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ABSTRAcr The propagation of sounds and pulse waves within the cardiovascular
system is subject to strong dissipative mechanisms. To investigate the effects of blood
viscosity on dissipation as well as dispersion of small waves in arteries and veins,
a parametric study has been carried out. A linearized analysis of axisymmetric
waves in a cylindrical membrane that contains a viscous fluid indicates that there
are two families of waves: a family of slow waves and one of fast waves. The faster
waves are shown to be more sensitive to variations in the elastic properties of the
medium surrounding the blood vessels and at high values of the frequency param-
eter a defined by a = VpcRoR/,P the blood viscosity attenuates them more strongly
over a length than the slow waves. At low values of a, the effects of viscosity on
attenuation are reversed; that is, the family of slow waves is much more attenuated
than the family of fast waves. For the slow waves the radial displacement component
generally exceeds the axial component except at very low frequencies. Conversely
the axial displacements are much larger than the radial displacement for the faster
waves. The presence of external constraints, however, can modify these results. In
the case of the slow waves the phase angle between pressure and radial wall dis-
placement is virtually negligible in the presence of mild external constraints, while
the phase angles between pressure and fluid mass flow are at most 45°. The corre-
sponding phase angles for the fast waves exhibit much larger variations with changes
in the elastic properties of the surrounding medium.

I. INTRODUCTION

Physiological Considerations

A quantitative analysis of the dynamics of the circulatory system is considerably
more formidable than similar investigations of most engineering systems. The blood
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itself is a non-newtonian fluid that exhibits the characteristics of solutions and col-
loidal and particle suspensions. Controlled experiments (1) have shown that the
apparent viscosity increases with hematocrit, decreases with strain rate, and has a
viscosity coefficient that ranges from 1 centipoise to 10 poise. McDonald (2), how-
ever, reports that blood in the larger arteries and veins behaves like a newtonian
fluid and normally has a viscosity coefficient of approximately 4-7 centipoise. No
marked manifestations of non-newtonian behavior are observed in large blood ves-
sels. Even though blood exhibits compressibility, it has negligible effects on the
transmission properties of the usual types of waves that may occur in blood vessels
(3-5).
The experiments of Bergel (6) and those of McDonald and Gessner (7) indicate

that the blood vessel walls are viscoelastic with material properties that depend more
strongly on strain than strain rate. Also, blood vessels are essentially incompressible
and, therefore, have a Poisson's ratio of approximately 0.5 (2). Experimental data
(2) further indicate that the modulus of elasticity for the artery varies from about
106 to 108 dynes/cm2. The viscoelastic modulus (imaginary part of the complex
modulus) can be of the order of 25 % of the elastic modulus (real part) (6, 7). Geo-
metrically, the larger blood vessels are tapered tubes with the ratio of wall thickness/
radius ranging from about 0.08 to 0.30 for arteries and from about 0.01 to 0.05 for
veins. There is also evidence that the walls of blood vessels exhibit anisotropy (8)
and nonlinear stress-strain relationships (9). The blood vessels are imbedded in tis-
sues, muscle, or bone and are usually constrained by these surroundings. Their
effects upon the wave transmission characteristics have not yet been studied exten-
sively and only limited quantitative data are available (10).

Previous Theoretical Investigations

Numerous theoretical studies of the dynamic behavior of blood vessels have been
reported in the literature. Comprehensive reviews of such investigations have been
made by McDonald (2), Rudinger (11), Skalak (12), and Fung (13). The complexi-
ties of the physical and geometric features of blood vessels necessitate an approxi-
mate approach in any analysis of their motion. By introducing simplifying yet
realistic assumptions and a mathematical model for the mechanical behavior of the
vessels, it is possible to arrive at a tractable analytical formulation of dynamic prob-
lems such as the prediction of the dispersion and attenuation of waves.
The theoretical analyses of dynamic problems of blood vessels can be separated

into two major groups on the basis of the relative rigor with which the solid or fluid
mechanics aspects have been treated. Recent contributions emphasizing a realistic
formulation of the fluid-dynamic aspects were made by Morgan and Kiely (14),
Womersley (15), Atabek and Lew (16), and Atabek (17). The work presented here
is an extension of these efforts and is based on a similar mathematical model.
The analytical model introduced by Morgan and Kiely (14) treats the vessel wall
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as a linear elastic, homogeneous, isotropic, cylindrical membrane free of constraints
and assumes that the blood behaves like an incompressible newtonian fluid in lami-
nar motion. Womersley (15) also used this model but added a distributed, axial,
elastic constraint acting on the outside surface of the vessel to approximate the effects
of the surrounding medium. The analyses by Morgan and Kiely (14) and by
Womersley (15) have become key references. In both studies the wave reflections
were neglected and only one type of wave was considered. The corresponding solu-
tion is not sufficiently general to accommodate constraints such as those enforced
by branches and bifurcations or by the application of instruments such as electro-
magnetic flowmeters. A further inadequacy of the Womersley solution (15) mani-
fests itself whenever distributed radial constraints are present. Womersley's results
(15) predict at most a 15 % change in the speed of the wave studied for arbitrary
variations in the axial constraint and for all a = p By contrast, the addi-
tion of an infinite radial constraint besides an infinite axial constraint produces a
rigid tube incapable of transmitting waves when filled with an incompressible fluid.
It appears, therefore, that radial constraint may play an important role and should
be taken into consideration.
Atabek and Lew (16) investigated the effects of initial stresses upon the propaga-

tion characteristics of two types of waves. An extension of this analysis by Atabek
(17) took into consideration the influences of radial and axial constraints and aniso-
tropic wall behavior; however, results were presented only for special examples
which do not illustrate the relative significance of axial and radial constraints.

