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ABSrRACT This paper is concerned with the nature of the transmembrane potential
induced in an inactive nerve fiber lying in an impressed potential field within a nerve
trunk. The impressed potential field is assumed to be produced by the synchronous
activity of other fibers within the trunk; an expression for the induced transmem-
brane potential is obtained utilizing the principles of electromagnetic field theory.
The results strongly indicate that membrane capacitance is the main determinant
of the induced transmembrane potential wave form.

INTRODUCTION

Studies of nerve fiber interaction between two adjacent nerve fibers (one active, the
other inactive) lying in a nerve trunk (Clark and Plonsey, 1970) have prompted a
further investigation of the induced transmembrane potential in an inactive fiber
when many active synchronous fibers lie in the same nerve trunk. While the disper-
sion seen in the compound action potential shows that ordinarily no significant
interaction of fibers occurs, nevertheless it is important to quantitative studies to
elucidate order of magnitude and dependence on geometrical and electrical param-
eters. Such studies are important in the investigation of pathological conditions
since they may exclude or suggest ephaptic implication.

This problem can be immeasurably simplified by assuming that within a nerve
trunk (a) the interstitial conductive medium confines the external current to axial
flow only,' and (b) a large number of constituent fibers of the trunk are of equal
diameter and simultaneously active. As a result, the interstitial potentials every-
where in a given transverse plane would be essentially the same and therefore, an
inactive fiber lying in such a medium has an impressed potential field that is axially
symmetric and a function only of axial distance z. We assume the existence of an
action potential propagating in the negative z direction so that for any field quantity

1 In the basic two-fiber interaction problem studied by Clark and Plonsey (1970), the spatial distribu-
tion of interstitial potential is found to be quite uniform, for nerve trunk radii in the physiologic
range.
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ro- . tuium FIGURE 1 Cylindrical nerve fiber situ-
0\ z, a ated in a conducting bathing medium.

AXOPLASM
A potential field L(z) is present in this

G AXOPLASM ) medium and is given by equation 1.

,6(p, z, t) satisfies

#(p,z, t) =i,(p, z + vt), (1)

where v is the conduction velocity. For simplicity we shall suppress reference to the
temporal variation but this can always be restored by replacing z by (z + vt). We
therefore specify an impressed potential 4¢8(z) at the outer membrane surface
(p = a) of the inactive fiber (see Fig. 1). For mathematical convenience this surface
potential may be represented as a sum of gaussian potential distributions (Clark
and Plonsey, 1966), that is:

ib (4 = ZA, exp [-B2(z - D )2]. (2)
i=l

The axoplasmic medium of the inactive fiber is assumed to be homogeneous and
isotropic, and to possess a specific conductivity ai (mho/cm). The interstitial medium
is also assumed to be uniform possessing a specific conductivity 0o (mho/cm). The
fiber membrane is assumed to possess a membrane conductance a. (mho/cm2) and
capacitance Cm (,F/cm2). This paper will be especially concerned with the effect of
variations in membrane conductance and capacity on the magnitude and wave-
shape of the transmembrane potential.

EXPRESSION FOR POTENTIAL AXOPLASMIC MEDIUM

The general expression for axoplasmic potential 4"(p, z), obtained as a solution of
Laplace's equation in the cylindrical axoplasmic medium (O < p < a) under the
assumed conditions of axial symmetry is

00

q(PZ =1 E(k)Io(IkIp)e&ftdk, (3)

where Io is the modified Bessel function of the first kind and E(k) is an, as yet,
undetermined function. Considering the inactive fiber membrane as a distributed,
parallel resistance-capacitance network, the appropriate expression for transmem-
brane current density Jm(z) (amp/cm2) is:

Jm(z) 4mcI m(z) + Cm d(Z) (4)at

In equation 4, cb is the transmembrane potential, defined as:

4'm(Z) = 4 (a, z) - 8(z). (5)
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The time derivative in equation 4 may be evaluated, since equation 1 requires that

ak= v0 (6)
at az

Thus, equation 4 becomes:

Jm(z) =m4sm(Z) + VCmd'Imz (7)

BOUNDARY CONDITIONS AT p = a

The appropriate boundary condition at the inactive fiber membrane surface is
expressed mathematically as:

Jm(Z) = aI , (8)atp p-a

where Jm is the transmembrane current density. This equation is simply an expres-
sion of the continuity of current crossing the membrane. Since the membrane is
characterized electrically as a distributed resistance-capacitance network the trans-
membrane current density Jm is also given by equation 4. Thus, substituting equa-
tion 4 into equation 8, one obtains

ai | + am ?m(Z) +VCm dm=. (9)
ap a az

Equation 9 is the equation utilized in the solution for the unknown function E(k)
in equation 3.

