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AssrRAcr Mass balance relations, valid for any counterflow system, are derived
and applied to a central core model of the renal medulla, in which descending
Henle's limbs (DHL), ascending Henle's limbs (AHL), and collecting ducts (CD)
exchange with a central vascular core (VC) formed by vasa recta loops, assumed
so highly permeable that the core functions as a single tube open at the cortical
end, closed at the papillary. Solute supplied to the VC primarily by the water im-
permeable AHL may either enter the DHL to be recycled or remain in the core to
extract water by osmosis from DHL and CD. If concentrations in core and de-
scending flows are nearly equal, then for all degrees of recycling the ratio of enter-
ing DHL concentration to loop concentration is given by r = 1/[1- fT(l - fu)I,
where fT is the fractional net solute transport out of AHL and fu is the ratio ofCD
flow to the sum of CD and AHL flows. Differential equations for a single solute
are derived for core and AHL concentrations. Explicit analytic solutions are given
for solute transport out of the AHL governed by Michaelis-Menten kinetics. Finally
the energy requirements for concentration are analyzed.

INTRODUCTION

In this paper we begin the analysis of continuous flow concentrating engines and
their relation to the formation of urine by the mammalian kidney. These engines
all utilize continuous counterfilow and active solute transport to separate homoge-
nous inflowing solutions into nonidentical outfilowing fractions. Thus, chemical
energy is used to increase the free energy of the inflowing solution. Because of
rapidly advancing membrane technology and a variety of engineering problems
such as desalinization and fractionation of waste effluents, the analysis of these
engines is interesting in its own right. Our interest, however, is centered on the prob-
lem of urine formation from glomerular ifitrate.

Historically, the consideration of such engines arose from the problem of how
mammals and birds can produce a urine more concentrated than blood plasma and
glomerular ifitrate. In mammals this ability varies between species, being most
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marked in desert rodents, some of which, such as the golden hamster and Psam-
momys, can produce urines of concentrations greater than 4,000 mosmol/liter, cor-
responding to a van't Hoff osmotic pressure of nearly 100 atm. It had been noted
by several investigators (see Dicker, 1970, for a summary of the early literature)
that this ability to concentrate urine was correlated with the possession of Henle's
loop, but the mechanism of concentration was not understood at all until 1942,
when Kuhn and Ryffel (1942) suggested that the loop provided a countercurrent
system in which a small single effect could be multiplied many-fold. This hypothe-
sis, elaborated by Kuhn and his co-workers in a series of papers, has gradually be-
come accepted in general, although the details are disputed.
The hypothesis in one of its original variants is illustrated in Fig. 1. As fluid flows

down the descending limb of Henle's loop it is concentrated either by the entry of
salt or by the extraction of water (or both), and as it flows up the ascending limb it
is correspondingly diluted by removal of salt or entry of water. Theoretically, the
driving force could be either a hydrostatic pressure difference between ascending
and descending limbs, as originally suggested by Hargitay and Kuhn (1951), or
active salt transport from ascending to descending limb as subsequently suggested
(Wirz et al., 1951; Kuhn and Ramel, 1959 a, b); but since the hydrostatic pressure
difference between ascending and descending limbs is only a few nillimeters of Hg,
active salt transport is the only likely possibility. Final concentration of urine is
obtained by transfer of water from CD to loop structures as CD fluid traverses the
osmotic gradient maintained by the multiplication process.
Although such a system, with mass transfer restricted to tubular structures, would

work in principle, micropuncture studies (see Gottschalk, 1964, for a review of the
early micropuncture literature, and Marsh, 1971, for a comprehensive recent review)
indicate that water and salt are both removed from the loop structures, as well as
water and probably salt from the CD. Thus, there is net entry of both salt and water
into the medullary interstitium. This water and salt must be taken up by the capil-
laries, because there are no medullary lymphatics (Kriz, 1970) and bulk inter-
stitial flow seems highy improbable. In the steady state, capillary uptake must
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FIGURE 1 Fiouan 2
FIGURE 1 One variant of Kuhn and Ramel's countercurrent multiplier. Water moves from
descending limb of Henle's loop (DHL) to ascending (AHL) or solute from AHL to DHL.
Water and solute move between DIL and collecting duct (CD), so CD and DHL attain
nearly the same osmolality. *, water movement; +, solute movement.
FIGuRE 2 Central core system, visualized as formed by the folding of two parallel tubes
on the tube corresponding to the vasa recta. Dashed line indicates opposing walls of ascend-
ing vasa recta (AVR) and descending vasa recta (DVR).
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balance entry from the renal tubules. Otherwise, water accumulation would raise
the interstitial hydrostatic pressure and completely shut down renal function. The
capillaries also form a highly efficient countercurrent exchange system which has
been recognized as essential in preventing the washout of the medullary concen-
tration gradient (Wirz, 1956; Berliner et al., 1958; Ullrich et al., 1962). Clearly, any
realistic model of the medullary concentrating system must incorporate the vasa
recta and account for the movement of both solutes and water. Attempts to satisfy
these requirements have met with difficulties. Analytical solutions (Stephenson,
1965, 1966; Kelman et al., 1966) have been restricted to models that permit only
solute movement. Computer simulations (Jacquez et al., 1967; Kien and Koushan-
pour, 1968) have also had limited success in accounting for both water and solute
movement. One difficulty is that a large class of models in which tubules and vasa
recta exchange with a well-mixed interstitium is inconsistent (Stephenson, 1971).

In the attempt to develop consistent models which incorporate the vasa recta
and include water and solute movement we have been led to the class of concen-
trating engines whose prototype is illustrated in Figs. 2-4. Solute is pumped into a
central core, blind at one end, open at the other, from a flow tube corresponding to
AHL. Solution in the tubes corresponding to DHL and CD is concentrated pri-
marily by water extraction. These engines utilize a fundamentally different topo-
logical connectivity than the engine of Fig. 1. The system can be visualized as arising
from the folding of two parallel flow tubes, one corresponding to the renal tubule
and the other to the vasa recta, then obliterating the internal folded capillary wall.
This idealizes the exchange function of the capillaries so that washout is entirely
due to water taken up by the vascular core from the tubule. Transport of solute

(a) ((CORE ]
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DHL (b)
CD SPACE

FiouRE 3 FIGURE 4

FIGURE 3 Central core system showing vasa recta merged to form a single tube, closed at
the loop end, open at the other. In this plane view, CD is shown as merged with the DHL.
FIGURE 4 (a) Cross-section of central core model showing AHL, DHL, and CD grouped
around core. (b) Shows a peripheral vascular space. Both configurations have the essential
property that AHL, DHL, CD, and vascular space are in mutual contact.
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and water, however, is from the tubule to the folded vascular core; i.e. from the
inside of the tubule to the outside as it is in the proximal and distal convoluted
tubule, with the difference that solute is supplied from AHL and water from DHL
instead of both from the same segment of tubule. Some recycling of solute from
AHL to DHL may occur, but analysis shows that with no recycling the engine
attains a given concentration ratio between entering and loop fluid with minimum
solute transport. This engine splits the entering solution into three fractions. In
contrast, in the engine of Fig. 1, transport of solute and water is from the inside of
the tubule to the inside of the tubule across the folded membrane separating AHL
and DHL, and entering solution is split into two fractions.

It is our hypothesis that the highly organized anatomical units described by Kriz
and others constitute functional nephrovascular units whose general mode of opera-
tion parallels that of the central core concentrating engine (CCE) and whose
idealized operation is analogous to that of a CCE in exactly the same way as the
operation of an internal combustion engine is analogous to an ideal engine utilizing
an Otto cycle. We are thus able to construct an approximate analytical theory of
urine formation which incorporates salt, water, and urea movement between tu-
bules and capillaries.

