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ABStRACT Four sources of electrical noise in biological membranes, each with a
different physical basis, are discussed; the analysis of each type of noise potentially
yields a different sort of information about membrane properties. (a) From the
thermal noise spectrum, the passive membrane impedance may be obtained, so that
thermal noise measurements are essentially equivalent to the type of sine wave
analysis carried out by Cole and Curtis. (b) If adequately high frequency measure-
ments could be made, the shot noise spectrun should give information about the
average motion of a single ion within the membrane. (c) The number of charge
carriers and single ion mobilities within the membrane can possibly be inferred
from measurements of noise with a Ilfspectrum. Available data indicate, for exam-
ple, that increases in axon membrane conductance are not achieved by modulations
in the mobility of ions within the membrane. (d) Fluctuations arising from the
mechanisms normally responsible for membrane conductance changes can produce
a type of electrical noise. Analysis of such conductance fluctuations provides a way
to assess the validity of various microscopic models for the behavior of individual
channels. Two different probabilistic interpretations of the Hodgkin-Huxley equa-
tions are investigated here and shown to yield different predictions about the spec-
trum of conductance fluctuations; thus, appropriate noise measurements may
serve to eliminate certain classes of microscopic models for membrane conductance
changes. Further, it is shown how the analysis of conductance fluctuations can, in
some circumstances, provide an estimate of the conductance of a single channel.

INTRODUCTION

Measurements made on nerve and muscle membrane most usually yield average
values of the variable under investigation. For example, in voltage clamp experi-
ments on excitable membranes, the current-recording technique effectively averages
individual currents flowing in a large population of channels. It is generally not
possible, however, to infer the behavior of individual members of a population solely
from such averages made over the entire population. Because of this limitation on
making inferences from average behavior, a number of investigators have recently
been studying electrical noise in nerve and muscle membranes in order to obtain
additional information which may help reveal mechanisms operative at a more
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microscopic level (Verveen and Derksen, 1965; Derksen, 1965; Derksen and
Verveen, 1966; Verveen et al., 1967; Verveen and Derksen, 1968; Poussart, 1968;
Verveen and Derksen, 1969; Poussart, 1971; Siebenga and Verveen, 1971; Verveen,
1971; Fishman, 1972; Katz and Miledi, 1970, 1971; Anderson and Stevens, 1972; see
also Green and Yafuso, 1968, 1969; Yafuso and Green, 1971; Bean et al., 1969;
Ehrenstein et al., 1970; Hladky and Haydon, 1970; DeFelice and Firth, 1971 a, b;
DeFelice and Michalides, 1971). The purpose of the discussion here is to examine
the sources for noise present in biological membranes and to indicate some of the
inferences about membrane properties that can be made from measurements on
electrical noise.
On the basis of physical theory, at least four sources for electrical noise should be

present in nerve and muscle membrane:
(a) Thermal (Johnson-Nyquist) noise. Membrane potential and membrane current

fluctuations arise from the thermal agitation of charge carriers, principally small
ions.

(b) Shot noise. Because the passage of each ion through the membrane is analo-
gous to the movement of electrons from the cathode to the anode in electron tubes,
a type of electrical noise analogous to the shot effect in these devices should be
present.

(c) 1/f (Flicker) noise. Although the precise physical basis is not at present clear,
electrical noise generally is associated with the flow of current in systems with only
a relatively small number of available charge carriers; thus, the presence of noise
with a 1/f spectrum, familiar in other physical systems, might be expected in the
nerve membrane. Such noise was discovered in the frog node (Verveen and Derksen,
1965) and has also been observed in lobster axon (Poussart, 1971) and squid axon
(Fishman, 1972).

(d) Conductancefluctuations. To the extent that the mechanisms underlying mem-
brane permeability changes are probabilistic, as they must be at some level, the
membrane conductance must fluctuate. For example, if channels are envisioned as
having only two states, open and closed, one could suppose that individual channels
might be opening and closing at random, although the average number of channels
open might remain constant. Alternatively, if an individual channel has a continu-
ally graded conductance from some minimum value to its maximum, that con-
ductance presumably would fluctuate somewhat around its mean value so that, with
all channels taken together, a net conductance fluctuation would occur. Electrical
noise would result, then, from current flow through this fluctuating conductance;
the existence of such conductance fluctuations has been proposed for end plate
(Katz and Miledi, 1971) and axon (Siebenga and Verveen, 1971) membranes.
Each of the four noise sources indicated above should, in principle, contribute to

the total electrical noise measured for a nerve membrane, and one might expect, in
general, that the sources would be independent, although correlations might be
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present in particular cases. For example, if the conductance fluctuations were very
large, the other noise sources would also reflect the nonconstant conductance.

