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ABSTRACT We consider two parallel planar charged surfaces bearing unequal surface
charge densities interacting across a region in ionic equilibrium with a neutral salt
solution. Combining rules are derived appropriate for interactions across distances
of separation greater than the characteristic Debye length. When ions are excluded
from the regions behind the interacting surfaces there can be repulsion between
charged surfaces of opposite sign; but surfaces bearing charges of the same sign
never attract one another. Also, surfaces bearing electrostatic potential of like sign
can attract.

INTRODUCTION

Much has been made of the confusing prediction that charged surfaces bearing dif-
ferent surface potentials of the same sign may attract across ionic solutions (Derja-
guin, 1954). Such attraction has been considered a possible force between negatively
charged biological cells (Pethica, 1961) and between nonidentical colloid particles
(Bierman, 1955). In this paper we first obviate the superficial paradox in this at-
traction by showing that surfaces of like charge signs must repel in any case. In gen-
eral, attraction between surfaces having potentials of the same sign can occur only
when charges on each suface are of opposite sign and of different magnitude. That
is, potential and charge on one of the surfaces must have opposite sign.

For a specific example we derive an expression for interactions between planar
surfaces bearing fixed charge densities o; and o2 . We obtain useful combining rules
for the force occurring at low surface potentials. This is done for the case where the
mobile ions cannot penetrate behind the charged surfaces and where the intermediate
salt solution is in ionic equilibrium with a reference salt solution. This constraint is
characteristic of colloid and biological cell interaction. (In the Appendix we give
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formulae valid for situations where mobile charge may permeate freely behind the
plane of fixed charge.)

We solve for the pressure between two plates where the potentials ¢, and . are
fixed during approach of the two bodies. Attraction between surfaces bearing fixed
potentials is predicted under a wide variety of conditions. Indeed, for the present
model, only when ¢, is approximately equal to y. will the two surfaces repel.

Like Charges Repel

We first consider the case of two planar surfaces bearing surface charge densities
o1 and o, separated by a distance /. The space between the surfaces is filled with a salt
solution in ionic equilibrium with a reservoir containing defined concentrations of
the ionic species. The region behind the charged surfaces is impermeable to ions
(Fig. 1).

For the electrostatic potential ¢ in the region of the surfaces we use the reduced
one-dimensional Poisson-Boltzmann (P-B) equation

2 2
%=—%{%}ngae v (1)
where y = eJ/kT and ¢ is the potential; T is the temperature, k is Boltzmann’s
constant, e is the electronic charge, and e is the dielectric constant.
The set {n?} designates the concentrations of the ionic species in the reference
solution where the potential is taken to be zero. By electroneutrality Y, niz; = 0.
One integration of this equation gives

dy\ _ 8xe’ [J—
d_x> = m‘, l:{nz‘:} n;e + C] (2)

where C is a constant of integration.
For the scheme described in Fig. 1 the boundary conditions for solving for y are

A
dy _ | 4o
dx| = ' T’ (35)

The pressure in the x direction at a given point in a solution relative to a reference
point where the electrostatic potential and electric field are zero is

= € d¢’2 0 ,—ziv
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FIGURE 1 Schematic view of two parallel planar surfaces separated by distance /. The sur-
faces bear charge densities o1 and ¢, . Ions cannot penetrate behind the surfaces. The in-
termediate ionic solution is in equilibrium with a reference salt solution.

The first term is the Maxwell electric field stress tensor while

the second is the os-

motic pressure due to the redistribution of ion concentrations caused by the electro-

static potential.'

Since y = ey/kT, we have by definition (dy/dx)® = (e/kT)?(dy/dx)’. Putting
this into equation 2, the first integral of the P-B equation, we obtain

e\ (dy\ _ 8xé 0 —s;

we multiply both sides by (¢/87) (kT/e)® to obtain

€ dl[/ 2 _ 0 —z;
8 (d_x) =T [{%} e C]’

or

—kTC = — = (d—"’)2 + KT 3 nie™™"
87 \dx (=) '

P + kT {Z ns.
n)

We then have

P = —kT[C + > nl).

(5)

(6)

’

(7)

(8)

1 Equation 4 neglects contributions to p due to compressibility of the solvent medium. This neglect

is implicit in the formulation of equation 1.