In a parametric study of waves in blood vessels, Maxwell and Anliker (3-5)
treated the blood as an inviscid, compressible fluid and assumed the vessel wall to
behave like a cylindrical shell with viscoelastic wall properties. In contrast to a mem-
brane model, the shell model exhibits resistance to local bending in the vessel wall
and thus allows the study of a wider class of motions by relaxing the restriction to
very small changes in the radii of curvature. The effects of initial stresses are taken
into account but external constraints are disregarded. Three wave types were pre-
dicted. For both axially symmetric and nonaxially symmetric mode shapes, the
waves were characterized by the dominant displacement component that an arbi-
trary point of the middle surface exhibits at higher frequencies and are accordingly
referred to as radial, circumferential, and axial waves. The properties of the axially
symmetric radial waves are in agreement with Womersley's results (15) for very
small fluid viscosity, and the predicted speeds of axially symmetric radial and axial
waves are basically compatible with the results of Atabek and Lew (16) for the
inviscid limit.

Intent and Scope of This Analysis

The main objective of the present theoretical analysis is a parametric study of the
effects of blood viscosity, distributed external constraints, and viscoelastic proper-
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ties of the vessel on the transmission characteristics of radial and axial waves. To
this end, a mathematical model is introduced which is similar to those in references
4-6. It differs from them by the inclusion of radial constraints and by considering
the vessel wall to be viscoelastic.
The arrangement of this report reflects the actual sequence of the studies con-

ducted. In section II, the boundary value problem is derived and linearized with
emphasis upon the main conditions of linearization. Section III is devoted to the
general solution. The results of the parametric analysis for the transmission charac-
teristics, including velocity profiles, are described in section IV.

II. THE LINEARIZED BOUNDARY VALUE PROBLEM

The basic problem of interest is the motion of a blood vessel and the blood it con-
tains when this system is subjected to an oscillatory perturbation; however, only
the motion of a model of this system is actually analyzed. A steady-state configura-
tion (Fig. 1) consisting of a long, cylindrical tube containing a streaming newtonian
fluid is perturbed such that axially symmetric motion with no circumferential velocity
is obtained. The perturbation is assumed to be sufficiently small to justify linear-
ization. Therefore, all dependent variables can be expressed in the form

( ) = ( )8 + ( )' (1 )

STEADY- STATE
VELOCITY PROFILE

I' ~~~~MIDDLE SURFACE
OF VESSEL

VESSEL IN O
STEADY STATE ,o

AXIAL TENSION\ RADIAL CONSTRAINT FORCE

HOOP TENSION

\ XI AXIAL CONSTRAINT FORCE

s\-'-\1NORMAL AND TANGENTIAL

DEFRME STFLUID FORCES

VESSEL I
DEFORMED STAT 7

FIGURE 1 A membrane element.
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where

( ) = the value of a variable in the perturbed state,
( )8 = the value of a variable in the steady state,
( )' = the perturbation of the variable.

Since the desired boundary value problem is linear, harmonic solutions for a given
frequency can be obtained and more general motions can be studied using Fourier
synthesis.
The wall material is assumed to be isotropic, homogeneous, and elastic. Further-

more, the tube is assumed to have a wall thickness/radius ratio

h <<1, (2)Ro

and to behave like a membrane with constant strains and stresses across the wall.
Since the problem is axially symmetric, the wall displacements, stresses, and strains
are functions only of axial distance and time. To render the membrane assumption
realistic, the displacements will be limited to those producing very small changes in
the radii of curvature. This is achieved with the restriction.

->> 1, (3)RFo
where L is any characteristic axial dimension.
For 0 mean flow and no initial stresses the equations of motion for the vessel

wall in the presence of radial and axial constraints can be given in the form

hwK- = -Kt RO('- o (4)09t2 Ro(l -u02)\Ro a9z

-K22 -M w\ O2. a' (5)Pwh -t = -K2r - Ad )X + I- aTz + Rodz ( 5)
Clt2 \r,4.R+lo. Z2 RoOz)

These equations differ from those given by Womersley by the inclusion of a radial
constraint term -K1. K1 and K2 are measures of the elastic or viscoelastic (K1 and
K2 complex) restraining effects of the surrounding medium on the radial and axial
wall motions. Reference 10 shows that this kind of model is indeed approximate, at
least for the axial wall displacement and frequencies above 1 Hz. The linearized dif-
ferential equations for the fluid flow are

I dr I 1w6rlOru Ow
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aw' + P clw ~~~(7)dt p AZ r dr \ Or /

0 cOp (8)Or

and the boundary conditions can be expressed as

ul(Ro) z t) =at(za t) w (Ro z, t) (z, t). (9

A detailed derivation of this system of equations is given in reference 18.

