
Supporting Appendix.

I. MAPPING ON THE GRAPH

The Escherichia.coli metabolic reactions
database(1) Version 1.01 contained 739 reactions as
of May 2003. One reaction is one node on the graph.
There are two types of edges on the graph.

A. Metabolic edges

An edge between two reactions exists if one of the
reactions utilizes a metabolite produced by the other. (i)
if both reactions are irreversible, the metabolite must be
a product of one and an educt of the other reaction. (ii)
if at least one of the two reactions is reversible, the above
condition for the existence of an edge is satisfied if the
two reactions share at least one metabolite, regardless of
it being a product or an educt.

Some compounds or molecules, such as O2 or CO2

are nonspecific and may be present in many reactions,
thus creating spurious edges. We excluded these non-
specific molecules when drawing edges between nodes.
The following is the list of excluded metabolites in the
descending order of the frequency of their appearance in
the metabolic reactions database.

ATP — Adenosine triphosphate
PI — Phosphate (inorganic)
ADP — Adenosine diphosphate
HEXT — External H+

CO2 — Carbon dioxide
PPI — Pyrophosphate
PYR — Pyruvate
NAD — Nicotinamide adenine dinucleotide
GLU — Glutamate
NADH — Nicotinamide adenine dinucleotide reduced
NADP — Nicotinamide adenine dinucleotide phosphate
NH3 — Ammonia
NADPH — Dihydronicotinamide adenine dinucleotide
phosphate reduced
CoA — Coenzyme A
AMP — Adenosine monophosphate
O2 — Oxygen

B. Edges based on the functional assotiation
between enzymes

A weighted edge is drawn between two reactions if
any enzyme catalyzing one reaction has a non-zero func-
tional assotiation score with any enzyme catalyzing the
other reation. If one or both reactiona are catalyzed by
multiple enzymes, the weight of the edge is the highest

score between any pair of enzymes catalyzing the reac-
tions.

II. METHODS

A. Macroscale analysis

Cross-clustering coefficient
An important question about the macroscale level of

organization is whether genomic association brings some
clustering to the metabolic network. The degree of clus-
tering or “cliquishness” in the network is commonly es-
timated by the local clustering coefficient. Clustering
coefficient Ci of node i is defined as the number of edges
among its neighbors over maximal number of possible
edges among them:

Ci = Σj(i),k(i)∆jk/di(di − 1)

where summation is over all neighbors j(i) of node
i, ∆ij is the adjacency matrix of the graph, and di is
the degree of i, i.e. number of its neighbors. Here, how-
ever, we explore a graph that has two types of edges
(metabolic and associations ones) and we cannot readily
apply clustering coefficient. Instead, we introduce a new
quantity of cross-clustering coefficient C(X, Y )i. Con-
sider a graph with two types of edges X and Y , and
define neighbors of i connected by X-edges j(i,X) (X-
neighbors of i). The cross-clustering coefficient is defined
as the number of Y -edges between X-neighbors of i, over
the total possible number of edges among X-neighbors:

C(X, Y )i = Σj(i,X),k(i,X)∆(Y )jk/d(X)i(d(X)i − 1)

where ∆(�)ij is the adjacency matrix of Y -edges and
d(X)i is the X-degree of node i. Note that C(X, Y )i 6=
C(Y, X)i. Averaging cross-clustering coefficient over all
nodes gives the mean cross-clustering C(X,Y) of X and
Y edges on the graph (again, C(X, Y ) 6= C(Y, X)).

The cross-clustering coefficient for the native and
randomly assigned metabolic networks is shown in Fig. 4.

Correlation between pathway distance and
functional association score

Here we want to estimate how likely it is for the
enzymes catalyzing two reactions short metabolic dis-
tance apart to be functionally related as measured by
the functional association score.

Functional association score indicates three levels of
confidence(2, 3). Score greater than 700 indicates high
confidence of functional association, score between 400
and 700 — medium confidence, and score between 100
and 400 — low confidence.
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FIG. 4. Distribution of the cross-clustering coefficient for
randomly reassigned (blue bars) and the native metabolic-ge-
nomic network for the association cutoff of 400.

To investigate the correlation between metabolic dis-
tance and score, we calculate the number of reactions
with a given confidence of functional association edges as
a function of metabolic distance and compare this num-
ber to the one expected on a random graph.