1194 BIOPHYSICAL JOURNAL VOLUME 12 1972



P is constant everywhere in the region of the solution of equation 1. The quantities
n} are defined by the problem. If there is a position where (dy/dx) is zero, we can
write the value of y at that position as ¢ = " and introduce ¢ into equation 2

_ 81’62 0,—8;
0= e—k—f [Z ni + C] (9)
This yields an expression for C in terms of §:

C= -2 n&™. (10)

Since £ > 0, C is always less than or equal to (— 2 n7) (footnote 2). Hence the
pressure P is subject to the inequality

P >0. (11)

P > 0implies that an attractive force never occurs if dy/dx equals zero at any point
between the charged surfaces. This condition will always be met if the surface charge
densities o; and o, have the same sign.

To see this, observe that dy/dx |.— and dy/dx |z=: will have opposite signs if ¢ and
o2 have the same sign. Since dy/dx is a continuous function, dy/dx must equal zero
somewhere in the region 0 < x < /. Thus, surfaces of like charge sign repel.

Under the condition set in this problem, that no mobile charge diffuse behind the
charged surface, the converse need not hold: surfaces of unlike charge need not at-
tract. If, for example, o, = 0 but o, > 0, the boundary condition, equation 2, re-
quires dy/dx |,-; = O so that repulsion is predicted if y(I) > 0. Or, if the ratio
| #2|/| 01| is infinitesimal, there will still be repulsion even if o, and o, are of opposite
sign. This is because the condition confining the ionic double layer to the finite region
of thickness / acts to increase the osmotic pressure in the region 0 < x < /. In the
case o1 = —oa, the potential y will be odd about the midpoint. At the midpoint
y = 0 but dy/dx > 0; then there will always be attraction.

Combining Rules for the Interaction of Unlike Charged Surfaces

We consider further properties of the interaction in terms of a specific solution to the
P-B equation. We can restrict ourselves to the condition y < 1 and still preserve the
qualitative features of the electrostatic interaction between differently charged
surfaces. Under this condition equation 1 becomes

i _ g

dx? s (12)
2 C exhibits an extremum when 8C/3¢ = 0 = 3. nizit *+ . This occurs when¢ = 1 by the condi-
tion of electroneutrality. At £ = 1, ~C = 3.}, and 8C/o8 = — 3 mizi(z;i — 1) = — Y niz}
<0.Thus C = — > n{ isa maximum value. Since C is a sum of monotonic increasing and mono-

tonic decreasing terms there is only one maximum.

PARSEGIAN AND GINGELL Electrostatic Interaction across a Salt Solution 1195



where

2 _ 81rne2 _ 1 0_2
= n——z-{%}n.z.,
with the solution
y = Ae” + Be™, (13)
At x = 0 the boundary condition is
4xaie
W4 =B) = =357 (144)

while the condition at x = / gives

4xaze

'3 _xl
x(Ae” — Be )=+_Zk—T_' (14 )

The solutions for 4 and B are

—xl
_4xe oz + e "

T &kTk et — e’ (15a)
_ ﬁg o3 + e +xl
T ekTx et — e (155)
Expanding the exponent in equation 4 and usingthe definition of # in equation 12 b,
~ _ ¢ (kT dy)’ 2

From equations 13 and 16 g, using the definition of « (equation 12 b),

P = 4nkTAB. (165)
Inserting 4 and B from equations 15 @ and 15 b we have the full result:

P = 8x o + owoa(e” + ) + o1
€ (e — ™) ) (17)

When o; & o3 and «/ > 1 so that e >> ¢~ the pressure is

8x —xl
P - —e- 01026 . (18)
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This is the relation when e > 1.
When | 01| < | o2| we have

81!'2 —xl\—2
P25 (e — e )7
€

L (19)
€
This is a repulsion independent of the sign of ¢, or o3.

The general expression for the pressure on each plate,

2
g1 , «l —xl o1
p_tnd! TG e ”(E;) (20)

€ (exl —_ —11)2 ’

is negative (attractive) when the numerator is negative. When the numerator is zero
the pressure is zero. The zero condition, a function of ¢;/0; for given «/, is found by
solving the quadratic in ¢;/0;

2
(2) +('+eHZ+1=0, (21)
o2 g2
whence

9! = —cosh «l = sinh «/ ,
o2

= —e*. (22)
Thus the curves —e* and —e ™ plotted against «/ delimit regions of attraction and
repulsion, as shown in Fig. 2.
Within the region of attraction shown in Fig. 2, where will the surface potentials
»(0) and y (/) have the same sign?
We let J = (4wecs/ekTx) (e — e ™')™ and speak of the signs of y(0) and y(/)

relative to the sign of o, taken to be positive. One may then consider the signs of the
quantities multiplying the positive quantity J in

y(0)=A+B:

