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Fitness increases with both x and z for the fitness function in Eq. 4, provided that b > 1, t

< 0, and Y0 > 0, because fx = x
f
∂
∂ =  –(loge10) (1 – b) 10 (1 – b)x , and  fz = 

z
f
∂
∂ = Y0  (1 – b)

loge (10) / zt. The fitness contours for these parameter values are convex when viewed

from below, as will now be shown.  Implicit differentiation of Eq. 4 gives the slope of a

fitness contour at (x, z) as
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For b > 1, t < 0 and Y0 > 0, 2

2

dx
zd  is necessarily positive, so the fitness contours are

everywhere convex viewed from below.

Because we assume that the options sets are right triangles, it follows from the

above that a male allocates its available resources each year to some combination of

ornament and body, and the allocation lies on the hypotenuse of the options triangle.

Mass balance implies that the allocation obeys the constraint X + kY = c, for some

constants k and c.  In the space with axes x = log10X and z = Y/X,  the options set is not

exactly triangular, but the assumption of triangularity holds for small triangles and is a

reasonable approximation for triangles of biologically realistic sizes.

Because the triangles are presumed to be small relative to the fitness contours, we can

think of the fitness contours as wide parallel arcs through the triangles, as in Fig. 3A.

There are three possibilities for the way the fitness contours intersect the triangles, with

three corresponding strategies for optimal allocation of resources:



(i) if the fitness contours are steeper than the slope of the hypotenuse of the options

triangle, allocate all resources to body growth;

(ii) if the fitness contours are shallower than the slope of the hypotenuse of the options

triangle, allocate all resources to ornament;

(iii) if the hypotenuse of the options triangle is tangential to the fitness contours, allocate

resources partly to body growth and partly to ornament.  In particular, allocate to the

point in the options triangle where the tangent touches the hypotenuse.

It is the last condition that results in positive ornament allometries. A fitness contour is,

by definition, a curve with equation f(x, z) = c, for some constant c. The slope of the

contour is obtained by implicit differentiation as –fx / fz, and setting this equal to the slope

of the hypotenuse, t, gives Eq. 2. The locus of the points defined by Eq. 2 represents the

optimal allocation strategy.

Lastly, note that it is the relative positions of the fitness contours that are

important, because they specify the relative intensities of selection on ornament size and

body size. Because the optimal strategy is unaffected by monotonic increasing

transformations of the fitness function f, the contours on which a species sits at any given

time can be normalized and relabeled to give an average fitness of zero. Mathematically,

the selection intensities fz and fx define a vector field that specifies, for each ornament and

body size, the fitness advantages due to unit increases in z and x. This vector field

determines the direction and rate of evolution.

 Our explanation for why larger species have lower normalization constants depends on

four assumptions: (i) the species differ in body size;  (ii) the species’ fitness surfaces have

the same b and t parameters (so, for example, the fitness surfaces in Fig. 3 C and D have

the same b parameter, and so do Fig. 3 E and F);  (iii) b > 1; and (iv) the species mature at

a reproductive size corresponding to a fixed value of z.

Because the optimal strategy is given by Eq. 1 and b is assumed the same for the different

species, the only parameter that varies between species is Y0.  From assumption iv above,



reproductive size, which we label Xr,  corresponds to a fixed value of z, say 0.05, thus z =

0.05 = Y0 Xr
b–1.  Because b is assumed > 1, it follows that as Xr increases, Y0 decreases.

In other words, the optimal strategy of larger species involves lower normalization

constants, Y0.  In the text, this argument is illustrated by comparison of Fig. 3 E and F.