By a random graph we mean a graph which preserves
metabolic links between reactions but randomly shuffles
regulatory links. We generated the random regulatory
graph in two ways. One is in the table R1 R2 Score every
reaction ID R1, R2, ... is replaced by another ID which
is assigned at random from the list of all available IDs.
This corresponds to random enzymes catalyzing chemi-
cal reactions on the graph where both the metabolic net-
work and all the functional associations between enzymes
are preserved. The other method randomly shuffles the
scores around the N ×N matrix of scores.

The graph was rewired 1,000 times by either method,
and the histogram of correlation of distance and coregu-
lation was averaged over these trials.

Shuffling reaction IDs and scores gives the same re-
sults within the stochastic error. For our histograms we
used therefore the average of the points obtained by the
two methods.

Fig. 5 shows the ratios of the number of reactions
with the three levels of confidence of funcitonal associa-
tion scores on the real graph to the number of reactions
within the same ranges on a graph with randomly rewired
regulatory connections. The X axes show metabolic dis-
tance – the number of distinct metabolic steps separating
the two reactions. The ratios are on the Y axes.

Alternatively, we can calculate how likely it is to
observe the same or bigger number of reactions with a
certain level of confidence of functional association edges
on a random graph as on the real graph. These proba-
bilities as a function of metabolic distance are shown in

Fig. 6.
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FIG. 5. Correlation between distance and functional asso-
ciation score — ratios of the numbers or observed reactions on
the real and randomly rewired graphs. Top to bottom and left
to right — functional association score based on neighborhood
in the genome, domain fusion, philogenetic cooccurrence, and
combined score.
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FIG. 6. Correlation between distance and functional as-
sociation score — probability to observe at least the same
number of reactions on a randomly rewired graph as on the
real graph. Top to bottom and left to right — functional as-
sociation score based on neighborhood in the genome, domain
fusion, philogenetic cooccurrence, and combined score.

An important question to investigate is whether the
fact that enzymes that belong to the same module of the
metabolic network also tend to be genetically associated
can be explained by operon organization of functionally
linked genes.

RegulonDB database(4) contains 770 known oper-
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ons as of September 2005. 356 of these have two or more
genes. To investigate the effect of operon organization
on our results, we excluded all functional edges between
genes known to be in the same operon in our metabolic-
genomic graph, and performed the analysis of this mod-
ified graph on the macro- and meso-scale.

On the original graph 1254 functional links have
scores greater than 700. Removal of edges between same-
operon members reduces this number to 1155. For scores
between 400 and 700 the corresponding numbers are 875
and 828, and for scores between 100 and 400 — 23138 and
23047. In addition, some functional edges on the graph
are due to the fact that some reactions along the path-
way or in different pathways are catalyzed by the same
enzyme, leading to the weight of the functional edge be-
ing 1000 and not being influenced by the edge removal.
Therefore one would expect the effect of removal of edges
between genes in 356 operons to be minimal. This ex-
pectation on is confirmed in Figs. 7 and 8.

A spike in ratios and drop in probabilities at some
values of metabolic distances at the tails of the plots can
be explained by a very small (less than one) number of
reactions expected on a random graph and occasional
occurrence of one or very few such reactions on the non-
rewired graph.
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FIG. 7. Correlation between distance and functional asso-
ciation score — ratios of the numbers or observed reactions
on the real and randomly rewired graphs with removed func-
tional edges between members of the same operon. Top to
bottom and left to right — functional association score based
on neighborhood in the genome, domain fusion, philogenetic
cooccurrence, and combined score.

B. Mesoscale analysis

DxC graph clusters

The edges on this graph are the product of metabolic
and functional association connection — an edge exists
when there is both a metabolic link and a functional
link with a score greater than a certain cutoff. This
graph splits into several connected components, depend-
ing on the cutoff on the functional association score. We
search for these components using depth-first search al-
gorithm(5).

0 4 8 12

0

0.2

0.4

0.6

0.8

1

S > 700
400 < S < 700
100 < S < 400

0 4 8 12

0

0.2

0.4

0.6

0.8

1

S > 700
400 < S < 700
100 < S < 400

0 4 8 12
0

0.2

0.4

0.6

0.8

1

S > 700
400 < S < 700
100 < S < 400

0 4 8 12
0

0.2

0.4

0.6

0.8

1

S > 700
400 < S < 700
100 < S < 400

FIG. 8. Correlation between distance and functional as-
sociation score — probability to observe at least the same
number of reactions on a randomly rewired graph as on the
real graph. Functional edges between same-operon enzymes
are removed. Top to bottom and left to right — functional
association score based on neighborhood in the genome, do-
main fusion, philogenetic cooccurrence, and combined score.

