with the sizes of the exponential distributions

that effectively manifest themselves in Pauli repulsion; these parameters generally differ

from the scale parameters appearing in Eqs. 2 and 4. The parameters 1
~

aC , 2
~

aC , are the EX

charges characterizing the intensity of the EX interaction.

Dispersion interaction is simulated in QMPFF2 by superposition of Tang-Toennies (3) R-

6 and R-8 terms:
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where
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Induction in QMPFF2 is based on the functional form deduced from consideration of the

two-level atomic system with the electron wave function approximated as a superposition

of s- and p-states. The restraint potential is written as:
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where ( ) max
0 ~/~~ tt

aBb ababaaaa ∑ ∈
−−−= ntRrτ , ababab R/Rn ≡  is the unit vector directed

from the core of atom a to that of atom b, and aaa τ/τn ≡ ; with summation being

performed over the set Ba of atoms bonded to atom a. The QMPFF parameter aα~  is

associated with the atomic polarizability; max
~t is the maximum value of the cloud shift and

is independent of atom type. The parameters abs~  and abt~  depending on bond type ab

characterize, respectively, the anisotropy of the restraint potential and the tendency of

shifting of the electron cloud from atom a toward atom b (note that generally baab ss ~~ ≠

and baab tt ~~ ≠ ).

At small values of τa, UIN is close to the oscillator potential, whereas for large values it

approaches a constant, but its derivative (i.e., force) becomes infinite. Therefore for any

external field τa is always <1, that eliminates the polarization catastrophe and provides a

universal existence of a physically meaningful solution of the optimization problem for

the cloud positions.

Bonded Interactions



QMPFF2 uses the simplest quadratic form for the energy potential related to deviation of

valence bond length and valence angles from their equilibriums, whereas the threefold

cosine potential is used to represent the molecular energy from torsion deformations:
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where abk~ , abck~  and { }
)3,2,1(~

abcdV  are the QMPFF2 parameters defined solely by fitting to QM

data at the level of MP2(frozen core)/TZ(-hp). The parameters are fitted to minimize the

deviation of total potential energy UTOTAL, Eq. 1, of a molecule in a vacuum from the ab

initio calculated energy at specially deformed molecular geometries, with the QMPFF2

parameters for nonvalence interactions frozen during the fitting process.

For QMPFF2 nonbonded interactions, each atom type requires eight parameters and each

general bond type requires five parameters (two parameters for symmetric bonds). For

the bonded interactions, each bond length, bond angle, and torsion angle function uses

two, two, and three parameters, respectively, which is comparable with most empirical

force fields. The atom and bond types in a water molecule use a total of 18 nonbonded

and 4 bond parameters.

MD Simulations

MD simulations were performed with an isothermal–isobaric NPT ensemble consisting of

256 flexible water molecules in a cubic box under periodic boundary conditions.  The

path integral discretization index P for quantum MD was generally chosen to be equal to



4. Certainly simulations with P = 4 do not provide the convergence with respect to

internal molecular motions (e.g., bond stretching). However, this level is adequate to

describe quantum effects in intermolecular motions for which we are the most interested

in this article. A few calculations were performed with simulation time up to 5 ns and a P

value of up to 20.

Details of QMPFF2 Implementation in MD. QMPFF implementation in MD is based

on an adiabatic approximation typical for polarizable systems, according to which the

electronic degrees of freedom are considered to be fast in comparison with motion of the

nuclei. Thus, in every MD step the cloud positions are first optimized at fixed atomic

cores locations, and then the forces acting on the cores are calculated and atoms move to

the new positions.

Pressure is evaluated as
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where W is the virial. For QMPFF it is written as:
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Here xyF  is the force on object x due to object y, indexes A and B are related to atomic

cores, and a and b numerate the electron clouds. Pair terms in this equation include

nuclei-nuclei interaction and nuclei-cloud and cloud-cloud contribution; the last two

terms relate to polarization:
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Details of Long-Range Interactions Treatment in MD Simulations. Reaction field

formalism is used in MD simulations with QMPFF, in which the formula for the

modified Coulomb term is written as (4):
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ϕ  is given by Eq. 5, Rcutoff  is the cut-off radius, and the dielectric constant RFε  satisfies

equation:

03
4

2
1 neff

RF

RF απ
ε
ε

=
+
− ,

where HOeff ααα 2+= , Oα , and Hα  are the atomic polarizabilities of oxygen and

hydrogen, respectively, and VNn OH /
20 =  is the current average density of water,

OHN
2

and V being the total number of molecules in the system and the current cell

volume, respectively.

In addition to long-range electrostatics effects, it is also necessary to take into account the

long-range corrections to the total energy and pressure caused by truncation of Van der

Waals forces (or dispersion term in QMPFF2). The asymptotic behavior of dispersion

term at long distances can be written as 8
8

6
6~ rCrCU DS −− , so the long-range energy

correction can be represented in the form:
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where ij
ji
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=  and ij
ji
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=  are the interaction constants summed

over atom types i, j. Correction to the pressure is derived as:
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