In this paper we analyze the behavior of a central core engine, restricting the
the theory to transport of a single solute and water under highly idealized condi-
tions. In the following paper, we extend the analysis to multisolute systems. Later
papers will extend the theory to less idealized systems and apply it to the detailed
analysis of experimental data. Preliminary accounts of the model have been given
elsewhere (Stephenson, 1972, 1973).

MASS BALANCE EQUATIONS

In this section, repeatedly used mass balance relations for solute and water transport
are derived from flow equations for a mutually exchanging set of parallel tubes.
These flow tubes exchange directly with one another through common-bounding
surfaces (membranes) and not indirectly via a well-mixed interstitial compart-
ment.' If we denote the length of the boundary between transverse sections of the
ith andjth tubes by Bij and the net outward flux per unit area of the kth substance
from the ith to the jth tube by Jaij,k, then the total net outward transport of the
kth substance through the surface element Bij dx is Jaij,kBj dx = Jij,k. The net
outward flux of the kth substance from the ith tube per unit length is Jik = E Jj.k
If then, Fi,k is the total axial flux of the substance, Ai the cross-sectional area, and

1The connectivity of such a system for any given transverse section is, of course, limited. Not more
than four plane areas can be neighboring domains, i.e., possess a common boundary offinite length
(Tietze, 1965). Thus, no more than four tubes can be in mutual contact along their entire length.
Three-dimensional braiding and anastomosis can increase the number of mutually exchanging tubes,
but systems using four mutually connected flow tubes that are discussed in this paper are more general
than might appear at first.
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sa, the average net rate at which material is being produced or destroyed within the
tube by chemical or physical reaction, the equation for mass continuity is:

(-FaikOax) + Aisik- Jik= ( 1 )

where ca. is the concentration of the kth solute in the ith tube. In the steady state
with sik = 0, Eq. 1 reduces to

dFjk/dx= -Jo. (2)

A similar equation holds for total mass flow. Thus,

dFiM/dx = -Jim, (3)

where Fim = Sk Fik and Ji,,, = Sk Jik . Likewise for an incompressible fluid the
equation for total volume flow is

dF.l1/dx = -Ji.g (4)

For dilute aqueous solutions, total mass and volume flow equal approximately
the mass and volume flow of water. Integration of Eq. 2 gives

L 2

Fik(X1) - Fik(X2) = Jik dx, (5)

and by the mean value theorem,

Fik(Xl) Fik(X2) = lk[X2 - Xl] (6)

Eq. 6 and the corresponding integral forms of Eqs. 3 and 4 will be used constantly
with the assumption that there is a constant dutward transport Jik along the tube
equal to the mean transport lik. For results which depend only on total transport
out of the tube, it is convenient to introduce the transport integrals,

Tik(x) = Jsik(X) dx. (7)

Then

Fik (Xl)- Fk(X2) = TV (X2)- Ti (X1) (8)

Used without an argument, Tik is the total net transport of the kth solute out of the
ith tube, i.e.,

L

Tik = Ji| k dx = JhkL, (9)

where L is the total length of the flow tube.
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We assume that the radial concentration gradient is negligible and that the total
axial flux is given by

Fik= FcR - AiDk(dcik/dx), (10)

where D, is the diffusion coefficient of the kth solute in the ith tube (not necessarily
the self-diffusion coefficient of the kth solute in dilute aqueous solution). Substitu-
tion of Eq. 10 into Eq. 2 gives

(d/dx)[-AiDi*(dcjk/dx) + Ficik] = Jik (11)

If we set Ai = I, assume Dik is nearly constant, and carry out the differentiation, we
obtain,

-Dik(d2cik/dx2) + (dFi,/dx)cik + Fi, (dcik/dx) = -Jik (12)

From Eqs. 12 and 4 we derive

-Dik(d2cik/dx2) + Fit, (dcik/dx) = -J,k + Jit,Csk (13)

If the diffusional term is small relative to the bulk flow term, Eq. 13 reduces to

dcik/dx = (-Jik + Ji,,Cik)/Fi , (14)

at points where Fi, 0 0. If Fi,, > 0, dc1k/dx has the sign of - Jik + JihCik . Thus,
dc,a/dx > 0 if cik > JikJi., an intuitively obvious relation if one notes that Jik/lJ1,
is the concentration of the kth solute in the net transmural transport out of the ith
tube. If the diffusional term is retained, this conclusion no longer holds.

In the absence oftransitions of one species to another in the membranes separating
the tubes, the flux from i toj is equal and opposite to the flux from j to i, or

Jti. = -Jii.k, (15)
from which we derive

Ei Jik =° ( 16 )

Summation of Eqs. 2 over i, and utilization of Eqs. 15 gives the integrated relations

Ei Fk (X) = EiFik (0) = Ei>Fik (L). (17)

A similar derivation gives

EiFi(x) = ZiFi-v(0) = iFi,(L). (18)

It should be emphasized that the above relations are all mass balance relations
and introduce no assumptions whatsoever about driving forces causing the transport.
Specifically, Jicik in Eq. 14 is not a "drag" term.
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The mathematical description of the system is completed by an equation of
motion for the fluid in the ith tube

dPi/dx = -RiF(x)F,, (x), (19)

where Pi is the hydrostatic pressure, and RiF is the flow resistance of the tube;
and by the laws relating the fluxes Jij,k and Jij,, to the pressures and concentrations
in the ith and jth tubes.
Many of the results in this paper are independent of the particular transport

mechanisms assumed for the fluxes. Particular laws for the J's are introduced as re-
quired in the theoretical development. In the central core model the kidney's com-
posite membrane systems, e.g. DHL wall, interstitial space, ascending vasa recta
wall, are approximated by single membranes separating the flow tubes. In the first-
order theory of this and the following paper, on the basis of the available experi-
mental data (see Marsh, 1971), hydrostatic pressure is assumed to be a negligible
driving force across these single approximating membranes, and the equations of
motion are not used.

CENTRAL CORE OSMOTIC ENGINES

The central core engine can utilize as a single effect solute cycling from ascending to
descending flow, osmotic water extraction from the descending flow, or a combina-
tion of the two. With pure solute cycling the central core essentially becomes non-
functional, serving only as a conduit for the transverse exchange of solutes and
water. The operation of the water-extracting engine can be most easily understood
from the reduced system consisting of central core and one descending flow tube.
If in a static two compartment system (Fig. 5) in which the compartments are sepa-
rated by a water permeable, solute impermeable membrane, solute is added to one
compartment; the concentration in this compartment will be increased and water will
be osmotically withdrawn from the other compartment until equilibrium is restored.
For example, let the initial volume of fluid in each compartment be V(O) and the
initial concentration c (0), then, if the mass of solute added to compartment B is
M, the final equilibrium concentration will be

c(oo) = c(O) + M/[2 V(O)],

and the final volumes will be

VA(oo) = V(O)c(O)/c(OO),
and

VB(oo) = V(0)[2 - c (0)/c (oo)].

As the solution in volume B expands it does work on the solution in volume A.
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Energetically the situation is as illustrated in Fig. 6, in which volumes A and B are
fitted with movable pistons. Overall, the system is not reversible unless the process
by which solute is supplied to volume B is reversible.