DUC graph clusters
This is the graph where edges of both types are

present, and clusters on this graph are defined such that
every node in the cluster is connected to every other node
by a path through both metabolic and regulatory links,
and every node on this path belongs to this cluster.

To search for clusters on this graph, we start with
searching for connected components on the metabolic
graph (call it blue-edge graph). For every connected
“blue” component found, we look for parts of this compo-
nent which are connected components on the functional
association graph (red-edge graph). But these “blue-
red” components, in turn, may now be disconnected on
the metabolic graph, since some of the “blue” paths
between their nodes may have been passing through
nodes which were not connected with “red” paths. We
therefore repeat the search for connected components on
the metabolic “blue” graph within “blue-red” connected
components. Then the search on the “red” graph is per-
formed on these “blue-red-blue” clusters. This repetitive
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search continues until no more partitions of the clusters
can be obtained (see Fig. 9 for an illustration.) For most
clusters we found the search converged after four or five
iterations.

FIG. 9. An illustration of a search for clusters on DUC
graph. The first approximation will find that all seven ver-
tices belong to a connected conponent on the blue graph. The
second approximation will exclude the top point from this set,
but the remaining six points, although a connected compo-
nent on the red graph, are not a cluster on the blue graph.
The third approximation will finally identify the two clusters
such that every node in the cluster is connected to every other
node by a path through both blue and red links, and every
node on this path belongs to this cluster.

Monte Carlo simulation
This method was described in(6). Here we will

briefly recapitulate the main ideas for the graph of one
type of edges, and then describe the generalization for
the E.coli metabolic graph.

This method is used to find a tight subgraph of a
predetermined number of nodes M . At time t = 0 a ran-
dom set of M nodes is selected. For each pair of nodes
i, j from this set the shortest path Lij between i and j on
the graph is calculated. Denote the sum of all shortest
paths

∑
ij Lij for this set as L0. At every time step one

of M nodes is picked at random, and one node is picked
at random out of all its neighbors. The new sum of all
shortest paths L1 is calculated if the original node were
to be replaced by this neighbor. If L1 < L0, the replace-
ment takes place with probability 1, if L1 > L0 — with
probability exp(−(L0 − L1)/T ), where T is the effective
temperature. Every tenth time step an attempt is made
to replace one of the nodes from the current set with a
node which has no edges to the current set to avoid get-
ting caught in an isolated disconnected subgraph. This
process is repeated until the original set converges to a
complete subgraph, or for a predetermined number of
steps, after which the tightest subgraph (the subgraph
corresponding to the smallest L0) is recorded.

On the E.coli metabolic graph two types of edges
are present. We calculate the shortes path for every pair
of nodes on the metabolic graph. For regulatory graph
we use the empirical rule to transform decreasing func-
tional association confidence into increasing edge lengths.
High-confidence scores are assigned a edge length l = 1,
medium-confidence — edge length l = 2, low confidence
— edge length l = 4, and score below 100 — edge length
l = 16, which is chosen to be larger than the longest path

length between any two connected reactions on the graph
of metabolic edges.

The value to optimize is the generalized “potential
energy”

Egen = d2 + Rl2

where d is the length of the shortest metabolic path
The Monte Carlo simulation is run starting with a

connected set of nodes, meaning every node is a neigh-
bor of at least one of the other nodes. At every step
when a node is picked, an attempt is made to replace
it with a neighbor of any of the remaining nodes rather
than its neighbor or an arbitrary node on the graph. The
replacement is made by the same rules as in the previ-
ous paragraph. The recorded clusters are merged and
redundant clusters are removed.

Examples of modules mapped on metabolic
pathways

The cysteine pathway breaks into two modules
(cysDN, cysC, cysH, cysIJ) and (cysE, cysK, cysM,
metA, metB), the latter containing two genes of the me-
thionine pathway. This way the cysteine and methionine
pathways are re-distributed between the modules that
look reasonable from the biochemical point of view (Fig.
10).