Because each of these noise sources has a different physical basis, the analysis of
each gives, as will be indicated in greater detail below, a different sort of information
about the nerve membrane. From the thermal noise spectrum, the passive membrane
impedance may be inferred. If adequately high frequency measurements could be
made, the shot noise spectrum should give information about the average motion of
a single ion within the membrane. The number of charge carriers and single ion
mobilities within the membrane can possibly be inferred from the amplitude of the
1/f noise. Finally, analysis of conductance fluctuations provides a way to assess the
validity of various microscopic models for behavior of individual channels and may
make it possible to estimate quantities such as the conductance of a single channel.
In the succeeding discussion, each of the four noise sources will be examined, the
first three sources briefly, and the conductance fluctuations in greater detail.

NOTATION

Sj(f) Voltage spectral density for fluctuations arising from the jth source.
W;(J) Current spectral density for fluctuations arising from the jth source.
Mj(f) Conductance spectral density for fluctuations arising from the jth source.
i Source.
1 Thermal noise.
2 Shot noise.
3 Flicker noise.
4 Conductance fluctuation noise.

THERMAL NOISE

Thermal voltage noise is known to have a spectral density proportional to the real
part of the membrane's complex passive impedance (see, for example, Bennett,
1960). Thus,

S1(f) = 4kT Re Z(f), (1)

where Si(f) is the spectral density of voltage noise, Z(f) is the complex impedance of
the membrane,f is the frequency, and k and T are the Boltzmann constant and the
absolute temperature. If voltage is held constant and the membrane current is
measured, current noise with a spectral density W1(f) is given by

WI(f) 4kTRe(Z(f)). (2)

For a membrane represented by a simple parallel RC circuit, then, the noise voltage
would have a spectral density

Sl(S = 4kTRCf)2 (SIf + 47r2(RCf2 3
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and the current noise would have a spectral density

Wi(f) 4kT (4)

where R and C are the membrane resistance and capacitance respectively. Measure-
ments of S1(f) and equation 3 would, for example, yield estimates of R and C, and
further could be used to confirm that the membrane is represented by a parallel
RC circuit.

Because the nerve membrane is not in fact accurately represented by an ideal
parallel resistance and capacitance (see Cole, 1968), the voltage and current noise
spectral densities given in equations 3 and 4 are only approximate representations
of the actual spectral densities. From data for the membrane impedance of squid
axon, equations 1 and 2 may be used to make a more accurate prediction of the
thermal noise spectral densities (see Appendix A).

Although measurements of thermal noise spectral density yield, according to
equations 1 and 2, only the real part of the complex impedance, the entire complex
impedance can in principle be determined by noise measurements because it is pos-
sible to calculate the imaginary component of impedance from the real components:
according to the Kramers-Kronig dispersion relations (see, for example, Mathews
and Walker, 1965), the imaginary part of the complex impedance is, for a two-
terminal passive network, simply the Hilbert transform of the real part. Thus,
measurements of thermal noise spectra can, in principle, give the entire complex
impedance of the nerve membrane and are thus equivalent to the sine wave analyses
done by Cole and Curtis (see Cole, 1968).

SHOT NOISE

Let F(t) denote the current which flows through the measuring circuit as the result
of a single ion moving through the membrane. If it is assumed for simplicity that
each ion has approximately the same motion within the membrane, that ions move
independently, and that they enter the membrane according to a Poisson process
with a rate r, then, according to shot noise theory (see Rice, 1954), the spectral
density W2(f) for the noise current from this source, under voltage clamp conditions,
should be given by

W2(f) =rI5{F(t)112. (5)

The af here indicates a Fourier transform. Under current clamp conditions, the
voltage noise spectrum S2(f) is given by

S2(f) = W2(f)l Z(f)12, (6)
since the membrane complex impedance Z(f) filters the current noise; it should be
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noted that equation 6 is a general relationship between the voltage and current noise
spectra.

Because the shot noise current spectrum is related to F(t), which in turn reflects
the ion motion within the membrane, measurements of W2(f) can in principle yield a
picture of the passage of ions through the membrane. In practice, however, W2(f) is
probably unmeasurable because the spectral density would have to be determined
accurately to extremely high frequencies. The requirement for high frequency mea-
surements arises from the fact that a single ion transit through the membrane should
cause only a brief current flow, which in turn implies that the Fourier transform of
this function spreads over a very large frequency range.
As a specific simple example, if an ion moves with a constant velocity through a

membrane with a uniform dielectric constant, F(t) is given by

F(t) = q (U(t)- U(t-t)),

where q is the ionic charge magnitude, t is the average transit time through the mem-
brane, U(t) is the unit step function, and the ion is assumed to have entered the
membrane at t = 0. For this example, W2(f) is, according to equation 5, given by

W2(f) = r 53{F(t)} 12 = 2r (2rfi)2 (1 - cos 2irff).