APPLICATION OF BOUNDARY CONDITION-SOLUTION
FOR UNDETERMINED POTENTIAL FUNCTION

In obtaining a solution for E(k), an expression for transmembrane potential is first
obtained from equation 5.

cIm(Z) = LE(k)Io(I kIa)ejkz dk -8(z) , 10)
co

where the specified surface potential distribution ¢'8(z) is given by equation 1. This
distribution may, however, be represented by its Fourier transform; that is,

(Z) = !-f F8(k)ee dk, (11)
c7oo

F.(k) = J 8(z)ejkz dz, (12)

where F8(k) is defined as the Fourier transform of ¢,(z). The Fourier transform may
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be evaluated by direct integration (Clark and Plonsey, 1966) to be

F8(k) = ArB exp [-k2/4BM] exp [jkDi]. (13)

Thus, upon substitution of equation 11 into equation 10, the expression for (Dm
becomes:

1 j'0

4m(Z) = - [2irE(k)Io( k I a) - F,(k)]e-"z dk. (14)

Upon substitution of equation 14 into equation 7, the expression for transmem-
brane current density becomes:

Jm(z) = Ym f [2rE(k)Io(j k a) - F,(k)]e-jkz dk, (15)2 oo

where Ym is defined as:

Ym m4-jkvCm. (16)

Thus, equation 9 becomes:

0 = i: Ja k E(k)Il( k a) + 2Yn (2rE(k)Io(j k a) - F.(k))] eikz dk. (17)

If the integral of equation 17 is zero over the limits (- oo, 0 =, it follows that:

[ai IkI E(k)Ii( kI a) +-Y (27rE(k)Io(I kI a)-F(k)) =0. (18)2w 8

Thus,

E(k) = Fa(k) Ym 19
2w Oi I kIIIi(IkIa) + YIo(IkIa))I 19

Since Ym is defined according to equation 16, the expression for E(k) is also com-
plex and may be written in the form:

E(k) = F )(k) x(k)2 + (x2(k))21' (20)

where

xl(k) = ai k I II(I k I a) + amjo(Ik I a), (21)

x2(k) = +kvCmIo(Ik a), (22)
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x3(k) = &mXi(k) + kvCmX2(k),

x4(k) = &mX2(k) - kvCxl(k). (24)

Thus, substituting equation 20 into equation 14

c)I:m(Z) = 21r F8(k) [2+ X2 Io(I k a) - I] ekzdk. (25)

Substituting equation 13 into equation 25, one obtains

Lm(Z) = 1 - exp [-k2/4BM]J i=1 Bi

±(x+ jX4) Io(I k I a) - I] exp [-jk(z - Di)] dk. (26)
x2+ x 2

One will note from the definitions of x1 , X2, x3, and X4 above that x1 and x3 are
even functions of k, while x2 and X4 are odd functions of k. The exponential term
exp [-k2/4BM] and the modified Bessel function Io(I k a) will also be found to be
even functions of k. As a result, equation 26 may be rewritten as:

bIm(Z) = iiv"6fZl; exp [-k2/4BM] Lx2 + 0Io(ka) - 1)

*cos k(z - Di) + I2 2o (ka) sin k(z-Di) dk. (27)x2 - x2

Letting y = ka

I Fo A /x3IO(y)*( (Az exp [-y/4a'B] i + -1)m/- V7ra Ji=1Bi xiLX+X2
.COS(i(z -Di)) + X4 I si (z -Di)l (28)

-2 + xIo(y) siny a
where

xi(y) = oiYIi(y) + &fmIo(Y) (29)
a

X2(y) =YVCm10o(y), (30 )a VC

x3(y) - amX1(y) + Y a x2(y), (31 )

X4(y) = &mX2(y) _ -Xi(y). (32 )
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SYNTHETIC DATA

Since equation 28 is too complex to permit a general solution, we proceed by choos-
ing a representative problem for which (Dm can be evaluated and effects of 1m( = I/&.)
and Cm on transmembrane potential studied. In spite of this seemingly restrictive
approach, certain generalizations will be seen to be suggested by the results.
For simplicity, the form of the impressed surface potential at the inactive fiber

¢8,(Z) is represented by a single gaussian distribution, that is, using the nomen-
clature of equation 1 we have

