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ABSTRACT Theoretical virial equations for self-associating systems governed by
mass action have been derived assuming the solute to be ideal except for this solute-
solute interaction. In particular, monomer-polymer association involving two
molecular species and isodesmic association involving an indefinite number of
molecular species have been treated analytically. The usefulness of such virial equa-
tions is severely limited by their extremely narrow interval of convergence.

INTRODUCTION

It is common practice when considering colligative properties of nonelectrolyte
solutions to express the osmotic pressure (1-3) and the excess chemical potential of
the solvent (4) or solute (5) by means of a power series expansion in the solute con-
centration. Such virial equations have proven to be of much value for the analysis
and interpretation of experimental data.

In particular, it has been assumed (6) that nonideality attributable to self-as-
sociation could be treated with a virial equation. We show here, however, that such
treatment is seriously limited by the extremely narrow interval of convergence for
such series. We consider two types of self-association: (a) a monomer-polymer
equilibrium in which only two macromolecular species are present and (b) monomer-
polymer equilibria of indefinite extent in which the free energy change for the se-
quential addition of each monomer is constant. More complex cases appear difficult
to treat analytically but are expected to yield similarly small radii of convergence.
The usual virial equation for the osmotic pressure II defines the colligative virial

coefficients B. through the relationship

W/cRT = (1/M + B2c + Bc2+ B4c + ), (1)

where R is the gas constant, T the absolute temperature, M the molecular weight of
the solute, and c the concentration of solute in grams X centimeters-8. The activity
coefficient y ofthe solute may be expressed with the same colligative virial coefficients
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(7) as
Iny = 2MB2c + (3/2)MBsc2 + (4/3)MB4c3 + '. (2)

The apparent weight-average molecular weight M,,(c) for a nonideal solute com-
ponent may be written as

M (c)=M _ _(3)
M 1c) c (aIn Y ) I/M + 2B2C + 3B3c2 + 4B4c3 + (3)

1+ c /P, T

where the right-hand equality follows on substitution of equation 2. We shall use
this expression, equation 3, as our starting point, assuming that the solute is a
single thermodynamic component and that all the nonideality arises from self-
association of this component as specified by the mass action law. Thus, we specifi-
cally exclude any other source ofnonideality, such asDonnan effects, excludedvolume
effects and electrostatic interactions, etc., so that the virial equations obtained
represent only the self-association. The inclusion of further nonideality, such as from
the Donnan effect in self-associating systems (8), should not materially affect the
present conclusions.

MONOMER N-MER AS A FUNCTION OF TOTAL
CONCENTRATION

The power series expansion of (1/M,,) for a monomer N-mer self-associating system
was obtained by calculating the necessary derivatives from an implicit relationship
between (l/M,) and total macromolecular solute concentration. This relationship
was obtained in the following way.
The weight-average molecular weight is defined in terms of the weight fraction of

N-mer in the usual way:

Mw= Ml(I -a)+NMia, (4)

where a is the weight fraction of polymer, N is the degree of polymerization and Ml
is the monomer molecular weight. Then a functionf(a) is defined as:

f(a) _Ml = I (5

We then write the mass action law for a monomer N-mer self-association as:

K CN 1 - c (6)

where cl = (1 - a) c, and CN = aC, with the total macromolecular solute concen-
tration in grams X centimeters-3 denoted by c.
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We combine equations 5 and 6 to eliminate a and obtain:

q Kc(N1) ( I/f- 1) (N - 1 )(N1)

Letting
= K[c/(N - 1)](N-1), (8)

we obtain the implicit relationship betweenfand 4:

(1l/f-) f (9)

We now have an implicit functional relationship between (l/M"') and c in terms
off and 4. The logical variable in which to expand f appears to be 4 since only
integral powers of cN-l have nonzero derivatives (see the Appendix).

COMPUTATION OF SUCCESSIVE DERIVATIVES

The necessary derivatives were obtained with a computer program written in
Formac, a PL/l-based computer language that enables the manipulation of symbolic
algebraic expressions. An algorithm was devised to calculate successive total de-
rivatives of one variable with respect to another having an implicit functional re-
lationship. In this case, for example, the implicit relationship was betweenf and 4.
The first derivative was obtained by implicit differentiation of expression 9. If

G'(4,f) represents the ith order total derivative offwith respect to 4, the (i + l)th
order total derivative was obtained from the following general recursion relation:

Gt+l(,o f) dG4 f) =G (02f + aG(02 f ) ' ( 10)

where
G'(4, f) = df/d4.

The following expression for the ith order derivative evaluated at 4b = 0,f= 1
was inferred from an analysis of the computer-generated derivatives:

(d!f~ = 1' (N - 1) 1 (
1iUN - (I + j)]! (N- 1)(N l)j,

(- IIQNHj- i) (N - I)(f-).(l

The necessary derivatives for the expansion of M1/MW vs. q = KcN'- are given by:

(dP = (-1)' (jN - 1)!
dqiJQ o UN- (1 + j)]!'