When f is small compared with I/i, the spectral density is approximately constant
and is given by

2~~~~

W2(f) (rt' f <<t-

If, as an example, the mobility of sodium ions within the membrane is assumed to be
the same as that of sodium ions in water, the transit time of a sodium ion through a
100-A-thick membrane with a driving voltage of 10 mv would be about 0.2 ,usec.
Thus, the spectral density would be approximately constant to frequencies greater
than about 0.5 MHz for a 10 mv driving voltage; in general, the cutoff frequency
depends on membrane potential through F. Even if the mobility of ions within the
membrane is much less than that in water, it is clear that very high frequency
measurements would be required to fully characterize W2(f).

Because W2(f) is probably unmeasurable, deficiencies in the shot noise model
which led to the expression for this spectral density are not especially alarming. If it
happened that a shot noise-like spectrum were in fact observable in the nerve mem-
brane, a more refined model which allowed for interactions between current-carrying
ions might well be required.
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FLICKER NOISE

Although the physical basis of 1/f noise is not yet understood, Hooge (1969) and
Hooge and Gaal (1971) have proposed an empirical law which relates this noise to
relevant physical factors. According to Hooge's law, the spectral density for current
noise measured under voltage clamp conditions is proportional to the square of the
mean current, and inversely proportional to the number of charge carriers as well
as to the frequency; thus

A 2

WS(f)=--. (7)NTf

W3(f) is the spectral density for current noise, NT is the total number of charge car-
riers within the membrane, I is the mean current, f is the frequency, and A is a
constant equal to about 2 X 10-3 for electrons in metals (Hooge, 1969) and about 1
for ions in 0.1 M salt solutions (Hooge and Gaal, 1971). As before, with current
clamp, the voltage spectral density S3(f) is related to W3(f) by

S3(f) = WS(f)I Z(f)2.

According to Hooge's law, the 1/f noise spectrum behaves as if it were produced by
conductance fluctuations given by

A g (8M8(f) = N f (8)

where M3(f) is the spectral density of conductance fluctuations, and g is the average
conductance of the mechanism in question. Conductance is related to the ionic
mobility by

g = quNT. (9)

Here q is the single ionic charge magnitude and u is the average mobility per ion for
the channel with a fixed length. Substituting this relationship into equation 8 gives

M3(f) =Afq (10)

which may be solved for the single ion average mobility

M3(f)f (1Agq

Assuming that Hooge's law may be applied to the nerve membrane, then, equation
11 yields the average single ion mobility as a function of conductance from measure-
ments of M3(f). If, for example, membrane conductance is altered by some mecha-
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FIGURE 1 Single ion mobility u for a potassium channel as a function of potassium con-
ductance gB. Data points were calculated from Poussart's (1968) data for preparation
D54.5 by means of equations 11. Mobility is obtained only up to a multiplicative constant
because effective channel length is unknown; mobility units are thus arbitrary. Potassium
conductance is given in reciprocal megohms.

nism which changes ionic mobilities within the membrane, this mechanism may be
studied through the use of equation 11; alternatively, if conductance increases occur
by opening larger numbers of channels with only two states, the single ion mobility
estimated by equation 11 should be approximately constant.

Poussart (1968) has presented data (preparation D54.5) which permit average
potassium ion mobility to be calculated from equation 11 for voltage-clamped lobster
axon. Average mobility u (up to a multiplicative constant) as a function of the potas-
sium conductance g. is presented in Fig. 1; gc in this figure varies over most of the
range from 0 to g. . Because mobility is approximately constant except for the
lowest potassium conductance values, the simplest interpretation of these data is
that mobility is in fact constant for all values of potassium conductance, and that the
two spuriously high mobility values resulted from contamination of the small
potassium noise currents with, for example, noise currents through leakage channels.
In any event, the data presented in Fig. 1 are not consistent with a model in which
potassium conductance increases by a voltage-sensitive increase of potassium ion
mobility within the membrane.