III. SOLUTION OF THE LINEARIZED BOUNDARY VALUE
PROBLEM

The General Solution

The complete linearized boundary value problem is given by equations 4-9. By
differentiating equation 7 with respect to r and making use of equation 8, one
obtains

dOt Odr ) [r dr(r) ( 10)

For the axially symmetric case (Ow'/Or)=.o = 0, which means that no purely oscilla-
tory term in ao'/lr is possible. Therefore, a separable harmonic solution can be
given in the form

-= R(r)Zl(z)eIw. (11)

The substitution of equation 11 into equation 10 yields

ih R (r) d ( d [rR (r)

Changing the independent variable using

bs = r, where-= - = i8/2 , (12)b 'y iv

leads to

d2R(r) + I dR(r) 1
ds2 s ds
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which is Bessel's equation for functions of order 1. The general solution of this
equation is

R(r) = A ( + BY, (

however, substitution of this into equation 11 and application of the symmetry re-
quirement, (1o'/Or),=o = 0 yields B = 0 and

aw' _= Z(z)J1 (r e' t, ( 13)cOrb

or, after integration,

w (r z, t) = {Zi(z)b [1 - Jo ()] + iwFi(z)} eS. ( 14)

Substitution of equation 14 into equation 7 gives an oscillatory expression for
cp'/lz which can also be integrated and expressed in the form

P'(z, t) = [Z(z) + F(z) + F2]e] , ( 15)

where

Z1(z) = Z (Z) = dZ(z ,F(z) = F (z) dF(z) (16)Z'z
dZ

1z dz

From equations 14 and 16, it follows that

w'(r, z, t) ={[ - Jo (r)] Z (Z) + bF' (z)] bewt. ( 17)

By substituting equation 17 into equation 6 and integrating with respect to r one
obtains

u'(r, z, 1) = b{[bJ 2- Z (z)F-2b e 18)

where the function ofz and t generated by this integration must vanish since u'(r, z, t)
vanishes for r = 0.
The expressions for Ol/at and O¢/Ot given by equations 9, 17, and 18 can be

integrated with respect to time to yield the oscillatory solution

t(z, t) = Ro{b b JdRoI-!lZ" (z) 2J F" (z)}et (19)3wLRo\b/ 2j 2
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(zi t) = {io[ - Jo Z'(z) + F'(z)} efat.* (20)

According to equation 17 the unsteady mass flux can be written in first approxi-
mation

Q'(z, t) = f pw'(r, z, t)27rr dr = - J ()]'(Z)

+ 2ibF(z)} 27rR 2pbeiot. (21)

Substitution of equations 15, 17, 19, and 20 into equations 4 and 5 leads to

"'b [A4Ro2F"(z) - /31F(z)] = A3RoZ (z) + #3Z(z) + j1F2, (22)

b~ [a(l -2)RoF (z) + (I - r2)F'(z) A2RoZ"'(z) -A Z'(z) (23)

where

r, = ,2, r2 K2, p,,=Ro 2 = o' (24)p.hW p~h -2 pwh ' Row'

E _ 2/42a=II~O C2 -Eh (5
= 2W2(1- a2) (1 - (72) Y ° , Ro2 E (25

.-3/2
A1 = (1 - r2)[1- Jo(i32a)]- h Ji(i312a) , (26)

a

A2 = -3 {[I - Jo(i312a)] + a [- J(i312 ) - } (27)

-.-3/2 1-i32, /A3 = ( 1 - /3)L3 , Ji(i c2) - -03a[l -Jo(i Ca)] , (28)

A4 = ½(1 -rl) - /33( - a-). (29)

Elimination of F"'(z) from equations 22 and 23 and integration of the resulting
equation gives

iF(z) = -4 RoZ3(z)-47Z(z) +F3, (30)b A5 A5
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where

A5 = + A4(1- r2) A =A A2A4 ,A7 =31+ A1A4

By combining equations 30 and 22 one obtains

R4Z""(z) +A8RoZ" (z) +A9Z (z) = -(F2 +F8)Fs A (32)A4A6

where

A8 = [A7 + As(l- r2)+/31A2]/A6, (33)

1(I-- o212
II-r2-Al #I 3A i=33(1 - /2) Ao (34)

Equation 32 then has the general solution

Z(z) = [Die 'B75IRo + D2e-'B-zI]oI + [D,3ea/hIRo

+ D4ev/BzIRoI - (F2 + Fs) A31A5 (35)A4A6A9'

where B1 and B2 are the roots of the equation

B2 + A8B + Ag = 0,

B1 = Y2[-A8 + (A - 4A9)112] B2 =-[A8 + (A2 - 4A9)1/2]. (36)

From equations 35 and 30 one finds

i F(z) = _ (A6B1 + A7) [DieV/XizIRo + D2evB-ThlRoI
b ~~A5B+A

(AeB2 + A7) [D3e-'2hIRo + D4evBlRo]
A6

+ (F +F OI1A7 +Fa. (37)2+F)A4A6A9
Substitution of equations 35 and 37 into equations 15 and 17-20 completes the
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formal solution. The resulting expression for p' can be given as

p'(z, t) = b {SA[Die&Vh/lRo + D2eVB1z/RoI

+ S2[D3e 'BIRo + D4eVBz/Ro]} eWt (38)

where

S1 = 1 (A6Bi+ A7) S2= (A6B2+ A7) (39)