If the system is modified so continuous flow is possible (Fig. 7) the membrane
permeabilities remaining unchanged, compartment B becoming the central core and
A the descending flow, and solute is supplied continuously to the core at rate TM;
water will be osmotically withdrawn from the descending flow to enter the central
core. As water leaves the descending flow the remaining solution will be concentrated,
and as water enters the core it will dilute the core contents and give rise to an ascend-
ing counterflow that washes the solute out of the core. At equilibrium the total solute
in the core will reach a constant value, which requires that the rate at which solute
is being supplied to the core must equal the rate at which solute is being swept out
by the entering water flow. Thus, (if axial diffusion in the core is small relative to
the bulk flow) the relation

-F4.(0)C4M(O) = TM, (20)

must be satisfied, where F4, (0) is the total volume flow leaving the core at x = 0
and c4M (0) is the total core solute concentration at x = 0. (We introduce the sub-
scripting convention: DHL corresponds to 1, AHL to 2, CD to 3, and core to 4.)
The volume flow leaving the core is the difference between the volume flow entering
the descending flow tube and the volume flow leaving it, or

-F4,v (0) = Fv (0) - F1v (L). (21)

(In both of the above equations F4, (0) is negative by our sign convention.)
If solute neither enters nor leaves the descending flow, the product F1, (X)C1M(x)

is constant; in particular

Fl. (L)clm (L) = Fl (0)clM (0). (22)

A B A BI

i~~~~~~~~~~~~~~~~~~~~~~pX10F
FIGURE 5 FIGURE 6 FIGuRE 7

FIGURE 5 Membrane I separating A and B is water permeable, solute impermeable. Dia-
gram illustrates effect of increasing total solute in B by one-half.
FIoURE 6 Showing system of Fig. 5 fitted with movable pistons. Solute is supplied to B;
as solution in B expands it does useful work of concentration on solution in A.
FIGURE 7 Prototype of central core water-extracting system. Solute is supplied continuously
to the core at total rate TM . Water is extracted from descending flow.
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From Eq. 22 the concentration ratio is given by

r = clM(L)/ClM(0) = F1i (O)/F1,(L). (23)

From Eqs. 23 and 21 we obtain

-F41 (0) = F11(0)[l - l/r], (24)

and from Eqs. 24 and 20

Ft, (0)[1-l/rIc4,,(O) = T,. (25)

The core concentration must be somewhat greater than the concentration in
descending flow at a given position along the membrane separating the two flows,
if water is to move by osmosis from descending flow to core. The average difference
Ac must be large enough so that

-F4v(0) = hl4,,L&c, (26)

where hH4,, is the hydraulic permeability per unit length of the membrane separating
descending flow and the core.
A rough estimate ofAc can be obtained if we assume clMf (x) -C4M (x) is the same

order of magnitude everywhere, then

C4M(0) _ C1-M(0) + AC, (27)

and substitution of Eq. 27 into Eq. 20 gives

hl4,.L&c[clM (0) + AdC _ TM, (28)
whence

Ac -TjM/[h14.,LClM(0)I, (29)

valid ifAc << clj, (0). It is clear that Eq. 29 is not a very precise quantitative relation,
but it does show that if

TM,/hl4,,L[clM (0)]2 << 1, (30)

then everywhere c,,(x) C4 d4M(X). A more detailed analysis shows that this ap-
proximation improves as x increases from 0 to L, i.e. it is best in the region of
greatest concentration. With this approximation valid, cldM(O) can be substituted
for C4M,(0) in Eq. 25 to give

r = 1/[l - Tm/FlM(O)], (31)

where Fim(O) = Fl,,(O)c, ,(0) is the entering solute load in the descending flow.

BIopHIyscAL JouRNAL VoLuME 13 1973520



Since the essential approximation by which Eq. 31 is derived is the substitution of
FlM (0) for F1,,(O)c4M,(0), and Fljm(0) is smaller than the product for which it is
substituted, the actual concentration ratio will be somewhat smaller than that given
by Eq. 31. It is also clear from Eqs. 20 and 21 that since -F4, (0) is always less than
Fl1(0), if TM exceeds F1m(0), the approximation breaks down very rapidly. Never-
theless, Eq. 31 shows the crucial importance of the ratio of solute transport into the
core to descending solute flow in determining the behavior of central core systems. It
should be noted that in the derivation of Eq. 31 no assumptions whatsoever were
introduced about the origin of the solute TM supplied to the core, only that it was
osmotically active solute without accompanying water. The coupled behavior of
the core and descending flow tube will be the same whether the source is transport
from the ascending flow, solute produced by some chemical reaction, or solute
from some unidentified external reservoir.
The above analysis is easily extended to describe the behavior of the four tube

system (Fig. 3) to which CD and ascending limb have been added. We will suppose
a fraction fu of the total descending flow (CD and DHL flow combined) is with-
drawn from the system at x = L as CD flow, and the remainder (1 -fu) is reflected
by the hairpin bend as AHL flow. We will assume that the membranes separating
descending flow and core remain permeable to water and impermeable to solute,
and that the membrane separating ascending flow and core is impermeable to water
but can transport solute. About the transport we will assume only that a fraction
fT of the solute that enters the ascending flow at x = L is transported into the core
and will assume nothing whatsoever about pump kinetics or back leak or even about
the distribution of the source along the membrane separating ascending flow from
core. We have for the axial solute flow entering the ascending flow tube

-F2 (L) = (1 -fu)Fu (L), (32)

and for transport into the core

Tv= -fTF2M(L). (33)

Since F1l (L) = FlM (0), no solute entering or leaving the descending flow because
of the assumed membrane properties, Eqs. 32 and 33 combine to give

TM = fT ( -fu)FlM (0). (34)

Since no water enters the core from the ascending flow, Eq. 31 remains valid, and
TM from Eq. 34 can be substituted into it to give for the concentration ratio
ClM (L)/clm (0),

r = I/[ -fT(l -fu)]. (35)
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CENTRAL CORE SOLUTE-CYCLING ENGINE

In this section we derive equations for the central core system in a solute cycling
mode of operation. Operationally, this is equivalent to the concentrating system
suggested by Kuhn and Ramel (1959 a, b). Although we retain the central core
in this mode, it serves only as a conduit for the transverse movement of solute and
water, with no axial flow. Thus, there is no return of solution to the systemic circu-
lation. Clearly, in this case, deletion of the central core will not alter the mathe-
matical analysis.

Solute is pumped from AHL to core. Here it raises the concentration slightly.
We suppose the DHL is so highly permeable to solute that there is no water extrac-
tion into the core, and part of the solute pumped from AHL enters the DHL to be
recycled, and the rest enters the CD to raise the concentration of its fluid. At the
loop end the collecting duct flow is F3s (L). This is a fractionfu of the total descend-
ing flow. Thus,

fu = F8s (L)/[F1. (L) + F3, (L)]. (36)

The ascending flow is given by

F21(L) = -(1 -fu)[F1v (L) + F8v (L)]@ (37)

We suppose the AHL is water impermeable; hence,

F2v (X) = F2 (L)* (38)
By our assumption

F4v(x) = 0. (39)
By Eq. 18

Flx(x) + F21(x) + Fs. (x) + F4 (x) = F11(0) + F2t (0) + F3, (0) + F (0). (40)
Therefore, by Eqs. 38 and 39,

Fl1(x) + Fs.(x) = F11(0) + F8,(0) _ Flv + Fs.. (41)

The point of Eq. 41 is that given Eqs. 39 and 38, the details of solute and water
transfer between CD and DHL can be ignored for many purposes.
We have the general relation

JIM(X) + JaM(X) + J4M (X) + J2M(x) = 0. (42)

Under our assumptions, J4M (x) = 0. We will also assume J2,, is constant. Therefore,