If A in equation 7 were known, it would be possible to calculate the number of
ions that carry current; further, using the Hodgkin and Keynes (1955) estimate of
two to three potassium ions per channel, an approximate value of the single channel
conductance could be obtained. Unfortunately, it is especially difficult to extrapolate
the value of A from the system studied by Hooge and Gaal (1971) because A is
concentration dependent; the notion of channel ion concentration is, of course,
ill-defined.
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CONDUCTANCE FLUCTUATIONS

Conductance fluctuations in nerve and muscle membrane arise when the underlying
mechanisms which determine membrane conductance are inherently probabilistic.
For example, Katz and Miledi (1971) have proposed that, at the end plate mem-
brane, acetylcholine molecules interact at random times with receptor molecules, the
rate of interaction being dependent upon acetylcholine concentration, to induce a
rapid rise and exponential decay of elementary end plate conductances. On this
view, then, the end plate conductance mechanism is described by a random process
formally like the shot noise type discussed earlier. Similarly, for electrically excitable
membranes, one could view individual channels opening and closing randomly at
rates which give a constant average conductance with superimposed small fluctua-
tions.

Depending on which microscopic models of conductance mechanisms are se-
lected, different types of noise spectra can arise from conductance fluctuations;
indeed, one of the possible contributions of noise measurements is to aid in dis-
tinguishing between various underlying mechanisms. In the following discussion,
two different models, both based on the Hodgkin-Huxley (1952) equations, will be
considered, and these two different interpretations of the Hodgkin-Huxley equations
will be seen to yield different noise spectra. After electrically excitable membranes
have been discussed, there will be a brief consideration of models for end plate
noise.

First Interpretation of Hodgkin-Huxley Equations

For clarity, the probabilistic version of the Hodgkin-Huxley equations will be pre-
sented here in terms of a specific physical model which follows the spirit of Hodgkin
and Huxley's original picture and which seems adequate to account for at least one
type of channel voltage sensitivity (Magleby and Stevens, 1972); other physical
interpretations can, of course, be given to the equations presented here. Further, the
Hodgkin-Huxley potassium channels will be treated, although a generalization to
other channel types is obvious and immediate. Each channel is viewed as being
guarded by four macromolecules that can change their conformation and block the
channel. If any one of the molecules blocks a channel, then potassium ions cannot
pass through; if all macromolecules are in their open conformation, then the channel
is open and has a conductance y (the closed conductance is assumed to be zero).
The rates of conformational change are voltage dependent and are given by the
Hodgkin-Huxley rate constants a. and j,8 . It is assumed that each of the gate
molecules can have only two conformations (open and closed). The following master
equation (van Hove, 1957; Zwanzig, 1964) describes the probability p(k I t) that,
given a gate molecule in state k at time 0, the molecule is in the open conformation
at time t:
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7dp(k I t) + p(k l t) = n . (12)
dt

Here

T a.= +Oafn + i3,,

and an and 13n have the same significance as in the Hodgkin-Huxley equation, as
does n. ; k may denote the open (o) or closed (c) conformation of the gate molecule.
The probability n(t) that a molecule is in its open conformation at time t, irrespective
of its initial conformation, is given by

n(t) = p(o)p(o I t) + p(c)p(c I t), (13)

where p(k) is the probability that the gate molecule is in its kth conformation (open
o and closed c) initially.
The channel may be open only if all gate molecules are in their open conformation,

so that the probability a channel is open is, assuming the gate molecules do not
interact, equal to n4. The average conductance gK(V, t) at time t is the average
number of channels open Nn4 (where N is the total number of channels) times the
conductance y of an open channel:

gK(V, t) = yn4. (14)

Equations 12, 13, and 14 thus provide a probabilistic model which is equivalent to
the ordinary Hodgkin-Huxley equations.

Having formulated a probabilistic version of the Hodgkin-Huxley equations, we
may now calculate the characteristics of conductance fluctuations which, according
to this model, produce electrical noise. This calculation is most conveniently carried
out by first obtaining the covariance function

C(t) = Et (o)g(t)} -Et (o))}2
where E denotes the expectation, and g(t) is the conductance at time t; the covari-
ance function is then Fourier transformed to yield the spectral density.

Because the covariance function for N independent channels is N times the co-
variance function Cl(t) for a single channel, we need only the quantity

Cl(t) = E{g1(o)#i(t)} -Elgl(o)}2,
where #1(t) denotes the conductance of a single channel at time t. By the definition
of expectation E{ 91(o)91(t)} = Ej,k X(j)X(k)P(j, k; t). P(j, k; t) is the joint proba-
bility of finding the channel in state j initialy and state k at time t, and X(j) is the
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conductance of a channel in the j state; j (and k) may be either open (o) or closed
(c). If the open conductance is y and the closed conductance is 0, that is, if X)(o) = 'y
and X(c) = 0, all terms in the above summation vanish except P(o, o; t)'y2. Since the
channel may be open only if all four gating molecules in the open conformation,

P(O, °; t) = [P(o)P(o t)]4

Thus, the expectation is given by

El #1(o)#I(t) }=I 2[p(o)p(o It)]4,

and the single channel covariance by

Cl(t) = y2p4(o)p4(o I t) - y2p8(o co), t> 0.