The pressure pulse is often resolved into its Fourier components in studying
wave motion. Therefore, it is most convenient to write p' in the form

p'(z, t) = p1(z, t) + p2(Z, t) + p3(Z, t) + p4(Z, t),

pi(z, t) = PieW(tu-ICl) e-lzIRO p2(z, t) P2eiC(t+zIc1) ehlz/Ro

P3(Z, t) = P8ei(thIC2) e-2lhOR, p4(z, t) = P4eiW(t+2IC2) e2h/Ro (40)

where

Pi SI = P2 D = S2 = D4 (41)Di D2' D3 b D4

co
= #2Im(VB ), 6i = Re(VB), C° = 62Im( V'1)B 62 = Re( B2). (42)Cl 'C2

It is also convenient to express the other quantities such that the phase relationship
with respect to the pressure waves is exhibited. Substitution of equations 35, 37, 41,
and 42 into equations 17-21 yields

w'(r, z, t) = /B [s1 -Jo (i8a Rj)] [p1(z, t)

-p2(z, t)] + Sj[S2_JOQ32aj)]a pt3(Z,t -P4(Z,t)]}, (43)

u-(r, z, t) J(3I2 r SiR [p1(Z t)u\r,z, -pwoRo YSi. a Ro/ 2RoJ
+p2(Z, t)] + B2 [i_321 (i312a R-)- 2 R- [p3(Z, t) +p4(Z, t)I} (44)

t(z, t) = p1(z2 t) +p2(Z, t)] MlieSl + [pa(z, t) +p4(Z, t)] M2e''}, (45)pW2R{[1(
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¢(z, t) = pI2RO [P(z t) -p2(Z, t)] M3e ' + [p8(z, t) -p4(Z, t)] M4e'}, ( 46 )

Q'(z, t) = {I[pl(z,t)( - p2(Z, t)] MA5e" + [p3(z, t) -p4(Z, t)] Miee'i6, (47 )

w (O, z, t) = [pl (Z, t) -p2(z, t)] M7e;+7 + [p8(Z, t) -p4(Z, t)] M8ei48}, (48)PIwRo
where

Mte;+l B [S- 1[ 2- Ji(i312a)1,Mie" Si L2fa aJ

M2e'02 = B2 [S2 _-Jj(i3l2)] (49)
S2L2 a

(9

M3e'O - - [S1 -Jo(l32a)], M4ei - - [S2 -Jo(i812a)], (50)
SI S2

M5ei'k - a MieS+1 t6eS+6 ,i M2e'2, (51)

M7e"7= - (Si(-51), M8e i (S2 -1). (52)7
SI S2

Equations 40 and 43-52 are the solutions for fluid velocity, wall displacement, fluid
mass flow, and fluid velocity on the axis as a function of time and position with six
parameters (a, ft1 , #2, a, r1, and r2) and four arbitrary constants (P1, P2, P3,
and P4). This solution predicts four waves traveling in the axial direction. These
four waves actually constitute only two different types of waves each with a trans-
mitted wave (wave moving in the +z direction) and a reflected wave (wave moving
in the -z direction). The waves of the same type are identical except for the direc-
tion of propagation. The four arbitrary constants determine the strength of the four
waves.
The parameters a and j3l are functions only of physical and geometric properties

of the fluid and the wall, while 62 and a are functions of the physical and geometric
properties and of the frequency. The external constraint parameters r1 and r2 reflect
the character of the external constraints.

It is important to note that a has the form similar to the square root of an un-
steady Reynolds number or

a2 _R2 p(Row)Ro(

however, the velocity in this expression is not a fluid velocity and to avoid confusion
a will not be referred to as a Reynolds number.
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IV. NUMERICAL RESULTS FROM THE GENERAL SOLUTION

A Parametric Analysis

The wave speeds (Cl/CO and C2/Co), attenuation factors (51 and 82), and the mode
shapes (given by the magnitudes M1-M8) and phase angles (41-ts8) are of course
functions only of the six parameters (a-, 183, 32 , a, rP , and r2). The functional rela-
tionships, however, are complex and a parametric study is necessary to illustrate
them. For the cardiovascular system, the geometric and physical parameters may
be limited to

5 < 81 < 20. (54)

The range for ,B2 and a should be as broad as possible but consistent with the long
wavelength approximation which arises by applying equation 3 to wave motion.

2s2 C >> 1, where i = 1 or 2.TO Co
(55)

Examination of results obtained for limiting forms of the solution for large con-
straints and large and small a, as in reference 18, demonstrates that rI and r2 in
the ranges

104< r, < 10o,

Cl
CO

r2 < 6, (56)

o I I' I

lo- 10° 10l
a. =v( R0

FIGURE 2 Wave speed for the first type of wave, C, , as a function of ca for different values
of the constraint parameters K1 and K2. The limiting solution is only valid for large ca and is
shown only for #I = 10, 2 = 100, a = Y2, K1 = K2= 0. (For derivation see part II, follow-
ing paper.)
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C2 o4
C0 K20,Kim0 and 1 5X1-4

101
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loo I , , ,,A,

8
K= O:K2

7

6
cr =0.5,, 1 10, 2-1- 103 /

5-
C2 a=0.5,82 102,/3I 5
CO

3-

0 25=cr, AI10, 02 102
0.5

LIMITING SOLUTION

Io-' lo° lo0 102
a=4lw3l RO

FIGuIu 3 Wave speed for the second type of wave, C2, as a function of a for various values
of the parameters a, pi, /32, Ki, and K2 .

produce the most significant effect upon the mathematical solution. Also, equation
55 will be satisfied for nominal cases if

#2 > 1. (57)