Another unexpected mode of genomic association
is observed in the pathways of purine and pyrimidine
biosynthesis. These pathways are linked together by a
single module (Fig. 11). Such fusion of purine and
pyrimidine pathways may be reflected in co-regulation
of their genes by E. coli by the PurR transcription fac-
tor. Purine biosynthesis is also split at the IMP junction,
revealing IMP to GMP production line as a single mod-
ule (guaA, guaB, guaC). This separation seems surprising
since guaA and guaB are also regulated by PurR. How-
ever, weak genomic associations with other genes in the
pathway bring guaA-guaB-guaC into a separate module.

Central metabolism. Few modules are present in
the large pathways of the central metabolism (glycoly-
sis, pentosephosphate pathway, the Krebs (TCA) cycle,
respiration) (Fig. 12).

Although strict thresholds yield only small clusters
of associated reactions (e.g. a module of nonoxidative
branch of the pentose phosphate pathway), large super-
pathway modules containing representatives from several
pathways are obtained at low thresholds. For example,
a part of the EMP pathway, degradation of several car-
bon sources, and the nonoxidative branch of the pentose
phosphate pathway form a single super-pathway module.

Lack of modules mapping to traditional pathway
in the central metabolism suggests high diversity in its
structure and evolution in bacteria, as well as complex-
ity of its regulation (e.g. a cascade of 11 transcription
factors regulating 3 genes, aslL, zwf, and gnd, in the pen-
tose phosphate pathway(7). This agrees with observa-
tions of Glazko and Mushegian(8) and earlier analyses
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of Dandekar et al.(9) and Huynen et al.(10) who demon-
strated high diversity of the Krebs cycle and the glycol-
ysis pathway. Examples of super-pathway modules (ob-
tained mostly by the Monte Carlo search) include cell
wall and membrane biosynthesis, biosynthesis of certain
amino acid whose genes demonstrate strong linkage, cen-
tral metabolism (see above), enterochelin, and tetrapyr-
role pathways, thus corresponding to large functional sys-
tems.
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FIG. 10. Cystein and methionine biosynthesis. Left and
middle: systein; right: methionine; horizontal: one-carbon
metabolism (partial), broken line: membrane with trans-
porters. Colored (blue, red, green): clusters.

Subunits hisP, hisQ, hisM have strong association
between themselves (S > 900), while week (100 <
S < 300) with hisJ subunit of the hisPQMJ ATP-
dependent histidine transport system. The origin of this
weak link becomes apparent if one recalls that hisPQM

subunits can also function as lysine/arginine/ornithine
transporter when working with argT protein. The his-
PQM system achieves its flexibility by using either ArgT
or HisJ as the periplasmic component. This example
suggests that weak association between subunits can in-
dicate functional diversity of the complex.
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FIG. 11. Purine (left) and pyrimidine (right) pathways.
Blue: hybrid purine-pyrimidine module. Green: GMP mod-
ule.

Figs. 14 and 15 show two more examples of modules:
fucose and rhamnose pathways and clusters and aromatic
amino acids and folate pathways.
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Effect of operon-related edges.
As we argued in Macroscale section, the effect of

strong functional edges due to the presence of the cor-
responding enzymes in the same operon is expected to
be minimal. We marked the operon-related functional
edges in the cluster tables on the project web site in the
Mesoscale section. As one can see, while the density of
functional edges in some of the modules will be lower,
these modules will remain statistically significant.
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FIG. 12. A hybrid cluster. Red — the Krebs (TCA) cycle.
Blue — respiration (partial). Green — alternative carbon
sources (glucerol).

III. STATISTICAL SIGNIFICANCE

To estimate statistical significance of the identified
modules, we introduced generalized Q value as a mea-
sure of the density of connections within the module.
Our Monte Carlo technique that minimizes the sums
of metabolic and functional distances equivalently maxi-
mizes this Q value.

The generalized Q value is defined as follows

Qgen =
Σn

i=1Σ
n
j=i+1dij + Σn

i=1Σ
n
j=i+1fij

n(n + 1)
,

where dij is metabolic edge between vertices i and j, fij

— weighted functional edge, n — the cluster size. The
denominator reflects the fact that there can be at most
n(n + 1)/2 metabolic edges and n(n + 1)/2 functional
edges. The weight of metabolic edge is 1, the weights
of functional edges are as follows: f = 1 for association
score S > 700, f = 1/2 for 400 < S < 700, f = 1/4
for 100 < S < 400, and f = 1/16 for S < 100. This is
consistent with our choise of functional edge length for
Monte Carlo optimization.