Equation 12 may be solved for the conditional probability p(o t) to give

p(o t)= et/r(l- n) + n.

In the stationary state, then, p(o) = p(o co) = n. so that

Cl(t) = y2n4(e-tT(l- n) + n.)4 - n t>02

which gives, after expanding the fourth-power term,

cl(t) = 2n. E (4) n4-e-it"(l- n.)', t > 0.

The covariance function C(t) for the entire membrane containing N channels is

C(t) = NC,(t)

which gives

C(t) = N72n 4 4-)n4 ie"-t'(l -ne (15)

To calculate the $pectral density of conductance fluctuations, it is necessary only
to take the Fourier transform of the covariance function C(t). Thus, the spectral
density M4(f) is given by

M4(f) = Ny2n,4 C) n4'(1-n) 2 (J) (16)
1 + 2,r
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The spectrum of conductance fluctuations is constant in the low frequencies and
decreases according to 1/f2 in the high frequency limit, that is, for frequencies well
above 2/rT. Hill and Chen (1972) have obtained this same relationship, equation 16,
from another, but formally equivalent, probabilistic version of the Hodgkin-Huxley
equations by FitzHugh (1965).

Second Interpretation of the Hodgkin-Huxley Equations

An alternative derivation of the conductance fluctuation spectrum is based on a
literal interpretation of the Hodgkin-Huxley equations in which the accessory
variable n is treated as being subject to random fluctuations from an unspecified
source. This treatment then makes use of a theorem, the fluctuation-dissipation
theorem, adapted from statistical mechanics.
For many physical systems, the return toward equilibrium from spontaneous

fluctuations and the relaxation from external perturbations follow the same time-
course; systems whose behavior exhibits this property are said to conform to
Onsager's hypothesis, and Kubo (1957) has demonstrated in his fluctuation-dissipa-
tion theorem that such a property follows from the statistical mechanical description
of the response of systems to small perturbations. Although the fluctuation-dissipa-
tion theorem need not be applicable to some arbitrarily chosen response of a com-
plex system, it can be shown that it is applicable to a system of the type described
by the Hodgkin-Huxley equations if the state of the conductance mechanism is
completely specified by the appropriate Hodgkin-Huxley accessory variable (n for
example) (see Appendix B). Specifically, the linearized Hodgkin-Huxley equations
can be used to predict the spectral density of spontaneous conductance fluctuations
in the nerve membrane; if the relaxation of, for example, the potassium conductance
to its steady-state value is described (for responses in the linear region) by the func-
tion R(t), then the spectral density of conductance fluctuations M4(f) is given by

M4(f)
=
KRe I{R(t)}, (17)

where K is a constant.
Attention will again be restricted to Hodgkin-Huxley-type potassium channels.

For concreteness, n may be considered now as specifying the fraction that a gating
molecule has rotated (between minimum closed and maximum fully open), and it
will be supposed that the channel conductance is approximated by yn4, with n de-
scribed by the usual Hodgkin-Huxley rate equation; y is the maximum channel
conductance. The following treatment does not require this physical interpretation,
and in fact holds for any model that treats n as completely specifying the state of a
channel.

Let v be a small deviation of n from its steady-state value n(V, co), and 4& be the
corresponding deviation of voltage from its steady value 7, so that
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n=n(V,o')+V, V= 17+ .

To first order in voltage A', then the linearized Hodgkin-Huxley equations are

gx(V, t) = gKn4(V, ) + 4g}n3(V, oo)v

dv
T dp + v = af,

where a is a constant. According to these equations, the potassium conductance
(under voltage clamp conditions) relaxes to its final value according to

v(,&, t) = v(o)e-t1,r 6L = constant,

provided that g:(V, 0) is not very different from gK(V, co). From the fluctuation-
dissipation-like theorem, equation 17, the spectrum of conductance fluctuations
M4(f) is thus (for a constant voltage) given by

- 2o 2'rM4,(f I + (2rTf)2 (18)

where the possibly voltage-dependent constant a2 is not provided by this theory. Up
to an undetermined multiplicative constant, then, the spectral density of conductance
fluctuations may be calculated from a voltage clamp analysis on the nerve membrane
in question. The current spectrum W4(f) under voltage clamp is given by