= (-l)j(jN - l)(jN - 2)(jN - 3) (.IN-(j), (12)
since d4/dq = (N - 1)(1-N), and all dt4/dqt = 0 i> 22
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Thus, the virial equation for the weight-average molecular weight of an ideal self-
associating system assumes the following form:

1 co{2( ) (jN -1)!
Mw ml j-1 j{IN -(1 +)1qi! ( 13 a)

1__ 1
Mw M1

[1-(N-l)KcN-l +1 (2N - 2)(2N - l)K2cN2 - ...]. ( 13 b)

For example, the expression for a monomer-dimer equilibrium is

1 =
1 2 2 ...-=-(l-K +K3+K2c -..)

for monomer-trimer,

1 = 1 (1-2K + IOK2e4- * * ),Mw ml

TABLE I

VALUES OF THE WEIGHT FRACTION OF POLYMER a AND THE
NORMALIZED WEIGHT-AVERAGE MOLECULAR WEIGHT (M/Mi)
AT THE RADIUS OF CONVERGENCE KcN-7 FOR VARIOUS
DEGREES N OF POLYMERIZATION

N KceR' aR (M.IMOR

2 0.250 0.1716 1.172
3 0.148 0.1069 1.212
4 0.106 0.0767 1.230
5 0.0819 0.0601 1.240
6 0.0669 0.0494 1.247
7 0.0567 0.0420 1.252
8 0.0491 0.0365 1.256
9 0.0434 0.0323 1.258
10 0.0387 0.0289 1.260
20 0.0189 0.0142 1.270
40 0.0093 0.0070 1.273
80 0.0046 0.0035 1.277
160 0.0024 0.0018 1.278

limit (M./M1)R = 1.2785
(N-p 0o)
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and for monomer-tetramer,

I
= I (1-3Kc3 + 21K2C6- *..).

The radius of convergence (9) of the series in terms of q is given by

qR = lim ai/aj+l 1,
j_boo

where the a, are the coefficients of the series. The value of qR for the series of
equation 13 a can be shown to be qR = (N - 1)N-1/NN. Thus, the correspond-
ing expansion in terms of c, equation 13 b, must converge for all c < cR where
CR is given by

CR = (q/IK)IIN-1 = (N - 1) (KNN)ll-N. (14)

Table I presents values of a, the weight fraction of polymer, and of MI/MI for
various degrees of polymerization n at the radius of convergence. From this it can
be seen that the region of convergence is, in general, quite limited.

INDEFINITE ASSOCIATING SYSTEM

In an indefinite associating system, for which successive molar equilibrium con-
stants are equal (the isodesmic model), we have

A + A A2, K2 = [A2J/[A1]2,

A + A2 => A3, K3 = [As]/[A2] [A1],

A + An-I = An X Kn = [An]/[Aw-1] [A1],

where Ki = K, and [Ai] is the concentration of species Ai in moles per liter;
As above, we define a functionf(c) as:

f(c) _ _(15)

and obtain from van Holde et al. (10) the relation

f(c) = (I + kc)-12. (16)
Where k = 4 X 101 KIM1, M1 is the monomer molecular weight and c is the total
macromolecular solute concentration in grams X centimeters-3.
The successive derivatives are easily obtained without the aid of the high speed
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electronic computer by ordinary straightforward means:

(dei)_o= -2) H(2i - 1). ( 17 )

The power series expansion is written as:

I/Me = I/Ml [I + E [(-2) (kc)] (1I!j) 11 (2 - 1)] 18

This series has a radius of convergence Kc/Ml < 2.5 X 104 such that for conver-
gence c < 2.5 X 10-4(M1/K). At the radius of convergence the normalized weight-
average molecular weight (M./M1) is V2 and the weight fraction of monomer is
0.68629.

DISCUSSION

The uniqueness of the above virial equations is assured by a theorem for power
series which states that "a function f(x) can be represented by a power series in x
in only one way, if at all (11)." The surprisingly narrow interval of convergence of
these series clearly dictates the exercise of caution in attempts to use untruncated
virial expressions in the analysis of self-associating systems. Caution should also be
exercised in attempts to obtain meaningful estimates of equilibrium constants by
taking the limiting slope at infinite dilution, since the effective linear range of M1/Mw,
as a function of cN-l at best extends to 7% association, a range in which experi-
mental error usually is a large fraction of the change in molecular weight.

APPENDIX

We wish to show that only integral powers of cN need be considered, and hence that equa-
tion 19 is true:

(dCj)c-O $0 onlyfor j = (N- l)i, i = 1,2,3,4,*... (19)

This can be shown in the following way: direct differentiation of equation 8 gives

(d+)4 = (N - i)!(N - I)(N1)Kc(Ni1).\dci/c0

Thus, the derivatives of equation 19 are nonzero only when (N - 1) = i.
Therefore,

_ df d, 0 only for N = 2,
dc - dX dc
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df =df (d+ + df d only for N = 2 and N = 3,
dC2 d q52 dc/ do~dC2

dc3fd3 (dco + d32df2dd ddodc onlyfor N=2 and N=4,

d'f o only for N = 2, N = 3, and N = 5.

and so on.
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