J1 (X) + JSM(X) = -J2M (43)
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From Eq. 3 we have

d (FlclM)/dx = -JIM, (44)
and

d (Fs,csm)/dx = -JaM. (45)

Adding Eqs. 44 and 45, introducing the assumption that cim 2, cam, and using
Eqs. 43 and 41 we obtain

[Fi.(O) + F3(O)Jcljm(x) = [F1,(O) + Fa.(O)]clm(O) + J2MX. (46)

For AHL we have the equation

-F2.(O)C2M (X) = -F2a (O)C2M (L) J2M(L- X). (47)

From Eqs. 46 and 47 concentrations are given by

C1M(X) = CIM(O) + J2MX/[F1. + F31], (48)
and

C2M(X) = C2M(L) + JAM(L - x)/F2,. (49)

From Eq. 48 we can write

CiM(L) = CIM (O) + J2ML/[Fiv + F3v]. (50)

From Eqs. 50 and 36 follows

1.. ClM(O) +JML(I1-fu) (!51
ClM(L) Fl,(L)clM(L) 5

Again defining fT = J2mL/[Fl, (L)clM (L)], we obtain from Eq. 51 for the concen-
tration ratio, cI (L)/C1M (O),

r = 1/[1 -fr(l -fM), (52)

which is identical with Eq. 35.
From Eq. 49 we obtain

CIM(L) - C2M (O) = J2ML/FIv, (53)
from which

1 - [C2M(O)/C1M(O)I[C1M (O)/C1M (L)] = fT. (54)

Eq. 54 can be rearranged to give

C2M(O)/cIM(O) = r(I -fT). (55)
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The linear dependence of cim (x) and c2M (x) on distance along the axis of the
system given by Eqs. 48 and 49 depends upon the assumption that the rate of trans-
port of J2m out of the AHL is constant, but the important relations Eqs. 52 and 55
do not. This will be shown in the following section, where they will be derived in a
general way for systems concentrating by combination of solute cycling and water
extraction. Here we will derive them directly.2

Particles in the combined flow of descending limb and CD at the loop can be
classified according to the number of times they have been pumped or recycled.
If leak from descending flow to ascending flow is negligible then the flux of particles
reaching the loop that have never been cycled is [F1,,(O) + F8,(0)]clM(0). Of this
flux a fractionfu leaves the system in the CD final flow and a fraction 1 - fu enters
the ascending limb. Of this, a fraction!f1 is pumped and a fraction 1 -fT leaves in
the outflow of the ascending limb. Thus, the flux of particles reaching the loop that
have been pumped once is

ClM(0)[Flv(0) + Fs,(0)JfT(I- fu).

The total flux of particles reaching the loop in the combined descending flow is
obtained by summing over all cycings, or

Go

[Fl,(O) + F3.(0)]clM(L) E: [Ft,(O) + Fs.(0)]czm(O)fT(I - fu)]. (56)
nO-

This geometric series sums to give

r = ClM(L)/ClM(0) = 1/[l-ffT(l -fu)]. (57)

Since 0 . fT < I and 0 < fu < 1, from Eq. 57 we obtain the limiting relations

r < l/(l-f), (58)
and

r < l/fu. (59)

Total efflux from the ascending limb is easily shown to be

F2,(0)c2M(0)=( -[F,v + Fs,]cl(0 f)(1 f fu) (60)1 fT(Il fu)
From Eq. 60 we obtain

C2M (0)/Cl (0) = (1 -fT)/[l ffr(l fA)], (61)

This derivation was first presented to the Biometrics Society, Atlanta, Georgia, April 1967.
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which immediately reduces to Eq. 55. The above analysis not only gives consider-
able insight into the recycling system, but is of interest because it can be extended
to transient problems (Stephenson, 1968, 1969).

Eqs. 52 and 55 are essentially mass balance relations. They remain valid for
mixed operation central core systems in which concentration results from com-
bined solute cycling and water extraction. These systems will be discussed in the
following section.

MIXED OPERATION CENTRAL CORE ENGINES

In the system analyzed in this section, the configuration remains the same with
three flow tubes grouped around the central core (Figs. 3 and 4). The system is
fully connected in that every flow tube is in contact with every other flow tube. As
we noted above, four is the maximum number of tubes that can be in mutual con-
tact along their entire length. The membranes bounding the ascending limb are
water impermeable; otherwise solute and water transport can occur across all mem-
branes, permitting concentration to occur by a mixture of solute cycling and water
extraction.
The equations describing solute flow in the system are (see Eq. 3)

dFim/dx= Jim (i = 1, 2, 3, 4), (62)

with the subscripting convention descending limb, 1; ascending limb,[2; with-
drawal tube, 3; and core, 4. Adding Eqs. 62 for i = 1, 3, 4; we obtain

d(Fm+ Fm+ F4M)/dx = -(Jim + Jsm +J4m). (63)

We again assume the hydraulic permeabilities of the membranes separating de-
scending flows from the core are sufficiently large that

C1m C!gE C g, (64)

and that axial diffusion can be neglected so that

FPM = F,.c,M . (65)

Eq. 65 is a good approximation except in the central core where it represents a
highly idealized situation, which is, however, an important limiting case. From
Eq. 18 and the boundary conditions F1,(L)= -F2, (L) and F4, (L) = 0 we have,

i-4 i-4

Fi, (X) = ,F (L) = F8 (L). (66)

No water enters or leaves the ascending limb; hence,

F2.(x) = -F11(L). (67)
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From Eqs. 66 and 67 we obtain the important relation,

Fl.(x) + F8a (x) + F4v(x) = Fl.(L) + F3s(L). (68)

Substitution of Eq. 65 into Eq. 63 and utilization of Eqs. 64, 65, and 68 gives the
fundamental differential equation

[F1i,(L) + F3,(L)](dc4M/dx) = J2M. (69)

From Eqs. 62,r65, and 67 we obtain for the concentration in the ascending limb
the equation

Fl. (L) (dc2M/dx) = J2M. (70)

Together Eqs. 69 and 70 determine concentrations in all flow tubes, provided mem-
brane permeabilities are such that Eqs. 64 and 67 are satisfied.8 Although derived
here for single solute systems, Eqs. 69 and 70 remain valid for total solute concen-
tration in multisolute systems. It should be noted that F1, (L) and F8,(L) may or
may not be given as boundary conditions. If not given, they are parameters of inte-
gration which must be adjusted so that the given boundary conditions are satisfied.
This adjustment can give a seemingly trivial problem a Gorgonian head.
From Eqs. 69 and 70 we obtain the relation between c2 and C4M,

dc4M/dc2M = F1 (L)/[F1 (L) + Fs (L)]; (71)

this has the integrated form

C4M(X2) - C4M(Xl) = (1 -fU)[C2M (X2) C2M(Xl)], (72)

where x2 and xi are arbitrary positions along the axis andfu is as defined above.
Integration of Eq. 69 gives

[F1,(L) + Fs,(L)I[c4(x) - C4(0)I = f J2Y dx. (73)

From Eq. 73 we derive

[Ft,(L) + Fv (L)]C4M (L)[1- l/r] = T2M, (74)

which yields

r =1(75)1 - T2M/[FlM(L) + Fs3(L)] (

FormaBly Eqs. 69 and 70 are identical with the differential equations for a single loop system with
descending flow F,,(L) + F,(L) and ascending flow - F19(L).
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In Eqs. 74 and 75
,L

T2M = J , dx, (76)

is net total transport out of the ascending limb; also in these equations by Eq. 64
we have r = c4M(L)/c4M(O) = clM(L)/C1M(O) = cam(L)/caM(O) and FlM(L) =
Fl,,(L)clM(L) = Fl,,(L)c4M(L), with similar relations for FIM(L).