W4(f) =M4(f)
where 9 is the difference between the membrane potential and the potassium
equilibrium potential; S4fV) is obtained from

S4(f) = W4'(f)j Z(f)12.
Both of the probabilistic interpretations of the Hodgkin-Huxley equations dis-

cussed here give rise to conductance fluctuations with a spectrum that is flat in the
low frequency region and decreases as does I/.p in the high frequency limit. The
"corner frequency," that is the frequency at which the extrapolated 1/fl decline
intersects the low frequency limit, is different in the two models, however, as is
apparent from equations 16 and 18. For the first model (equation 16), the corner
frequency is 2/7rr, whereas for the second model (equation 18), it is four times lower,
1/2wrr. Furthermore, the precise shape of the transition between the low and high
frequency limits is different in the two cases, but this effect would be more difficult
to detect in experiments.
One potential use for spectra of conductance fluctuations, then, is to distinguish

between the two types of model described here. On the one hand are the models

CHARLEs F. STEvENs Electrical Noise Measurements of Membrane Properties 1039



which basically interpret n as a probability that one of four components is in a given
state, and on the other hand are the models which view n as a state variable-that is,
as a single variable, the value of which specifies the state of each (independent)
potassium channel-subject to continuous random fluctuations. By comparing the
cutoff frequency of the noise specrum to the value of T at that voltage obtained in
a voltage clamp experiment, it may be possible to decide between these two classes
of models. Siebenga and Verveen (1971) have reported the presence of 1/fl noise in
frog node and have attributed this to conductance fluctuations, and Fishman (per-
sonal communication) has confirmed the presence of a 1/fl noise component in
squid axon. The data so far reported, however, are insufficient to indicate clearly if
either of the models described here is adequate.

It is appropriate to emphasize an important difference in the two approaches used
here to calculate the spectral densities of conductance fluctuations. The first proba-
bilistic interpretation is specific, and the spectrum that results holds only for the
particular model used or for a formally equivalent one (e.g., FitzHugh, 1965). The
second probabilistic interpretation is general, however, and depends only on the
fact that the Hodgkin-Huxley equations are an adequate description of excitable
membrane behavior and the assumption that the state of the conductance mecha-
nism is completely specified by the accessory variable n. Thus, any physical picture
in which a single variable completely specifies the state of the conductance mecha-
nism would give rise to the spectrum given in equation 18. The derivation for the
fluctuation-dissipation-like theorem given in Appendix B will not, in general, hold
for more than one variable so that any model in which n does not completely specify
the state of the conductance mechanism, as in the first probabilistic interpretation,
for example, will generally give rise to a different spectral density for conductance
fluctuations. If the experimental 1/fl spectra do not conform to equation 18, then,
one may attribute this departure from predicted behavior to an inadequacy in the
Hodgkin-Huxley description or conclude that multiple "hidden" variables (as in
the first interpretation, for example) are required to specify the state of the con-
ductance mechanisms.

Other properties of channels can also be determined, in principle, at least, through
measurements of conductance fluctuation spectra. For example, it is not at present
clear whether individual channels have two states (open and closed), several states
(closed, half open, fully open), or perhaps a continuously graded conductance over
some range, although the evidence in Fig. 1 argues against this last alternative. The
various possibilities will not be systematically investigated here, but it is important
to note that each model gives a different spectral density for conductance fluctua-
tions, and probably more importantly, for the variance of conductance fluctuations
as a function of voltage. For example, because the variance is the integral over all
of the spectral density, and because n. is a known function of voltage, the variance
for the two-state channel model which led to equation 16 is a specified function of
voltage; for very negative membrane potentials the variance is zero, it increases with
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depolarization to the voltage at which no. = 0.5, and then decreases toward zero with
further depolarizations. In general, different voltage dependence of the variance
would arise from other models.