(D8(z) = A1 exp [-B2(z - D1)2]. (33)

The representative value of the amplitude factor A1 was chosen to be 10 mv. This
value is in the order of magnitude of expected values and should be considered as
simply a reference (normalized) quantity.
The values chosen for B1 and D1 in equation 1 are

B1 = 4.0 cmn', D1= 0.0 cm,

while the values chosen for the geometrical and electrical parameters of the model
are:

(1) a = 10 ,u (fiber radius)
(2) rm = I/&am = 2000 Q- cm2 (resistance per unit area of membrane)
(3) Cm = 0.8 ,uF/cm2 (capacitance per unit area of membrane)
(4) ai = 1/90 Q-cm (specific conductivity of axoplasm)
(5) v = 1000 cm/sec (conduction velocity of active wave front).

Approximations in the numerical evaluation of equation 28 are essentially the same
as those discussed in Clark and Plonsey (1968). The limits of integration used are
(0, 0.14) and are obtained by evaluating and plotting the integral of equation 28 so
as to determine an upper bound on y, the variable of integration. A Burroughs
5500 digital computer (Burroughs Corp., Detroit, Mich.) was utilized in this study.

RESULTS

The transmembrane potential distribution 4'm(Z) of an inactive fiber placed in the
impressed field described in Fig. 2, was calculated for the aforementioned (typical)
values of membrane resistance and capacitance. The result is shown in Fig. 3 and
reveals an essentially diphasic curve that has a peak-to-peak value of approximately
450 ,uv. Fig. 3 also contains curves for transmembrane potential at other values of
rm ranging from 500 to 100,000 Q-cm2, hence covering the physiological range of
values (1000-4000 U. cm2). One notes that the results are not very sensitive to
changes in fm and thus suggests that Cm may be the controlling parameter. The curve
for rm = 100,000 Q-cm2 might be considered as representing the type of behavior
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FIGURE 2 Assumed potential distribution ¢8(z).

that would arise from a fiber possessing an essentially pure capacitive membrane
since the resistive part is in the nature of an open circuit.
When fm is held constant at 2000 U.cm2 and Cm is varied over the range (0.3 <

Cm < 1.2 MF/cm2), the wave shape remains essentially diphasic as seen in the curves
of Fig. 4. Here the membrane behavior appears to be clearly dominated by the
membrane capacitance. One notes from Fig. 4, that the peak magnitude of -Cm is
roughly inversely proportional to Cm over the range of values considered.
The case where Cm = 0.01 jF/cm2 is shown in Fig. 5; the curve for Cm = 0.6

,IF/cm2 is presented for contrast (note that these curves are plotted to different
scales). The Cm = 0.01 MiF/cm2 curve might be expected to characterize the "re-
sistive" membrane since the capacitance is very small. It differs from the "capaci-
tive" membrane in that its wave shape is triphasic and its magnitude much larger.
From Figs. 3-5, and a knowledge of the physiological ranges of the parameters

im and Cm (1000 < fm < 4000 -cm2; 0.5 < Cm < 1.2 IMF/cm2) it is clear that the
main determinant of the wave shape of the induced transmembrane potential is the
membrane capacitance. Fig. 6 indicates that the magnitude of transmembrane
potential increases linearly with fiber radius under the assumption that all other
model parameters remain invariant over the range of radii considered.
While the numerical results apply to the specific model it is possible to readily

apply them to a variety of additional conditions. Thus it should be noted that the
assumed interstitial action potential amplitude of 10 mv is a multiplicative constant
in all computations. Should this value actually be 50 mv then all resultant curves
would apply provided the ordinate scale were multiplied by 5. In this connection, if
r, is the net interstitial resistance per unit length, ri the resistance per unit length of a
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FIGURE 3 Transmembrane potential as a function of axial distance z for various values of
membrane resistance. The value of Cm is 0.8 ,AF/cm' in all cases.

single fiber, and N the number of synchronously active fibers, then (Patlak, 1955;
Lorente de No, 1947)

C = (1+ ri/Nre)-kIm.