The probability to observe a cluster with connec-
tions density no less than Qgen approximately follows
the Fisher-Tippett extreme value distribution (EVD)

Pevd(m) = exp (− exp (−α(Qgen − u))) (1)
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FIG. 13. Arginine and histidine pathways. Left (spe genes):
spermidine/putrescine biosynthesis, not in any cluster. Red:
arginine biosynthesis (X4). Blue: histidine biosynthesis (X4).
Broken: arginine-histidine biosynthesis (U7).

where α and u are parameters of the distribution.
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FIG. 14. Fucose and rhamnose pathways and clusters. Fu-
cose pathway: solid lines. Colored (red and blue): two clus-
ters.

We used this property to estimate statistical signif-
icance of Monte Carlo clusters. First, we generate 1000
randomly rewired networks and run MC search on each
of them. This way we obtain clusters with Qgen obeying
EVD and derived parameters α(n) and u(n) as a function
of cluster size n. Second, we analyzed clusters discovered
in the real network and computed Pevd for each of them
using equation 1. We noticed that α(n) and u(n) scale
approximately linearly with the cluster size n.

α(n) =
1

a1n + a2
; u(n) = u1n + u2 (2)

allowing computation of Pevd for a cluster of any size n.
To discard the statistically insignificant clusters, we

then calculate the expectation value Eevd to encounter
cluster with given size and density of connections out of
N network vertices. However, the question arises as to
the number of nodes to choose from. One cannot sim-
ply use N , since the network may contain many nodes
with very low connectivities which are smaller than the
lowest connectivity of any node in a densely connected
cluster. We therefore approximate the expectation value
by Eevd = Pevd

(
N?

n

)
, where we choose N? to be the num-

ber of vertices on the network with connectivities larger
than the average connectivity of the cluster. Clusters
with Eevd < Ecutoff = 0.1 are said to be statistically sig-
nificant. Fig. 16 presents distribution of Qgen and their
EVD approximations obtained using randomly rewired
networks together with the clusters discovered in the real
network.
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FIG. 15. Aromatic amino acids and folate pathways. Path-
ways: folate — broken, left; aromatic a-a — solid, left; ente-
rochelin — broken, right; menaquinone — solid, right. Clus-
ters: aromatic/folate — red; enterochelin/menaquinone —
blue.

For clusters obtained by exact enumeration algo-
rithms (D×C and D∪C) we estimated the statistical sig-
nificance by a different approach. The original graph was
reshuffled 10,000 times and for each reshuffle all D × C
and D ∪ C clusters were identified and the density of
metabolic and association links within them recorded. A
cluster found on the original network is statistically sig-
nificant if we find no more than 100 clusters with higher
density of connections in 10,000 rewired networks. This
corresponds to E value of 0.01.
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FIG. 16. The distribution of Q values of clusters on the
rewired network (red vertical bars) and its approximation by
extreme value distribution (solid black line). Green bars core-
spond to Q-values of the clusters found in the real network.
Left — ratio of metabolic and functional edges is one, cluster
size = 15. Right — ratio of functional and metabolic edge
strengths equals 16, cluster size = 10.

IV. MICROSCALE

A. Two-reaction junctions

In total there are 275 metabolites that participate
in exactly two reactions. Reactions catalyzed by isoen-
zymes are treated as separate, except if a metabolite is
participating in two such reactions, these reactions are
not considered forming a pair.

Pairs or neighboring reactions can be divided into
six categories (Fig. 17).

I                    II                  III                     IV                  V                      VI

FIG. 17. Pairs of neighboring reactions. Six types if the re-
versible reactions are viewed as proceding in both directions.

There are only four pairs of type II and three pairs of
type IV. All these pairs have functional association score
< 100. The histogram of observed versus expected num-
ber of reactions as a function of score for the other four
types is shown in Fig. 18 (the expected number assumes
random rewiring of functional edges). All four types of
pairs show similar observed/expected ratios - approxi-
mately 2/3 for score > 100 and between 3/1 and 5/1 for
score > 700.

But high association scores among reversible junc-
tions may be a consequence of the fact that these junc-
tions are actually the same pattern as type I. To test this,
we processed the network viewing reversible reactions as
proceeding in one direction only. In this case there are

three types of junctions — I, II, and IV. The majority
of junctions belong to type I — 236 out of total of 273.
Type II has 16 reactions and type IV — 21.
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FIG. 18. The histogram of functional association scores for
four dominant pair types.