End Plate Conductance Fluctuations

As noted earlier, it is probable that conductance fluctuations occur at the end plate
membrane during the action of iontophoretically applied acetylcholine (Katz and
Miledi, 1970, 1971). A modification of the preceding development provides an
alternative to the model proposed by Katz and Miledi (1971) and yields a prediction
for the spectrum of the observed conductance fluctuations. Instead of treating the
elementary conductance change at the end plate as a rapid increase followed by an
exponential decline, as Katz and Miledi have done, one may view an end plate
channel as opening at random and then remaining open for a random length of time.
According to this view, the opening and closing of a channel is described by the
same equation 12 that was used previously to characterize the two conformational
states of the hypothetical gate molecules; an end plate channel is considered to have,
in effect, only a single-gate molecule. An analysis similar to that given earlier leads
to a spectral density M4(f) for end plate conductance fluctuations given by

Me(f) Nya4 1 +(2irrf)2 (19)
where N is the number of receptors, y is the conductance of an open channel, and
a is the (steady-state) probability that a channel is open. This spectrum has the
same form as that obtained from the shot noise model used by Katz and Miledi, and
seems to account adequately for the presently available data (Katz and Miledi, 1971;
Anderson and Stevens, 1972); as Katz and Miledi (1971) have suggested, measure-
ments of noise spectra cannot be used to decide between the model they have pro-
posed and that presented here.
One use of noise measurements at the neuromuscular junction, then, is to test

models of the microscopic conductance changes which underlie the end plate con-
ductance change. Thus current data (Katz and Miledi, 1971) are consistent with at
least the two different microscopic models noted above, but these data serve to
eliminate other microscopic mechanisms that might be proposed. An additional use
of noise measurements, first proposed by Katz and Miledi (1971), is to estimate the
magnitude of the unitary conductance change. Since, according to the model indi-
cated above, channels have only two states (open and closed) and change between
these states in a random fashion, the probability of having some particular number
of channels open at a given time is governed by the binomial distribution. This
implies that the average conductance uA is

yo = yNa,
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and the variance in the conductance is

2 2a- = 7yNa(l - a).

For appropriately small acetylcholine concentrations, the probability of a channel
being open is small compared with 1, so that the variance is approximately

2 2
O'g 7Y Na = 7yiA.

Thus, the variance of conductance fluctuations is proportional to the mean con-
ductance level (in the limit of low acetylcholine concentrations), with the propor-
tionality constant being the conductance of one open channel. Since both the mean
and variance of end plate conductance are measureable quantities, the conductance
of a single open channel may (for the model described here) be estimated by their
ratio:

2
0ag

y . (20)

Adequate experimental data are not yet available to permit calculation of this
quantity, but doubtless they soon will be.

Difficulty of Separating Spectrafrom Various Sources

The main practical limitation on making inferences about membrane processes from
noise measurements is the difficulty in separating spectra from different sources. Not
only must the four main spectral contributions be recognized, but also must various
components to each type of spectrum be identified. For example, when membrane
current is being carried by more than one type of ion, it is reasonable to assume
that different ionic species will move in different ways within the membrane; thus,
each ionic species would give rise to a shot noise spectrum, and the total shot noise
spectrum would be, on the assumption that the various currents are independent, the
sum of the individual spectra for separate ionic currents. As another example, con-
sider conductance fluctuation noise in a Hodgkin-Huxley axon. The m, n, and h
parameters all give rise to fluctuations, so that the total conductance fluctuation
spectrum is the sum of contributions from these three components. By appropriate
physiological maneuvers, for instance, studying the membrane in situations where
sodium channels are essentially totally inactivated, it may be possible to separate out
the various sources of conductance fluctuation spectra. The main point is, however,
that separating spectral components is inherently difficult and must be approached
experimentally.
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APPENDIX

A. Thermal Noise Spectrum for a Squid Membrane with Nonideal Passive Properties
The nerve membrane passive electrical properties are frequently represented by a parallel
resistance-capacitance circuit. Although the capacitance may for many purposes be approxi-
mated by an ideal capacitor, a more accurate representation of the membrane impedance
requires a modification of the types indicated in Fig. 2 where an ideal resistor Rm is in parallel
with a nonideal series resistor R(f) and capacitor C(f). If the frequency-dependent resistance
and capacitance are described by

R(f) = R0(27rfr) " sin 2 a

co
C(f) = CO ;

(27rfr)a cos
(A 1)

the impedance of the membrane is well described, provided membrane potential variations
are restricted to ranges which do not materially affect the Hodgkin-Huxley parameters. The
parameters R., CO, Tr, a are constants and f denotes frequency. It will prove convenient to
define

Co
ar

COS-
b = R. sin air

so that

27rfCr = a(27rfr)--,

RC = 2a (A 2)

By straightforward algebraic manipulations, the real part of the impedance for the squid

RN R(f

C(f)

In
FIGURE 2 Equivalent circuit for axon membrane with nonideal capacitance. See Cole
(1968) for a comprehensive review of passive membrane properties.
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axon membrane, as represented by the circuit in Fig. 2, may be found. According to equation
1 of the text, then, the thermal noise voltage spectral density for a squid membrane under
current clamp should be

/+ ab 2 +a2bRm 2 )- \

Si(f) = 4kTRm ( ( Tb22 +-4 * (A 3)
I + (ab + aRs (2lrfr)1a)

For the squid axon, a ; 0.1, so the spectral density should, in the high frequency limit, be
approximately

Si(f) 4kT ((2wf)a + 8) (A4)

If R, were sufficiently small, this mechanism would give noise with an approximately 1/f
spectrum for high frequencies.