The result depends on N but it is reasonable to expect conditions for which the
coefficient of (m would lie between 0.1 and 0.7 yielding 8 somewhere between 10
and 70 mv.
The conduction velocity enters the computation only as a product with the mem-

brane capacitance. Consequently the potential fields on and within the inactive
fiber are unchanged if the vCm product is held constant. Thus the curves of Fig. 4
can be applied to other values of v than the assumed 10 m/sec provided the same
vCm obtains.
As revealed by Fig. 6 the transmembrane potential in the inactive fiber is directly

proportional to the diameter. Thus for diameters other than the assumed 10 JL a
simple scaling can be accomplished.
As an illustration of the above consider a bundle of muscle fibers of 50 , diameter

with 4'. = 70 mv, Cm = 5 ;F/cm2, and v = 1.6 m/sec (Katz, 1948). From the vCm
product we see that the Cm = 0.8 ,F/cm2 curves of this paper apply. Since the am-
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FIGURE 4 Transmembrane potential as a function of z for various values of membrane
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FIGURE 5 Transmembrane potential as a function of z for Cm = 0.01 and 0.6 UF/cm2. The
value of fm is 2000 Q*cm in both cases.
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FIGURE 6 Induced transmembrane potential iPm as a function of fiber radius in the plane
z = -0.2 cm.
FIGURE 7 Analysis of current flow and transmembrane potential for an inactive resistive
membrane.

plitude and diameter factors are multiplicative the peak-induced transmembrane
potential is 0.25 X 7 X 5 = 8.7 mv.

DISCUSSION

The wave forms which result for the resistive and capacitive membranes are not too
difficult to explain. For the resistive case (Cm very small) illustrated in Fig. 7, the
interstitial potential is negative at the center and zero to the right and left. The
resultant current density field depends only on the instantaneous potential field (all
fields being quasi-static). Consequently Jm(z) has a triphasic wave form and its
direction is into the inactive fiber at the "right" and "left" and out of the fiber at the
center as shown in Fig. 7. Since the membrane is purely resistive, the transmembrane
potential is proportional to Jm(z) according to equation 7. That is,

(34)

For the capacitive membrane (fin very large, or conversely, °m very small) we

shall assume that the current flowing into and out of the inactive fiber has essen-

tially the same pattern as for the resistive membrane. That is, we assume the inactive
fiber, as an electrical load, to be mainly characterized by its high axoplasmic re-

sistance and therefore to remain essentially the same resistive load regardless of

BIOPHYSICAL JOURNAL VOLUME 11 1971

50 r

4001

-J
:I.

I
z

m

0
0-

z
Ct
w

z

Ir-

300[

200 [

100 F

Jm(Z) = Jm(Z)/"m

u- -n X

\

290



INACTIVE
FIBER r

INTERESTITIAL MEDIUM

{5D(Z)

4wz) X

FIGURE 8 Current flow and transmembrane potential for an inactive fiber with capacitive
membrane.

changes in membrane parameters. The aforementioned assumption depends on the
effective axoplasmic resistance to greatly exceed the effective membrane impedance
in the range of interest. We shall return to this with some quantitative measure
presently. Now even though the current linking the inactive fiber is the same for the
capacitive membrane as for the resistive membrane, the transmembrane potentials
will not be similar. This comes about because the potential developed across a
capacitance is not proportional to the current through it, but rather to its time
integral. This is clearly seen from a consideration of equation 7 for the capacitive
case, that is

4'm(Z) = (l/vCm) Jm(z) dz. (35)

Since Jm(z) has a triphasic wave form, transmembrane potential in this case will be
diphasic in nature (see Fig. 8).
Thus the "capacitive" membrane possesses a diphasic transmembrane potential

whereas the "resistive" membrane possesses a triphasic wave form for 'I'm(Z). For
intermediate cases, that is, for values of im and Cm in the physiologic range,
Figs. 3-5 clearly indicate that the prime determinant of transmembrane potential is
membrane capacitance.
A rough model which permits one to deduce (also very roughly) some quantitative

relationships can be put together as follows. First we can think of the applied poten-
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FIGURE 9 Lumped equivalent circuit for inactive fiber with
RC membrane.

tial field 48.(z) as constituting a single sine wave; we assume it to be the output of an
AC generator. The passive fiber can be thought of as an electrical network to which
the AC generator is connected. The former will be represented by a parallel combina-
tion of membrane capacitance and resistance in series with the axoplasmic resistance.
While the network is truly a distributed one the suggested lumped equivalents are
proposed for simplicity. To compute an effective surface area of membrane we define
a characteristic length X as the distance between points of maximum slope of 4,(z).
This corresponds to a half-spatial cycle, considering the applied potential to consti-
tute a full spatial cycle. The network is described in Fig. 9 where RM is the total
membrane resistance, CM the total membrane capacitance, and Ri the longitudinal
axoplasmic resistance of the fiber of length X. The applied voltage v. has the magni-
tude equal to the maximum value of ¢8.(z) while X is calculated from X and the
velocity of propagation v by

2ir 27rv
=

7rV
T 2XA * (36)

Using the values given previously we get

X = 0.4 cm,
w = 7850 rad/sec,

CM = (0.8) (2ira) = 0.002 IF,
1/wCM = 63.7 kg,

RM = ?m/(27raX) = 800 kg,
R, = 9OX/(7ra2) = 11.4 MO.