At the fundamental pulse frequency, 2 is of the order 102. Since biological material
is nearly incompressible, Poisson's ratio o- may be taken as 0.5. As a representative
value for j31, one may choose 61 = 10. Therefore, the basic numerical values in the
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- t X-=sK2, Ka o
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FIGURE 5 Transmission factor for the second type of wave as a function of a for various
values of the parameters U,, #I 2,j2 K1 , and K .

parametric analysis were

a = 0.5,)1 =10, #2 = 102, rl = O = r2. (58)

The constraint parameters r1 and r2 were modified for this study to reflect only
the physical parameters of the system:

rl KCo2 2 K2co2P1= 2 =- K, K2 = r2 - K2C (59)

In terms of these new constraint parameters, the basic numerical values defined by
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10-7
10l lo, I02

a=vZ7i7 Ro
FiGuRE 6 The mode shape coefficient M1 for radial displacement of the first type of wave as
a function of a for different values of the constraint parameters KI and £2 . The radial dis-
placement for the first type of wave decreases with increasing radial constraint for all a and
becomes asymptotically independent of a for increasing axial constraint.

equation 58 can now be given as

° = 0.5, 31= 1 13#2 = 102, K1= 0 = K2, (60)
and the most significant ranges for K1 and K2 for (2 = 102 are

1 < K1 < 1O, K2< 6 X 107. (61)

Figs. 2-5 give the wave speeds and transmission factors. In this analysis the trans-
mission factor is defined as exp(- 8X/Ro) which represents the ratio of the amplitude
of a sinusoidal wave propagating over a distance of 1 wavelength to its initial value.
Results corresponding to the limiting solutions valid for large values of a and (3i =
10, (2 = 100, 0- = , Ki = K2 = 0 (no constraints and elastic wall) are also shown
in these figures as well as in Figs. 6-17 for comparison. The pertinent equations for
the limiting solutions (large a) are given in part II (following paper) which describes
the effects of a viscoelastic wall.

In general, the wave speed for the first type of wave increases monotonically
with a from a small value at low a and approaches a finite limiting value. For
weak radial constraint, it is relatively constant for ca > 3. Whenever the condition
(X1/Ro) = 27r#2(cl/co) >» 1 is satisfied, the parameters (31 and (2 have little effect
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on this wave speed, and a change in Poisson's ratio a has no significant effect at
large a!. For arbitrary values of K2 within the complete range of axial constraint
(0 < K2< co), the solution deviates at most by 15 % from that corresponding to
the basic values at all a; however, variations in the radial constraint produce marked
changes particularly in the range 1 < Ki < 103.

Except for cases with large radial constraints, the wave speed for the second type
of wave is relatively constant at low a and increases monotonically with increasing
a; however, changes in Poisson's ratio or 81 produce much larger effects on the
speed of this type of wave, while a variation in 12 again has a negligible effect.
According to this analysis the speed approaches infinity as a approaches infinity
when either constraint parameter becomes unbounded; moreover in the presence
of a radial constraint with K > 101 the wave speed is virtually independent of a.
The transmission factor for the first type of wave, exp (-81X1/Ro), increases

monotonically from 0 to 1 with a increasing from 0 to infinity. The parameters
#I and 12 have no effect, but a decrease in Poisson's ratio to 0.25 can produce a
30% decrease in transmission factor. Variations in the radial constraint (0 <.K <
co) may change the transmission factor by an order of magnitude. For a above 2, a
change in axial constraint (0 < K2< co) can alter the transmission factor by 30 %.
For all cases with weak constraints, the transmission factor for the second type

of wave is 1 for very large or very small a and has a minimum in the a range 3-5.
11 has a very significant effect for a above 1, while Poisson's ratio has its most sig-
nificant effect for a below 3. The transmission factor for the second type of wave
is also unaffected by 12. As shown in Fig. 5, this transmission factor increases
with increasing radial constraint and decreases with increasing axial constraint.
For K2 . 5 X 10-4, the transmission factor becomes negligible at large a.

Results for the mode shape coefficients M1-M6 and phase angles q106 are shown
on Figs. 6-17. The effects of a, ,13, and 2 on M1 and Mr are not shown graphically.
Both M1 and M5 are independent of 61. Also, Mr, is independent of ao while M1
increases by only 32 % for a < 2 when a decreases from 0.5 to 0.25. Furthermore,
M1 is inversely proportional to 12 and M6 is inversely proportional to 12.

Figs. 6-17 show that the second type of wave has larger axial displacements in
the basic parametric case than the first type of wave. Also, from Fig. 8 and the ob-
servation above, it follows that M1 is inversely proportional to 122 and Ma is in-
versely proportional to 12 . Therefore, the ratio of radial/axial displacement (M1/
Ms) must become greater than 1 at a certain value of 12 . This change in the charac-
ter of the mode shape is also observed in the inviscid limit and since 12 is inversely
proportional to the frequency, it implies that the first type of wave exhibits pre-
dominantly axial displacements at low frequencies (large 12) and predominantly
radial displacements at high frequencies (small 12). The same behavior was pre-
dicted for inviscid fluids by Maxwell and Anliker (3-5).
For a given pressure variation the constraints may cause some interesting effects.