The association among convergent and divergent
pairs tends to be similar to that expected on a random as-
sociation network, while linear flow (type I) two-reaction
junctions are several times more often associated than
one can expect at random (Fig. 19).
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FIG. 19. The histogram of functional association scores for
the three pair types when reversible reactions are viewed as
proceeding in one direction only.

The full table with numbers of observed versus ex-
pected two-reaction junctions is on the web in Microscale
section.

8



B. Three-reaction junctions

There are 45 metabolites participating in exactly
three reactions. These reactions can be divided into four
types (Fig. 20): convergent, divergent, conflicting direc-
tions, and reversible three-reaction junctions. In the lat-
ter at least one reaction is reversible, while in the three
former all reactions are irreversible.

FIG. 20. The four types of three-reaction junctions. Left
to right: convergent, divergent, conflicting directions, and re-
versible junctions.

There is only one conflicting-directions junctions —
three irreversible reactions with one of the products being
valine. The corresponding enzymes are not functionally
associated.

The three-reaction junctions can be divided into five
types by the pairwise functional association.
(i) no association between any pair
(ii) linear — one reaction is associated with only one
other reaction along the metabolic flow
(iii) linear switch — one of the reactions is catalyzed by
isoenzymes, each of which is associated with only one of
the other reactions along the metabolic flow
(iv) fork — one of the reactions is associated with both
other reactions along the metabolic flow
(v) full association — all three reactions are associated.

There are only seven triplets with one isoenzyme-
catalyzed reaction. Only one of those is a linear switch
with phenylalanine being the product of one such reac-
tion which then proceeds along two separate paths. The
rest of triplets with isoenzyme-catalyzed reactions are lin-
ear or unassociated.

Under linear and unassociated categories fall most
of three-reaction junctions. At all cutoffs on the func-
tional association score linear junctions occur several
times more often than would be expected if the asso-
ciation links were rewired at random (Figs. 21—23).

Among all associated patterns linear association is
clearly dominant.

The full table with numbers of observed versus ex-
pected three-reaction junctions is on the web in Mi-
croscale section.

C. Multiple-reaction junctions

There are 131 metabolites participating in more
than three reactions. The functional association prop-
erties of these multiplets can be characterized by average

scores of six types of reation pairs (Fig. 17), or by ob-
served versus expected number of associated pairs of a
type within a certain functional association score range.

Linear

No association

E
xp

ec
te

d

E
xp

ec
te

d

E
xp

ec
te

d

Reversible Convergent Divergent

9

2

24
FIG. 21. The histogram of observed versus expected num-

bers of associated three-reaction junctions with the associa-
tion score cutoff 100.

With the average network score Snetwork = 135 the
highest average score is observed among pairs of type VI
— SVI = 252. Pairs of type II and IV have the score sim-
ilar to the network average (SII = 123 and SIV = 144),
while the remaining three types have lower average score
— SI = 65, SIII = 84, and SV = 56.
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FIG. 22. The histogram of observed versus expected num-
bers of associated three-reaction junctions with the associa-
tion score cutoff 400.
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Similar results are observed on the histogram of ob-
served versus expected numbers of pair types (Fig. 24).
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FIG. 23. The histogram of observed versus expected num-
bers of associated three-reaction junctions with the associa-
tion score cutoff 700.
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FIG. 24. The histogram of functional association scores for
six multiplet types. S < 100 columns not to scale.

As in two-reaction junctions, viewing reversible re-
actions as flowing in one direction only supports the lin-
ear metabolic flow. The association of type II and IV
pairs is approximately the same as would be expected
on a random association network, while tipe I junctions
are underassociated. In an n-reaction junction there are
∼ n2 possible pairs, and ∼ n possible linear flow direc-
tions. The fact that type I reactions are underassociated
in n-reaction junctions therefore indicated that only a
few flow directions are favored, which is consistent with
the linearity of metabolic network assumption. The his-
togram of associated pairs is shown in Fig. 25.
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FIG. 25. The histogram of functional association scores for
three multiplet types — reversible reactions proceed in one
direction only. S < 100 columns not to scale.

The full table with numbers of observed versus ex-
pected multiple-reaction junctions is on the web in Mi-
croscale section.
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