The numerical values tend to confirm several of the results already noted. First
1/(wCM) << RM hence demonstrating the membrane to be normally capacitive;
that is since the shunt capacitive reactance is much smaller than the shunt resistance
the membrane capacitance is predominant. Second, since Ri >> 1/(wCm) the total
load is essentially resistive over the range of values considered. The transmembrane
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potential peak value, 4m X should be roughly given by

Va (jLE) ( ~~~~~37)
iWCM + R1 + Ri

which corresponds to the voltage division performed in the circuit of Fig. 9. The
capacitive membrane is characterized by 1/(wCM) << Rm hence Cm = 1/(fmW). In
our example rm = 2000 Q. cm2 and 0.6 < Cm < 1.2 M&F/cm2 clearly satisfy the requi-
site inequality. In this case the above equation simplifies to

Vaqt= CR (38)coCm Ri

and we note that (Dm is inversely proportional to CM and correlates reasonably well
with results shown in Fig. 5. Using the specific values of Cm = 0.8 MF/cm2, Tm =
2000 - cm2 gives a value of (b/Va of 0.005 which, however, does not compare too
well with the value obtained from Fig. 3 of 0.024. This result also confirms an in-
sensitivity to larger values of rm as revealed in Fig. 3.
The resistive membrane is defined by the condition RM << l/(CWCM), hence for

rm = 2000 D . cm2, Cm < 0.01 MF/cm2 is required. If Cm = 0.01 IMF/cm2,
then 1/(cWCM) = 5.1 Mg and the membrane will be primarily resistive. In this case
the expression for (m reduces to (approximately)

'Ibm = Rmv
1?. + RM'

Utilizing the values given we get

4I,m/Va = 0.065.

This compares with the measured peak values (see Fig. 5) of 0.077, 0.196, and
0.076.
Although we have used numerical values to illustrate the simplified membrane

model, it should be emphasized that only qualitative relations can rightfully be
expected. It is indeed somewhat surprising that the results appear to have some
quantitative predictability. This model while of an instructional type should never-
theless be helpful in providing an intuitive understanding of a particular type of
fiber interaction.

ADDITIONAL COMMENTS

This paper, through a numerical example, gives the order of magnitude of voltage
induced in an inactive fiber which lies in a bundle of active fibers and describes its
dependence on electrical and geometrical parameters. In particular we see that the
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ephaptic excitation of nerve fibers is rather unlikely in view of the low resultant
transmembrane potentials unless the membrane should have an abnormally low
capacitance (and high resistance). The possibility of interaction is less likely for
very small fibers.
The results in this paper apply to inactive unmyelinated nerve fibers only. However,

they also apply to bundles of skeletal muscle fibers and can serve to estimate the
likelihood that excitation of a portion of the bundle will cause excitation of the re-
mainder of the bundle. The brief example given at the conclusion of the Results
section shows this to be a very real possibility since the values chosen are quite
typical.
We have not considered interaction between two active fibers but from a qualita-

tive standpoint the region just ahead of the action potential on the slower of the two
is under the influence of its own local circuit current and the induced transmem-
brane potential of the faster conducting fiber. In this case even though the induced
potentials are subthreshold they, nevertheless, contribute to a reduction in latency,
hence increase in velocity, of the slower fiber. The degree of interaction depends on
the relative strength and difference in intrinsic velocities.
The source of applied field on an inactive fiber may also arise from a stimulating

(polarizing) current. The model should still be appropriate provided X is related to
the conventional space constant. Fig. 6 would then be interpreted as predicting in-
creased excitability to external excitation for the larger diameter fibers in a nerve
trunk. A linear relationship between excitability and diameter is expected.

SUMMARY

This paper is concerned with the nature of the transmembrane potential induced in
an impressed potential field within a nerve trunk. The impressed potential field is
assumed to be produced by the synchronous activity of other fibers within the
trunk. An expression for the induced transmembrane potential is derived, and
numerically evaluated utilizing typical physiological values for the constants of the
mathematical model. The results strongly indicate that membrane capacitance plays
a dominant role in the determination of the induced transmembrane potential
wave form.
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