With an increasing radial constraint the wave speed, attenuation, and axial dis-
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placements for the first type of wave are generally increasing while radial dis-
placements and mass flow rate decrease. On the other hand, the second type of
wave exhibits an increase in wave speed and a decrease in attenuation, wall dis-
placement, and fluid mass flow with increasing radial constraint. An increase in
axial constraint causes an increase in speed and attenuation up to limiting values
and a reduction in radial displacement, fluid mass flow, and axial displacement
for the first type of wave, while for the second type of wave it produces an increase
in the speed and attenuation.
The mode shape coefficients and phase angles generally exhibit an asymptotic

behavior for small and large a. Therefore, in many cases of interest, an asymptotic
solution may be sufficiently accurate.

It is interesting to note that at low a the phase angles k2, i , 154, and O6 are very
sensitive to deviations of - from 0.5 and of Ki from 0. This prediction may be of
value for the experimental determination of o and Ki.

Fluid Velocity Profiles

If only the incident wave of the first type occurs, then according to equations 43
and 44:

wi(r,z,)= -S a-_ I
I
(ZIt).

t)=-pwRo s, [Roo~~jp(z )
t()lJ)~i f,i3/2 i82 r Si r1

These two equations can also be written in the form

wI(r, z, t) = [Jo (3I2
a R SI]/ -SI), (62)wj,(0, z, t) R

ui(r,z, t) =_ SB [-i12 (ci8 r'a SI r1_ (63)
wj(0,z, t) I-SiLa ~ RoJ 2RJ

Likewise, if only the incident wave of the second type occurs,

W'(r, z, t) = S2-J (z (Zo)pwRo S2

FIGuRE 7 The mode shape coefficient Ma for radial displacement of the second type of wave
as a function ofa for various values of the parameters O, 13 , pa, Kc , and K2 . M2 first decreases
rapidly, attains a minimum, and then increases with increasing a. It varies significantly with
Poisson's ratio for all a and with ,1 at larger a. Also, M2 is inversely proportional to 13:. In
the absence of constraints, M2/M1 > 1 for small a and M2/M1 < 1 for large a. M2 decreases
first at small a and then for all a with increasing radial constraint. With increasing axial
constraint, M2 decreases and then increases at large a.
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pwRo S2 ~a Ro~ 2RoU2(r,Z, t) = R L2[_J1 \j31 I-,)- LR]ps(z, t);

or

zt =[Jo(7. aR )-s2l/ (1 -S2), (64)

u2(r, z, t) _

V
i 0/2 ./22 r

- (65)
W2(0, Z, t) 1- l-aJ1 / Ro 2 Rol)

For these simple waves, the expressions 62-65 are plotted in Figs. 18 and 19 for
the basic case in the parametric analysis (o- = 0.5, #I = 10, 32 = 102, Ki = 0 = K2)
and three values of a. The axial velocity for the waves of the first type is generally
largest in the center of the tube, but the difference between the magnitudes of the
axial velocity on the axis and that on the wall decreases with increasing a. The
magnitude of the radial velocity for the waves of the first type is largest near the
tube wall, and its variation with r is greatest for low a. With increasing a the phase
difference between the axial velocity at the tube wall and that on the tube axis de-
creases.
The most significant observation for the waves of the second type is that the

change in magnitude and phase of the axial velocity across the tube is negligible
at low a. This absence of an appreciable relative velocity at low a accounts for the
small attenuation of waves of the second type. At higher a, the magnitude of the
axial velocity at the tube wall is larger than at the axis. The difference in magnitude
and phase for the axial velocity on the tube axis and on the tube wall increases with
increasing a. For the radial velocity the variation in the magnitude across the tube
is greatest and the difference in phase is least at low a.

Applications

To apply the analysis presented in the preceding sections to specific cases, the in-
dependent parameters a, #I, #2 X a, K1 , and K2 must be prescribed. The wave propa-
gation characteristics (wave speeds, attenuation factors, and mode shapes) can
then be determined from the results given in the parametric analysis. The four ar-
bitrary constants P1, P2, P8, and P4 appearing in the general solution are deter-
mined by satisfying four prescribed, independent conditions imposed on the de-
pendent variables.

FIGURE 8 The mode shape coefficient Ms for axial displacement of the first type of wave as
a function of a for various values of the parameters a, Pi , pi, gl , and Ks . Ms increases rapidly
at small a and approaches an asymptotic limit for large a. p has an insignificant effect on Ms
but variations in Ms due to Poisson's ratio can be significant. Ms is inversely proportional to
#2. M, exhibits a small variation with axial constraint but depends strongly upon radial con-
straint for all a.
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In the past many analyses have considered only the first type of wave using the
solution given by Womersley (15). The analysis presented in this report allows for a
separate study of each type of wave as well as for the general solution involving
both types of waves. Besides this, it takes into account the effects of a distributed
radial constraint in addition to those of a distributed axial constraint introduced
by Womersley (15).
By considering only the first or radial type of wave (P3R = 0 = P4R), equations

40 and 42-48 reduce to

PR(Z t) = P1ue ( / t)e + P2Re@(t+Z1C1)e ,IZRO (66)

Q(Z, 0t) R=MBe 5 [P1Retw(tIC1)e81ZIRO _ P2Resw(e+ZC1),e1ZRO (67)
w

tR(zXt) - M PR(Z,t), rR(Z, t) = 1 Me abQR(Z, t, (68)
pwRo pwRgM

WR(0, z t) = 1 M7 s(7 f6)Q (Z, t). (69)pR2 M5

The same equations yield for the second type of wave (P1A = 0 = P2A):