Integration of Eq. 62 gives

Flm(L) = Flm(0) - Ti, FIm (L) = F8m(0) - Tam, (77)

where TIM and T3M are net total transport integrals given by

L rL
TiM = f J1M dx, TsM = Jam dx. (78)

Substitution of Fim(L) and FIM(L) from Eq. 77 into Eq. 75 gives for the concen-
tration ratio

r - T2M/[FlM(0) - TiM + FM(0) - TsM]] (79

Eq. 79 is the fundamental mass balance equation for central core systems. It
requires modification to account for diffusive loss of solute and other dissipative
effects, but it manifests the basic role ployed by transport out of the various flow
tubes. Although it has been derived for single solute systems, it remains valid for
total solute balance in multisolute systems. It can, of course, be derived from overall
mass balance by an extension of the analysis of the preceding section. It should be
remembered that the transport integrals TiM, T2m , and TIm are net total solute
transport out of descending limb, ascending limb, and the tube corresponding to
CD. By our sign convention FlM(0) > 0 and FEM (0) > 0, and physically Tim and
TIM must be less than the entering solute flow. Therefore, [F1M(O) - TiM +
Fs,, (0) - TIm] > 0. Thus, for the system to concentrate, i.e. r > 1, T2m must be
positive; if T2M = 0, r = 1, and if T2m < 0, r < 1. If T2m is positive it must be less
than FIM(L), therefore T2M/[F1M(0) - Tim + Fam(0) - TIM] < 1. If T2M is fixed at

some positive value, then transport out of either descending flow, i.e. Ti M> 0, or
T3M > 0, will decrease the sum of the bracketed terms and increase r. Conversely,
transport into either descending flow will decrease r. Specifically, if a fraction fc
of the solute transported out of the ascending flow enters the descending limb to
be recycled, there being no other solute transport into or out of the descending
limb so that T1M = -fcT2m; the concentration ratio will be given by

r I ( 80)I - T2m/[Fm(0) + fc T2M + Fsm(°) - T3]
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If T2J is fixed [it is assumed that F1m (0) and Fs. (L) remain constant], then as fo
increases from 0 to 1 in Eq. 80, r will decrease monotonically. As fc increases,
however, T2,M can also increase as long as it satisfies T2M < F,, (0) + fcT2m. If
T2m does not remain constant but increases toward its limiting value Flu/[1 - fcl,
then the concentration ratio will increase toward the limit given by

r1um =

1(81__ _ __ _ _ __ _ _ __ _ _

1 -1/[l + (1 - fc)F3s(L)/Fi,,(0)] (81)

This limit clearly increases as fe increases. Depending then on the concomitant
change in T2M, an increase in the recycling fraction may increase or decrease the
concentration ratio, or leave it unchanged.

CANONICAL MASS BALANCE EQUATION

To cast the mass balance Eq. 75 into canonical form we define the withdrawal frac-
tionffu by

fu = F3,(L)/[F11(L) + Fav(L)], (82)

and the fractional transportfT by

fT = T2W/F1 (L). (83)

From Eq. 82 by Eqs. 64 and 65 we obtain

1 -fu = Fljg(L)/[Fzv(L) + F3.u(L)]. (84)

Substituting from Eqs. 83 and 84 into Eq. 75 gives the dimensionless equation for
the concentration ratio

r = /[l -fr(l -fu)]. (85)

This equation is identical with Eqs. 35 and 52. It is the characteristic operating
equation for a central core engine.
The characteristic equation determines a surface which we will call the operating

surface or characteristic surface of the central core engine. Any triple (r,fT ,ffu) must
lie on this surface, and given any two of the variables, the third can be found.
The portion of the surface determined by Eq. 85 in which we are interested is

restricted by the domain of physical definition offu and fy, namely 0 S fu < I
and fr < 1. We will only consider the concentrating engine so that fT is further
restricted to the domain 0 S fT < 1. In the specified domain it can be seen that
1 < r < oo. The various partial derivatives are of interest. These are:

[Or/cfrTfIU = r2(l Uf), (86)
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[(r/afu],T = -rifT,(

[OfT/afuI? = fT/21 -fu)) (88)

Thus in the specified domain offu and fT, (Or/OfT) > 0, except forfu= 1, when
r = I and (cr/OfT) =0, and (cr/cfu) is negative except for fT = 0, when again
r = 1 and (cr/cfu) = 0. The derivative (cfT/%fu),. is positive, which means that if
the withdrawal fu increases there must be a compensatory increase in fT if r is to
remain constant. From Eq. 86 (or by inspection from Eq. 85) it is clear that for
given fu the maximum limit for the concentration ratio is found by setting fT =
in Eq. 85; thus,

r < l/fu. (89)

Similarly for given fT, the limit is given byfu = 0, when

r < I/(I -fT). (90)

If both fT = 1 andfu = 0, r is not defined, r becoming arbitrarily large iffT --+1
andfu -O 0 simultaneously. Precisely, if 1 - fT + fu < e, then r> l/e.

In Fig. 8, the concentration ratio is plotted as a function offT for various values
offu. These plots are, of course, identical with those for r as a function of (I - fu)

10

FGURE 8 Concentration ratio r plotted against fractional transport fT for different values
of fractional urine flowfu .
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for different values of 1 - fT, because of the obvious symmetry of Eq. 85 with
respect to fT and 1 - fu. A different projection of the operating surface is ob-
tained by rearranging Eq. 85 to the form

(r - l)/r = f(l -fu). (91 )

From Eq. 91 we obtain the important limiting relations

1- l/r< fT 1, (92)
and

0 <fu < lr. (93)

In Fig. 9 the transport fraction fT is plotted against fu for several values of r. In
utilizing the characteristic surface for the analysis of central core engines it should
be realized that if one of the variables, sayfu, changes, in general both of the others
will change, and the operating path followed by the system will not lie in a plane
parallel to one of the coordinate planes but will be some skew curve lying on the
characteristic surface. Hence, none of the plane curves plotted in' Figs. 8 and 9
would be a projection of an operating curve under most circumstances. The analysis
given in this section applies with slight modification to multisolute systems and
systems in which there is dissipative loss of solute from the central core.

fT

o.s

0 0.5
fu

FIGURE 9 Fractional transport rate plotted against fractional urine flow for different values
of the concentration ratio. This gives another projection of the characteristic surface.
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CONCENTRATION PROFILES

In order to integrate Eqs. 69 and 70 and so obtain c2v and C4M - C1M - C3m as func-
tions of x, the net outward solute flux J2M must be known as a function of CIM,
C2M, CaM, and C4M. If it is, solution by quadrature is always possible as we will
show below, but certain qualitative features of the concentration profiles can be
deduced without actually carrying out the quadrature. If J2M > 0 for all x, then
Eqs. 69 and 70 show that all concentrations increase monotonically with x. If
J2M = 0, the concentration gradients in all flows equal 0, and if J2M < 0, then
dci./dx < 0, for all i and all x.
Of considerable interest is the concentration difference between ascending flow

and the core and descending flows, because this determines the chemical potential
difference against which solute must be transported in a single solute system. From
Eq. 72

C2M(L) -C2M(X) _ 1(94
C4M(L) -C4M(X) 1 fU

Subtracting 1 from both sides of Eq. 94 and using the boundary condition C2M (L) =
CiM(L) _ C4M(L) gives us

C4M(X) - C2M(X) fu (95
C4M(L) - C4M(X) 1 fu (

Integration of Eq. 69 to give c4,m (L) -C4M (x) and substitution into Eq. 95 yields