= 1[2 + (g) (e + e“’)], (23)

and in

y(I) = Ae" + Be™,
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FIGURE 2 Regions of attraction and repulsion as a function of separation distance (x/)
and ratio of surface charge densities (01/02) for the scheme described in Fig. 1. There is always
repulsion between surfaces bearing charge densities of like sign [(o1/03) positive, not shown].
Repulsion (dotted regions) occurs between charged surfaces of unlike sign when coun-
terions and coions must be crowded into the region between ¢, and o sufficient to neutralize
the total fixed charge (o1 + o2). This repulsion will not occur when ions are allowed to
move behind the charged surfaces (see Appendix). The scaling constant « is defined in
equation 12.

W = J[z (g) e e, (24)

giving y(0), y () in terms of a1/0 and «/ which are the axes of the graph, Fig. 3.
Since J is positive, y(0) is negative when

' « —(cosh )7, (25)
a2 .

and zero or positive elsewhere; y (/) is negative when

2t < —cosh «l. (26)
)
In Fig. 3 we plot the lines (01/02) = — (cosh «/)™" and a1/02 = —cosh «/ dividing
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Ficure 3 The relative sign of surface potentials y(/) and y(0) as a function of surface
charge ratio (o1/0:) and separation (x/) for the scheme described in Fig. 1. Surface po-
tentials are always of the the same sign when (01/02) > 0.

positive and negative regions of y(0) and y (), respectively. We then add the regions
where the surfaces attract (Fig. 4). There are two clear subregions where y(0) and
() have the same sign but there is attraction. These subregions are

—(cosh k))7! < (;‘) < -, (27)
2
where both potentials are positive, and

xl

g1
—e < =

o2

< —cosh «/, (28)

where y(0) and y(/) are negative.
The integral of P for electrostatic free energy per unit area is

1
G =[ —pa
_ 8r (o + 02)e /2 + qiow
- :I-C (exl i -xl) ? (29)
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FiGure 4 Superposition of Figs. 2 and 3. The conditions under which surface potentials
~ have the same sign (Fig. 2) are not identical with the conditions for repulsion (Fig. 3).
.} The regions where surfaces attract although bearing potentials of like sign (singly shaded
areas) are described in equations 27 and 28.

assuming o1, o, constant. For large distances equation 29 reduces to the intuitive
relation

G.(I) = 8;” —— (30)

Constant Surface Potential

What if the stipulated surface condition is that the two charged faces maintain con-
stant potentials y(0) and y (/) during their approach? This is the assumption usually
made in colloid science. The boundary conditions on y(x) in equation 13 are, at
x =0,

W=y0) =4+ B, (31)

and at x = [,

yi = y(l) = Ae” + Be™. (32)
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We solve for 4 and B

+xi
Yo — yie
A=RoU, (33a)
—xl
=Y = Y€ 33 b
B (1 — e—2xl)’ ( )

and introduce these into equation 16, P = 4nkT AB, to obtain

p = amep Yie? + ) — (i + D)

(e“ — —xl)2 ’ (34 )
_ e yapu(e” + &) — (45 + 9i) (35)
kT (ed — —xl)z

This pressure is attractive when either of the surface potentials is zero or when there
is a great disparity in magnitudes of potentials. It is repulsive only when ¢ (/) ~
¥(0). A graph similar to Fig. 2 could be constructed for this case of constant poten-
tial. For ’

4’(1) +xl
m > 4e,

<e™, (36)

there will be attraction; only when

—xl 'I‘(I ) xl
e <Pl < (37)
¥(o)
will surfaces of like potential repel.’
By integrating equation 35 for pressure at constant potential one can get a free
energy Gy (I)

2 2 2y —«l
G,() = %r:wz _(e(x'fl— + l"’,’,))e /2 (38)

At large distances this is

2
Go) 3T yute™. (39)

3 Further analysis, similar to that for the constant charge case, shows that surfaces of constant
potential of different magnitude but similar sign never attract when the surface charges have
similar sign.
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DISCUSSION

The electrostatic pressure between two differently charged planar bodies having
separation / interacting across a solution of monovalent ions is

8x (0‘2 + ol) + aw(e” + e_"') (40)

(exl - —11)2

Po(l) =

where ¢, and o, are surface charge densities, ¢ is the dielectric constant, and « is a
constant defined in equation 12. This result is rigorous at all distances as long as ionic
energies at the surfaces are small compared with thermal energies (¢ < 25 mv). Itis
also a good approximation for higher surface potentials when the separation dis-
tances are large (x 2 1).