PA (z, t) = PBie'(t-2 C2)e-32 + P4Aeiw(t+h/C2)e82zx/lo (70)

QA(Z, t) -
o
MRse 6 [P3sesi(t-zIC2)e-2Z/Ro - P4Ae,,o(t+z/c2)e2z/RO], (71)

tA (Z, t) -)PA(Z t) N (Z, = e Q (z, t)/pwR, (72)pw2Ro M6A

WA(0, z, t) 1 Al8 e8i(085)Q(Z7 t).3)

For each type of wave these results show that the radial wall displacement is pro-
portional to the pressure and that the axial wall displacement and fluid velocity
on the axis are both proportional to the instantaneous mass flow. Therefore, when
only one type of wave and its reflections is admitted to the solution, one may not
prescribe independent conditions on pressure and on the radial wall displacements
at the same axial location. Similarly it is not permissible to introduce independent

FIGURE 9 The mode shape coefficient M4 for axial displacement of the second type of wave
as a function of a for various values of a, pi, ,B2, K , and K2. For the basic parametric case,
M4 decreases rapidly at small a, attains a minimum, and asymptotically approaches a limit
for large a. Poisson's ratio produces a significant variation at most a while a variation in ,1
is of importance only at larger values of a. M4 is inversely proportional to j2 when X2/Ro > 1.
Axial displacement for the second type of wave can be markedly decreased by radial con-
straint at all a. With increasing axial constraint, M4 increases at small a while at large a it at-
tains a maximum for a certain axial constraint and then decreases.
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lo-'

M5

10-4/

10-5
10- 100 lo' 102

a/3w-l Ro
Fioun.n 10 The mode shape coefficient M6 for fluid mass flow rate with the first type of
wave as a function of a for different values of the constraint parameters Kc andK2 . Mt shows
no siificant dependence upon axial constraint but continuously decreases with increasing
radial constraint for all a. Ms is inversely proportional to the magnitude of the impedance of
the first type of wave.

conditions on the instantaneous mass flow, the axial wall displacement, and the
fluid velocity on the axis at a given axial location. For the solutions given above
(equations 66-69 or 70-73) only two independent conditions are necessary to specify
the arbitrary constants.

Further specialization to a single type of wave traveling either in the +z or -z
direction leads to wave solutions in which the instantaneous mass flow, the wall
displacements, and the fluid velocity on the axis are all proportional to the pressure.
Consequently, only one boundary condition is necessary in such cases to determine
the motion of the system.

It is important to note that in the past most experimental investigations have
attempted to interpret data in terms of only the first type of wave, and in most
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FIGURE 12 The phase angle 4l for radial displacement of the first type of wave as a function
of a for various values of c, #I, j52, K1, and Kg . c/1 is independent of 62 and assumes a max-
imum for a value of a independent of a or 81 ; however, the maximum value is small for all
parameter values considered here. With increasing axial constraint, 01 approaches zero for
all a. By contrast, as the radial constraint increases, the maximum of 01 becomes larger and
shifts to larger a, but for large radial constraints ol assumes a pronounced minimum.

cases the reflected waves (waves traveling in the -z direction) were also neglected.
In several of these investigations, however, the experimental apparatus described
introduces incompatibilities with the solution that was considered for the wave
motion. For example, an electromagnetic flowmeter restricts the radial wall dis-
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FIGURE 13 The phase angle 02 for radial displacement of the second type of wave as a
function of a for various values of a, 132,K8,K1, and K2. k2 is sensitive to changes in a, 1#I,
and 12. Note, however, that it is most sensitive to variations in '2 for cases where X2/Ro
approaches 1. Also, only slight deviation of o from 0.5 causes a large shift for small a. With
increasing axial constraint 'k2 increases rapidly, particularly at large a. For increasing radial
constraint, 4s2 decreases toward 0 with the most rapid decrease at small a.

placement and according to equations 68 and 72 the pressure at that location will
be affected.
The parametric analysis demonstrated that the wave propagation characteristics

of the second type of wave are more sensitive to physical and geometric system
parameters than those of the first type of wave. It is therefore particularly desirable
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FIGURE 14 The phase angle q3 for axial displacement of the first type of wave as a function
of a with various values of the parameters a, #1I, 12 , K'c, and K2 . 4s is independent of 61 and,
for all fl2 > 100, it decreases monotonicaly from the asymptotic limit at low a and ap-
proaches asymptotically a lower limit at large a. For smaller 62, +3 assumes a relative max-
imum. At small a, -3 is generally very sensitive to departures of a from 0.5. Axial con-
straints have a mild effect upon 03 at intermediate values of a while radial constraints in-
crease q0 markedly.
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FIGURE 15 The phase angle 04 for axial displacement of the second type of wave as a
function of a for various values of the parameters r, pi' pa, zk , and KS . Except for #3 < 100,
*& increases from the asymptotic limit at low a toward a limiting value. Significant varia-
tions in 90 can be observed with a and 1 . 04 is also very sensitive to departures of e from
0.5 at small a. 04 increases with increasing axial constraint, particularly at large at while it
decreases with increasing radial constraint at all a.

to acquire experimental data on the second type of wave when the physical param-
eters are to be determined from wave transmission characteristics.