L

fu L J2MdX (96)
C4M(X) - C2M(X) =

1 -fu Fiv(L) + F3v(L)

By our assumptionsfu/{ (1 - fu)[Fi, (L) + F3, (L)]I is positive, therefore, C4M(x) -
c2M(x) has the sign of CL J2M dx. If J2M > 0 for all x, then C4M(X) -C2m(X) de-
creases monotonically from its maximum value

C4M(O) - C2JM(0) = fUfTrC4M(0), (97)

at x = 0 toO at x = L. Iffu = 0, i.e. if there is no withdrawal of concentrated solu-
tion from the system, then we have C2M (x) = C4M(x) everywhere. From Eq. 97 we
obtain

C2M(0)/C4m(0) = r(l -fT) = (1 -rfu)/ (1 fu)

= 1 - rfufT, (98)

frequently used relations.
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To integrate Eqs. 69 and 70, let J2m be a known function of the concentrations,
but not an explicit function of x, i.e.,

J2M = *(C1M, C2M X C3M I C4). (99)

Then by Eq. 64

=M (C2M, C4M). (100)

By Eq. 94 one of C2M or cu, can be eliminated from Eq. 100, e.g.,

C4M(X) = (1 -fu)c2m(x) + fuc4M(L). (101)

We then have from Eqs. 100, 101, and 70

F11(L) dc2M d,(12
O[C2M, (1-U)C2M +fUc4M(L)] = (102)

from which

x = F1(L) dc2m ( 103)

where i is a function only of c2M(x), but contains the parameters of integrationfu
and C4Y(L), which may not be given.
For certain cases of interest Eq. 103 can be integrated analytically. The first is

for 0 constant. This is a useful approximation if J2Mv does not vary too greatly with
distance along the axis of the system. Then we can take 0 to be the mean value of
JUl or

rL
0 = j2 dx/L. (104)

Then from Eq. 103

C2M,(X) = C2M(0) + Ox/F1,(L), (105)

and

C4M(X) = cu,(O) + ox/[Fl. (L) + Fs. (L)J. (106)

Eqs. 105 and 106 show that for a constant source J2M the concentration in all
flow tubes increases linearly from cortex to papilla.
A second case that can be integrated explicitly is when solute is actively trans-

ported from ascending limb to core. We will suppose the "pump" obeys approxi-
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mate Michaelis-Menten kinetics and back leak is by passive diffusion. Then

a
J2M + bc2 -hM(c4m-c2m), (107)

where a is the maximum rate of the active transport, b is the Michaelis constant,
and hM is the permeability per unit length of the ascending limb. Substituting C4M
from Eq. 101 into Eq. 107 gives

a
= 1 + b/c2,,,(x) -fu hM[c4M(L) - c2m(x)]. (108)

If the pump is saturated

* = a -fuhm[c4 (L) C2m(X) (109)

Substitution of Eq. 109 into Eq. 103 gives after integration the solution

x F-oBL In A + BC2m(x) 1
B A + Bc2(O) '(110)

where A = a- fuhc4M (L), and B = fuhMv. From Eq. 110 we obtain

[A + BC2M(0)J = a.exp[-BL/F11(L)], (111)

and from Eqs. 110 and 111

C2M(X) = C4M(L) - (a/B){ I - exp[-B(L -x)/F1 (L)]}. (112)

From Eqs. 112 and 101 we obtain

C4M(X) = C4M(L) - (1 -fu) (a/B) { -exp[-B(L - x)/F1 (L)] *. (113)

From Eq. 112 we obtain

C4M(L) - c2m(0) = (a/B){ 1 - exp[-BL/F1.(L)JJ. (114)

Multiplication of both sides of Eq. 114 by F1, (L) gives

rL
J2m dx = Fi.(L)(a/B)I1 - exp [-BL/F1,(L)I1. ( 115)

From Eq. 115 the fractional transport out of the ascending limb is
L

fT= LJIM dxhM ac(L) {f u epL (]116)f Fi,(L)c2,(L) =fu h 2() ep FrL
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From Eq. 116 it follows that as fUh, -- 0, fT -->aL/Fl,c2I (L), this will occur if
eitherfu -*0 or hM -*0. It is obvious that if hM = 0 there will be no back leak, but
that the effect of back leak also depends on fu may at first glance seem strange.
The reader will recall, however, that the difference C4M(x) -C2m (x) goes to zero
for all x as fu -* 0. Thus, the leak becomes inoperative. A quantitative description
of the effect of back leak is obtained by defining the dimensionless factor

,y = fuhML/FlV (L), ( 117 )
then

SZ1D(L)C2M(L) (11

As -y goes from 0 to oo, the factor (1 - e-)/'y goes from 1 to 0. The total solute
pumped out of the ascending limb is aL. Of this the net fraction

fL = (-y - 1 + e&D)/y, (119)

leaks back to leave the system via the ascending limb. The concentration ratio is
given by

r = 1/[1 - (1 -fu)fT (I -fL)y, (120)

where fT° = aL/[Fl. (L)c2M(L)] is the fractional transport with no back leak; fL is
plotted as a function of -y in Fig. 10.

100 5
7

FIGURE 10 Fractional back leak plotted against the dimensionless parameter y (see text).
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If the pump is far from saturation, b/c2m(x) >> 1 and flux out of the ascending
limb is given by

0 = (a/b)c2m(x) -fuhM[c4M(L) - C2M(X)], (121)

again explicit integration is possible after substituting Eq. 121 into Eq. 103 and
again

x = F1,,(L) InA + Bc2m(x)12
. )lnA+Bc2M() '(122)

where now

A = -fuhMcwM(L), (123)

and

B = [a/b + fuhm]. (124)

In an analysis that differs only in details from that for the saturated system we find

C2M(x) = (a/b) c4(L) [x B(L - x)1 +fu hm C4M(L) 12
B P L F1(L)J B (1 )

and

C4M(X) = C4-)(L)( - fu) (a/b) exp B(L -x)]

+ [(1-fu)fu hm+fu]}. ( 126)

From Eqs. 125 and 126 we derive

C4M(L) 1 27

C4M(0) fu + (I - fu) (a/b) exp [-BL/FI,(L)] + fu hm,/B' (12)

which gives the canonical form

r = l/[l - (1I-u)fTI,

with

fT = 1 - (fuhM/B) - [a/ (bB)] exp [-BL/F1 (L)1. (128)

Eq. 128 reduces to

fT = yo[l- exp (-'y)]/y, (129)
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where

= [a/b + fuhM]L/Fl (L), (130)

and

0= (a!b)L/F1, (L).