The surface charge densities may themselves be functions of the surface potentials
which in turn depend on separation /. The pressure P will then necessarily include
the dependence of ¢ on /. In the special case where the surface potentials are as-
sumed fixed (the case in DLVO colloid theory), the electrostatic pressure may be
written

xl —xl
P(I) = 4’:; —(¥1 +'I(/:21 'i;lh'_ﬁil()ez +e ) (41)

We have shown that two surfaces bearing potential of like sign can attract only if
the surface charges are of unlike sign. In the case of nonidentical colloid particles
considered by Bierman (1955), the attractive force was effected by postulating at-
tractive sites to which counterionic charges could stick. This sticking by nonelectro-
static forces could cause the necessary charge reversal.

Similarly two biological cell surfaces cannot experience mutual attraction while
both remain net negatively charged. Only if charge reversal occurs on one of the cells
can they attract each other. Such reversal would require ion binding, which we have
not treated, or differential dissociation of the fixed anionic and cationic groups in the
cell surface. Low pH caused by elevated negative potentials of interaction (Gingell,
1967 a, b; Ninham and Parsegian, 1971) could conceivably cause sufficient reassocia-
tion of carboxyl groups of high pK, to leave a dominant net positive charge on
amino groups. In practice, however, there appears to be little evidence for sufficient
ion binding under physiological conditions. Cell surfaces bear a considerable excess
of covalently bound cationic groups of low pK, ~ 3 (mostly carboxyls of sialic
acid) and few or no anionic groups, depending on cell type. Consequently we feel
that charge reversal is not likely to occur in normal ionic conditions. Our result,
based on the constant surface charge assumption (Gingell, 1967 a, b; Ninham and
Parsegian, 1971), is more appropriate for cells than the constant potential assump-
tion used in colloid systems. Within the limits of our assumption we do not support
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the contention of Pethica (1961 ) that cells of similar charge sign but different magni-
tude could attract each other.

In the model considered (Fig. 1) the interaction pressure becomes repulsive at
short enough distances if one insists on constant surface charge densities not equal
in magnitude and of opposite sign (Figs. 2-4). In real systems the surface charge
densities are likely to go to zero upon close approach. The way in which this happens
is model dependent.

In the Appendix we treat the case where ions may freely permeate both sides of
the charged surface. The mutual pressure between two charged plates o and o, is
then

Pc(I) = 2—; 0‘10'28_‘1-

There is no extra osmotic repulsion due to confinement of ions between the two
plates as was described in Figs. 1-4.

One may repeat all of the present analysis to include a more rigorous but tedious
solution of the nonlinear P-B equation. That treatment, couched in the language of
elliptic functions, would tend to obscure the basic physics revealed here. Further,
nonlinear effects on forces between two plates probably become important only for
short distances x/ < 1 where a continuum model itself is likely to be invalid (Ninham
and Parsegian, 1971).

APPENDIX

The Interaction of Two Unlike Charged Surfaces with Fully Permeable Regions
throughout the System

Consider the situation in Fig. A 1 where ionic double layers may exist on either side of the
charged surfaces. The linearized P-B equation has the three solutions

L = ALew, (A 1 )
Vi = Au€® + Bye™, (A2)
Ye = Bgre ™. (A3)

The boundary conditions at x = 0 give

yL(0)=,)’u(0)=AL=Au+Bu, (A4)

andatx =/
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FiGure A 1 Schematic view of two parallel planar surfaces separated by distance /, bear-
ing surface charge densities o1 and o3 . Ions are allowed to permeate the regions on either
side of the surfaces and are in equilibrium with a reference salt solution.

yu(l) = yn(l) = Aue” + Bue_‘l =Bne_d, (A 6)

Since yr and dyz/dx go to zero as x — « and y. and dy /dx go to zero as x — «, the pres-
sure outside the plates defined by equation A 4 is zero. Between plates the pressure is

P = 4nkTAuBy . (A8)
Solving for Ax , By we obtain
2weos g _ 2meo:
Au = ekT«k ’ Bu = ekTx ’ (A9)
P,() = 2:” aoee . (A10)

This is always attractive for o, , o3 of unlike sign and always repulsive for o, , o, of like sign.

We thank Ralph Nossal for several suggestions improving this text.
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