B. Fluctuation-Dissipation-like Theorem for Hodgkin-Huxley Model

If the random behavior of a probabilistic system is markovian, then it is true that the average
future behavior of the system depends only on its present state (and not upon the path over
which that state was approached), and a fluctuation-dissipation-like theorem is always valid.
On the other hand, the fact that a system's average future behavior depends only on the present
state, and not upon the past history, does not imply that the probability mechanism under-
lying the system's behavior is markovian. In this Appendix, it will be shown that a no-memory
system, that is one whose average future evolution is determined only by its present state,
need not be markovian, but that a fluctuation-dissipation theorem holds in any case. The
Hodgkin-Huxley variables m, n, and h have their evolution determined completely by their
initial values, so a fluctuation-dissipation theorem is valid for these subsidiary variables.

Let P[)(r)-ow | {, t] specify the probability density for finding a system in state t at time
t > 0, conditional upon having followed a path ¢i,(T) from - up to time 0; P[ ] is a func-
tion of t and a functional of 4D. It will be assumed that P is a continuous functional of 1D,
and that the system is time homogeneous, so that a functional expansion may be employed:

0

P[I(T)I|(I, t] = Po( (0) |,t) + f K(, t - r)cI(T) dr + * . . (B 1)
_00

Although higher terms in the expansion have not been explicitly written, they have not been
discarded. Let the functional P[I(Tr)O0o] specify the probability density for following path
4'(r) and carry out the following functional integration over all paths which terminate at X
at time 0:

P[.I>]P[l) t]54> = PO(O, IX t)V []a

'D (0)P v (0)-v

+1 K(,t-T)( P[b](DN) dt + . B 2
4':
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Because the probability density P(t1) for finding the system in state X at time 0 is given by

P(X) = < []b
:

and the average path f(q, r) which terminates at X7 is given by

f(n7, r) = J ()[],

9(:)

the functional integral above becomes

P[ciP[b i, t]6 =P(=)po(s i, t)
9:

0 (o)X

_00

The effect of the above manipulations has been to characterize the probabilistic evolution of
the system in terms of a markovian part given by P(r))P.(,q I t, t)] and a non-markovian part
characterized by the higher terms in the functional power series expansion.
The average relaxation of this system (t(t)) from its initial average position [characterized

by P(I)] is by definition given by

(4(t)) = 60(7)o(711 ( t) dt dij + L Ki(t - r)f(T) dr + ***(B 4)

where

fJ(T) = lf(n, T) dr and K(t) = f K(t, t)t d{.

For the average behavior for a system to exhibit no memory, it must be that the kernel
K1(t) vanishes, for (t(t)) must be independent off(t) for every 7(t); by a similar argument,
the higher order kernels must also vanish. Thus, for a no-memory system,

(4(t)) = ff tP(n)Po(n I t dt dn. (B 5)
The covariance of random fluctuations in t(t) is by definition

40MO)t(t))= f f tqPec(n)Po(,qI%, t) dt dqi

+ fff OnK(t, t - r)f (rq, r) dT df dt +

= f| {1nPeq(n)Po(tq t, t) dt dn

0f (
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where P.q(n) gives the equilibrium initial probability density; but for a process whose average
behavior exhibits no memory, KR(t) = 0 (as do higher kernels), so that

40WO)t()) = f .l;Peq(fl)Po(?i I t, t) da dt . ( B 7)

Because only the markovian part of the description survives in equations B 5 and B 7, it
follows that, up to a multiplicative constant k,

(t(O)t(t)) = k(t(t))
This is a statement of the fluctuation-dissipation theorem.

Note that the random process need not be markovian; lack of memory macroscopically
implies that R&(t) vanishes (on the time scale of experimental analysis of the system), but the
kernel K(Q, t) which describes departures from markovian behavior does not necessarily
vanish. The fact that K(t) = f| tKQ1 t) dt = 0 does not necessarily mean that K(Q, t) is
itself zero.

Most of the work reported here was carried out while the author was a guest investigator at the
Lorentz Institute for Theoretical Physics, Leiden, during the year 1969-1970.
I am indebted to Professor P. Mazur for his support and hospitality during my stay.
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