For fuhM = 0 we have

fro= 1-exp (--yo). (131)
In the general case, when flux out of the ascending limb is given by

a

=1 + b/c2(x) -Sfu hz[c4M(L) - c2m(x)], (132)

integration gives

2BL X In J[c2M(x)]2 + dc2.M(x) + e
F1i (L) L [C2M(o)]2 + dc2M(O) + e J

2b - d [ i/2c(x) + d -q'
q112 I2c2M(x) + d + q1/2

J2C2/M(0) + d - q+l2-In '2c2m(O) + d+ ql}JJ (133)

where B = fuhX, d = a/B + b - c4,(L), e = -bc411(L), and q = -t 4e. Al-
though Eq. 133 is of some computational use it cannot be inverted to give c2, (x)
as an explicit function of x. When hm = 0, we obtain the limiting expression from
Eqs. 132 and 103

ax/F1. (L) = C2 (X) - c2m(0) + b ln [c2m(x)c2 (0)]. (134)

From this, using the relation

c4,(0) = (1 -fU)c2M,(0) +fuc4M(L), (135)

or

C2M(0)/C4M(0) = (1- rfu)/(l-fu), (136)

we derive

aL = C4M(L) - c4M(O) 1_fv + b ln {r(i f ) (137)F11v1(L) ifu I rfJ
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= I - lfI + crf b { _(1- fu.21 (I1 fu)r +C4M(L) 1- rfuJ7 ( 138 )

wheref =_ aL/[F,i, (L)c4Mv (L)], i.e.,f m is the fractional transport out of the ascend-
ing limb at saturation. Eq. 138 gives the recursive relation for computing r.

r = 1/[1 -fT(lO-fu)I,

fT =fm [b/c4M(L)I log [r(l -fu)/(l rfu)]J

(139)

(140)

It is clear that the number of possible cases is limitless. In Fig. 11, we have plotted
concentration profiles for saturated, unsaturated, and partly saturated pump, with
no back leak. In all cases, r = 10 andfu = 0.05.
The discerning reader will have noted that the above equations contain F1, (L)

and F$,, (L) as parameters of integration. If these and c4M (L) = c2m (L) are given,
the problem is a straightforward initial value problem, and c4M (0) and c2M (0) can

be computed from any of the variants of Eqs. 101 and 103, e.g., from Eqs. 134 and
135 given a and b. In some cases it is useful to look at the problem from this point

0.5

MEDULLARY DEPTH

FoGURE I1 Concentration profile for different degrees of pump saturation and no back
leak: b = 0 corresponds to saturation, b = S to half-saturation, and b = X to unsaturation;
fu = 0.05 for all cases.
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of view, but it should be noted that Flv (0) and F3, (0) cannot be computed without
introducing more information into the problem. More typically Fl, (0),F3, (0), and
C1M(0) = C3M(0) -- c4M (0) are given together with the additional boundary condi-
tions F2,(L) = -Fl,(L), c2M(L) c4m(L), and F4, (L) = 0. To be found are

C2M(L) = Clm(L) f c4M(L), c2M(O), F11(L), and F3,(L). To solve this problem addi-
tional integrals are needed. To obtain these the details of transport from DHL and
CD into the central core must be taken into account. We illustrate with a relatively
simple example: a detailed analysis is in preparation. Let transport out of the ascend-
ing limb be given by

J2M = a/[1 + b/c2M(x)J, (141 a)

J2V= 0, (141 b)

transport out of the descending limb by

Jim = hL4,M (CiM -C4M), (142)

JV= h14,,v (C4M - C1M), (143 )

transport out of the CD by

J3M = 0. (144)

Integration of Eq. 3 for the CD gives by Eq. 144

F3M = F,,(x)c3M(x) = F31(O)c3M(O). (145)

From Eq. 145 by Eq. 64

F3a,(x) = F3V(O)C3,M(O)/C4M(X). (146)

From Eqs. 142 and 143 we obtain

d (Fl,clm)/dFl, = -hl4,m/hl4,v. (147)

Thus,

FI,,(L)clM(L) - Fl,(O)c1M(O) = (-h14,M/hL4,,)[Fl,(L) -F11,(O)]. (148 )

Eqs. 142 and 143 essentially assume the reflection coefficient for DHL is 1. Reflection
coefficients less than 1 are considered in the detailed discussion. Eq. 146 gives

F3V(L) = F3V (O)c3m(O)/c4M(L) = F31,(O)/r. (149)
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From Eq. 148 we obtain

F1v(L) = (g + 1)F (0)/ (g + r), (150)

where

g h14,M/[hu4,,ClM(0)I (151)

Substitution of Eqs. 149 and 150 into Eq. 82 gives

fu = r(g + (g + r)F3.(0) 152)ur(g + )F1,(O) + (g + r)F3,(O)

Substitution of Eqs. 149, 150, and 152 into the various expressions derived above
for concentrations in the core and ascending limb lead to equations that can be
solved for r. For example, if we assume a completely saturated pump and no back
leak, then from Eq. 109, b = a, and from Eq. 106

r = 1 + aL/{ C4M (0)[F,(L) + F3,(L)]}. (153)

Substituting from Eqs. 149 and 150 we obtain

r = I + aL/C4M(0) LFar() + (g + ()Fl, ( 154)

Eq. 154 reduces to a quadratic that can be solved to give r, and hence Fl, (L) and
F3, (L), as functions of a, L, C4M (0), F1, (0), F3, (0), and g. Substitution of the values
of Fl, (L) and F3, (L) so determined back into Eqs. 105 and 106 leads to a solution
in terms of the boundary conditions and the membrane parameters.
The dependence of the solution of Eq. 154 on g can be determined by rearranging

Eq. 154 to give

1 = C4M(0) [ F3,(0) + F1(0) 1. (155)
aL I1 + 1/(r - 1) 1/(g + 1) + 1/(r- 1)

It can be seen by inspection that Eq. 155 has a positive root r > 1 provided

C4M(O)[F3,(0) + (g + l)F1,(0)] > aL, (156)

and that this root decreases as g increases. Since solute cycling increases as g in-
creases we again conclude that for a completely saturated pump the concentration
ratio decreases with an increase in solute cycling.
As an another example, we will assume that the pump is unsaturated and there is

no back leak; Eq. 137 then applies. For the simplified casefu = 0, after substitution
from Eq. 150 and rearrangement using the identity (g + r)/ (g + 1) = 1 + (r - 1)/
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(g + 1), we obtain

aL/A = (r - 1) [I -A(g+ 1) + [b/cIM(0)] In [1 + (r - 1)], (157)

where we have made the substitution A = F1, (O)c,m(0). From Eq. 148 we have

Fl,(L)clw(L) < (g+ 1)A (158)

from which it follows that

aL<Fl,(L)clim(L) < (g+ l)A. (159)

The right-hand side of Eq. 157 equals 0 for r = 1, and with Eq. 159 satisfied in-
creases monotonically with r for r > 1. Hence Eq. 157 has one real positive root
greater than 1. Differentiation of Eq. 157 gives

Or_ aL ~~~~~I/F - ~ + b 1603)
ag ( ) A(g + 1)2/U[ A(g + 1)J rclM(O))'

from which it follows that in this case also r decreases as g increases. Again substi-
tution of r, as determined by solving Eq. 157, into Eq. 150, leads to a solution of Eq.
134 for core and ascending limb concentrations, which are equal in this case. If
fu $ 0 or if there is back leak into the ascending limb, the analysis becomes much
more complicated and is deferred to a subsequent paper.

ENERGY REQUIREMENTS FOR CONCENTRATION

In a single solute central core engine the inflows into the descending limb and CD
are separated into three outflows: that from the central core, that from the ascend-
ing limb, and that from the CD. By our assumptions the two inflows and the core
outflow are isosmolar. The outflow of the CD is relatively concentrated, and that of
the ascending limb is relatively dilute.
The following calculation shows that there is a net increase in the Gibbs free

energy of a unit of outflow over the free energy of a unit of inflow. In dilute solutions
the chemical potential of a solute is

A= Ao + RT I c, (161)

where R is the gas constant, T the absolute temperature, and ,u° a constant for given
temperature and pressure. The total free energy inflow per unit time is

=in= F1jK(0)[A4 + RT ln clm(0)] + FIvM(0)[uo + RT ln cam(0)]. (162)

The free energy of the outflow per unit time is

Gout= -F4m(0)uo + RT ln c4m (0)]- F2M(0)(U + RT In c2m(0)]

+ F3Jm (L)IIp+ RTlncsM (L)I. (163)
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From Eqs. 162, 163, and 64 we obtain for Ao = out-Gin