V. CONCLUSIONS

The general solution of the boundary value problem posed in this analysis produces
two types of waves traveling along the axis of the vessel. The first or slower type of
wave has been studied extensively by Womersley and others. Both types have been
investigated by several authors (3-5, 16, 19-24), however, without considering the
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FIGURE 16 The phase angle o for fluid mass flow rate of the first type of wave as a func-
tion of a for different values of the constraint parameters K1 and x2 .

effects of constraints. The results of Atabek and Lew (16), Womersley (15), and
the present analysis are in good agreement for corresponding values of the system
parameters. The analytical predictions given here for the large a limit also corrobo-
rate those of Maxwell and Anliker (3-5) for an inviscid fluid.
As in the publications by Womersley (15) and Atabek and Lew (16), the fluid

viscosity appears in this investigation only through the nondimensional parameter
a = Vw/vRo . A parametric study shows that a variation in a produces the most
significant changes in the wave propagation characteristics for the slow waves
when a < 5 and for the fast waves when a > 1. The frequency appears not only
in a, but also in the parameter /2 = Co/(Row) which plays an important role in
determining the mode shapes.

In the presence of a weak radial constraint, the wave speed for the first type of
wave (C1) increases monotonically with a from 0 at a = 0 and reaches asympto-
tically a value which differs by less than 20% from the Moens-Korteweg speed
Co. For the second type of wave with very small values of a and mild distributed
external constraints (axial and/or radial) the wave speed (C2) is relatively insensi-
tive to variations in a. Furthermore, C2 = 1.8 Co for a < 1, and with increasing a
it approaches an approximate limit value of 5 C0. A distributed radial constraint
can produce an order of magnitude variation in C1 while a distributed axial con-
straint produces a variation of less than 20 %; however, a radial or axial constraint
can cause an infinite change in C2 .

Regardless of the constraints, the first or slower type of wave is strongly
attenuated for a < 1, and the attenuation due to the blood viscosity diminishes
rapidly with increasing a. In the absence of constraints the waves of the second or
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FIGURE 17 The phase angle c0 for fluid mass flow rate of second type of wave as a function
of a for various values of the parameters or, /, /32, K1, and K2 . 96 shows the same trends as
02, the phase angle for radial displacement with this type of wave. Constraints also produce
similar effects on (6 as on (2 .

faster type exhibit a small attenuation due to the viscosity of the blood for a < 0.2
and a > 100. Their attenuation assumes a maximum for a ~ 2.8 and in contrast
to the slow waves, is strongly affected by either distributed external constraint.
For the first type of wave the wall displacement has a dominant radial compo-

nent at high frequencies but at low frequencies the axial displacement component
dominates. The second type of wave has a dominant axial displacement component.
Both of these statements are true in the presence of weak external constraints.
Increasing constraints alter the displacements considerably. The wall motions
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associated with the two types of waves indicate that the faster type of wave involves
a strong shearing interaction between the blood and the vessel wall while the slow
type of wave should exhibit relatively strong pressure fluctuations, particularly
at higher frequencies.

The second type of wave was found to be much more sensitive to variations
in the system parameters than the first type. The phase angles between pressure
and radial wall displacement for the first type of wave are almost negligible. An
investigation of the effects of discrete constraints such as clamps or electromagnetic
flowmeters on the pressure and instantaneous mass flow has demonstrated that
such constraints may produce significant effects.

NOMENCLATURE

B1, B2 Parameters defined by equation 36.
CO Moens-Korteweg wave speed defined in equation 25.
C1 Wave speed for first type of wave given in equation 42.
C2 Wave speed for second type of wave given in equation 42.
E Modulus of elasticity for the tube wall.

F(z) An arbitrary function of z.
Fi(z) An arbitrary function of z.

F2 An arbitrary constant in equation 15.
F3 An arbitrary constant in equation 30
h Wall thickness.
in Unit vector normal to wall.
i, Unit vector in radial direction.
iz Unit vector in axial direction.
JO Bessel function of first kind of order 0.
J, Bessel function of first kind of order 1.
K1 Proportionality factor for radial constraint.
K2 Proportionality factor for axial constraint.
L Characteristic axial dimension.

M1-M8 Mode shape coefficients defined in equations 49-52.
p Pressure.

P1-P4 Arbitrary constants in equation 40.
Q Fluid mass flow rate.
r Radial coordinate.

Ro Mean radius of the tube.
Si, S2 Functions defined by equation 39.

t Time.
u Radial velocity component.
w Axial velocity component.
Yo Bessel function of second kind of order 0.
Y1 Bessel function of second kind of order 1.
z Axial coordinate.

Z(z), Zi(z) Arbitrary functions of z.
a Parameter defined by equation 25.

j3, 132 Parameters defined by equation 24.
13 Parameter defined by equation 25.
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rP Radial constraint parameter defined by equation 24.
r2 Axial constraint parameter defined by equation 24.

61 52 Attenuation coefficients defined by equation 42.
r Axial wall displacements.
0 Circumferential angle.

Ki, K2 Constraint parameters defined in equation 59.
X1 Wavelength for first type of wave.
X2 Wavelength for second type of wave.
Iu Coefficient of viscosity of fluid.
v Kinematic viscosity of fluid.
t Radial wall displacement.
p Fluid density.
p Wall density.
o- Poisson's ratio for the elastic wall.

T5z XTrr ),Trz X,ree Stress components.
51-48 The phase angles defined by equations 49-52.

w Circular frequency.
( ). Steady-state quantity.
( )' Unsteady component of a system quantity.
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