AG = RTfF8m (L) In CsM(L) - F2M(0) In C2M(0) - [Fi (0) + Fsm (0)

+ Fw,(0)] tn c4M(0)). (164)
Using the mass balance relation

F1,M(0) + Fs3M(0) + F2M(0) + F4 (0) = F8M,(L), (165)

we can write Eq. 164

Ad = RT{FaM(L) ln [c3M(L)/C1M (0)] + F2M(0) In [cim(0)/c2m (0)]}, (166)

from which we derive by Eqs. 98, 82, and 83

AO = RTIFlM(L) + Fsm (L)]Ifu ln r + (I-fu) (1 -fT)ln [r (1 -f )I. (167)
From Eq. 167 we obtain, using the relation

r ( -fT ) = (1 - rfu)/ (I fu), (168)

Ad = RT[FlM(L) + F3m(L)]{ (ln r)/r + [(l/r) - fu] In (1 - fT)I. (169)

Iffu = 0, then we have r = 1/ (1 - fT), and it follows from Eq. 169 thatAO = 0.
Differentiation of Eq. 169 with respect tofu gives

[da'&1fu]r = RT[FlM(L) + F,M(L)]

{In ( 1 fX) l - ffr)Y.) } (170)

which by Eq. 88 reduces to

[IAo/OfuI7 = RT[FIm (L) + Fam (L)]{-fT- log (1 -1f')) (171)
Eq. 171 shows that for fixed r, AO increases monotonically from 0 to the maximum
RT[FlM (L) + Fai (L)] (In r)/r asfu increases from 0 to llr.

It is clear that to effect this increase in the free energy of the outflow over the
inflow requires that work be supplied from some external source. In the system we
are considering this work is used to transport solute out of the ascending limb into
the central core. At a given position x along the membrane separating ascending
limb and core, this transport is against a chemical potential difference RT-
to [c4, (X)/C2m (x)]. Since the solute transported per unit length is J2M (x). the mini-
mum total work required per unit time for membrane transport is

AW = RT f J2.(x) In [c4u(x)/c2M(x)I dx. (172)
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From Eq. 69 we have

J2m(x)dx = (F11 (L) + F3 (L)] dc4m. (173)

and

J2M(X) dx = F1,,(L) dC2M. (174)

The variable of integration in Eq. 172 can be changed by Eqs. 173 and 174 to give

AW = RT{[Fi,(L) + F3v(L)]

{C4MU(L) XC4M(L)
.J CMl) In C4M dC4M- F1v(L)IJn c2m dc2w (175)
C4M(O) c2M()MJ

Carrying out the integration in Eq. 175 and using the mass balance relation

[F1v (L) + Fsv (L)]c4M (O) = F3. (L)c4M (L) + FI, (L)c2M (0), (176)

we obtain

AW = RT{F31(L)c4,M(L) ln [c4m(L)/c4m(O)] - Fl,(L)c2m(O) ln [c4m(O)/c2m(O)I},

(177)

which reduces to Eq. 166. Hence, we have AO = AW, or the minimum energy re-
quired per unit of time to effect the membrane transport exactly equal to the Gibbs
free energy difference between outflow and inflow per unit time.

Subsequently, this result will be generalized to include dissipative terms and more
than one solute. Its immediate significance in single solute systems is that it shows
that there is no basic thermodynamic difference between solute cycling and water
extracting modes of operation. The result, of course, says nothing about the effi-
ciency with which metabolic energy is coupled to the membrane transport.

Computation of the minimum energy requirement for a given segment requires
the solution of the differential equations describing the system to give c2m (x) and
C4M(x). These are then substituted in the expression for J2m[c2M(x), C4m (x)]. In
Fig. 12 minimum energy requirements are plotted for saturated, unsaturated, and
and partly saturated pump with no leak. Back leak, of course, increases the meta-
bolic energy which must be supplied [by the factor 'y/(1 -e)] in the saturated
pump, but AW as calculated by Eq. 172 still equals Ad exactly. The most striking
feature of the plots is the sharp decrease in energy requirements as x -- L, which
reflects the fact that irrespective of the mechanism of transport, C4M (X)/C2M (x) - 1
as x -- L.
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DISCUSSION

The representation of the renal medulla by an ideal single solute central core engine
clearly has limitations. It does, however, make manifest certain features of the
system that are obscured by the mathematical details of models that include the
effects of several solutes, vascular washout, and finite permeabilities.
The relation (Eq. 79) showing the effects of solute transport out of ascending

limb, descending limb, and CD remains valid for total solute transport in multi-
solute systems. Eq. 91, which shows that bothfT and 1 - fu must be between 1 and
(r - 1)/r, remains valid in multisolute systems and applies with slight modifica-
tion to systems in which there is dissipative loss of solute from the central core be-
cause of inefficiency of the vascular exchanger.
The decrease in the ratio of core osmolality to ascending limb osmolality from

(1 - fu)/ (1 - rfu) at the corticomedullary border to 1 at the papilla also remains
valid in multisolute systems although no such generalization is possible about the
ratio of individual solutes. It does, however, remain true that the energetic require-
ments of the inner medulla, for a given amount of solute transport, are much less
than for the outer medulla.
The ideal single solute central core system has the same theoretical thermody-

namic efficiency irrespective of the fraction of solute which is recycled in that
RT f0 J2M ln [C4M(X)/C2M(x)] dx always exactly equals AO, the increase in Gibbs
free energy of outflow over inflow per unit time. Since it has been assumed that
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C4M(x) = C1m (x) = c3, (x), transport between core and descending limb or be-
tween core and CD does not contribute to AG. In a nonideal system in which
C4M(X) > Clf(X), a dissipative term is introduced by solute recycling and by water
movement. The theoretical efficiency of various systems depends on the exact nature
of these dissipative terms and will be discussed in a later paper.

It will be noted that the relation between the surface transport integrals and
AG says nothing about the efficiency with which metabolic energy can be coupled
to the transport. Neither does it indicate that when back leak is introduced, dis-
sipative loss of energy may occur. This solute leaking back is totally dissipative.
For the saturated pump, the metabolic energy which must be supplied is
RT a fJ In [C4M(X)/C2JM(X)] dx.
One concept which emerges from the analysis of the single solute system is that

insofar as the vascular exchanger functions ideally and osmolalities in DHL, CD,
and vasa recta are the same and thus, all approximately equal to that of plasma;
the fluid returned by the core to the systemic circulation is isosmolar with plasma
and overall the medulla functions as a segment of proximal tubule. With nonideal
function the medulla returns a slightly hyperosmotic fluid to the systemic circula-
tion. The degree of hypertonicity depends on the efficiency of the exchanger. This
relation will be explored quantitatively in a later paper. It is, however, approxi-
mately true that the excess water or solute in the final urine equals the solute or
water removed by the distal tubule. It might be noted that at least superficially the
central core is the macroscopic analogue of the microscopic long pore of the stand-
ing gradient theory (Diamond and Bossert, 1967).
The wide range over which the central core model can vary in its mode of opera-

tion is possibly its most striking feature. Here, this emerges in the fact that the sys-
tem can concentrate with a recycling fraction ranging from 1 to 0. It seems plausible
that the recycling fraction may vary among species and even in the same individual
under different physiological stresses. This variation in mode of operation of the
central core model appears to be important both as an adaptive and as a regulatory
mechanism.

The author thanks Dr. Robert W. Berliner, who first interested him in the renal counterflow system,
for his encouragement; Dr. John Z. Hearon for useful discussions on the mathematical details;
Doctors Jack Orloff and Maurice Burg for discussion of experimental data; and Dr. Elizabeth W.
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