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ABSTRACT different functions of the mammalian nucleus. More recently,

however, it has become clear that Sp1 is not the only transcription
factor binding and acting through these elements. It simply
represents the first identified and cloned protein of a new and
still growing family of transcription factors. Family members

One of the most common regulatory elements is the
GC box and the related GT/CACC box, which are
widely distributed in promoters, enhancers and locus

control regions of housekeeping as well as tissue- contain a highly conserved DNA-binding domain consisting of
specific genes. For long it was generally thought that three zinc fingers. Currently this family of transcription factors
Spl is the major factor acting through these motifs. comprises at least 16 different mammalian members (Fig. 1).
Recent discoveries have shown that Sp1 is only one Accordingly, our view on Sp1 recognition elements as well as
of many transcription factors binding and acting Spl itself has changed dramatically. The identification of all
through these elements. Sp1 simply represents the thesg transcription f:_actors.binding to Sp1 sites raisgs the question
first identified and cloned protein of a family of tran- that is central to this review: what are the functions of these

scription factors characterised by a highly conserved proteins?

DNA-binding domain consisting of three zinc fingers.
Currently this new family of transcription factors has THE ZINC FINGER REGION DEFINES THE FAMILY

at least 16 different mammalian members. Here, we The 81 amino acid DNA-binding domain that is found close to

will summarise and discuss recent advances that have the C-termini of all members essentially defines the Sp/XKLF
been directed towards understanding the biological family of transcription factors. It consists of three C2H2-type
role of these proteins. zinc fingers arranged similar to those found in tesophila

melanogasteregulator protein Krippel. Accordingly, some of
the proteins have been named Kriippel-like factors. The striking
INTRODUCTION similarity of the linker amino acids between the individual
G-rich elements such as GC (GGGGCGGGG) and GT/CACGingers as well as the identical length of the DNA-binding
boxes (GGTGTGGGG) are importardis-acting elements domain strongly suggest that the higher order structure of the
required for the appropriate expression of housekeeping dhree fingers is crucial for the biological function of the pro-
well as many tissue-specific and viral genes. These motifs hawteins (Fig. 2). Structural studies on zinc finger peptides bound
been found and functionally analysed in promoters, enhancete DNA have provided information that allows predictions on
and locus control regions (LCRs) of genes that are undethe DNA sequence recognised by finger domains. The amino
different modes of control, such as cell cycle regulationacids of the Spl zinc fingers that are most likely to make specific
hormonal activation and developmental patterning. Moreoveicontacts with the DNA are the amino acids KHA within the
GC/GT boxes are commonly found in promoters embedded ifirst, RER within the second and RHK within the third zinc
CpG-rich methylation-free islands. Maintenance of the approfinger domain (Fig. 2). These critical amino acids are conserved
priate methylation patterns is essential for normal developmerih Sp3, Sp4, BTEB1, TIEG1 and TIEG2 proteins (Fig. 2). Con-
(2). It has been shown for the APRT gene that the GC/GBistent with this conservation, Sp3, Sp4, BTEB1 and TIEG2
motifs are required to maintain the methylation-free active statusecognise classical Spl-binding sites (5-7). In addition, the
of the gene (2,3). relative affinity for the GC box is very similar, if not identical,
For long it has been known that the general transcriptioetween these proteins (5,6). GT or CACCC boxes are also
factor Spl (named according to the original purificationrecognised by these proteins but with slightly lower affinities
scheme that includedephacryl and posphocellulose columns) (5). In Sp2, a leucine residue replaces the critical histidine residue
(4) can bind and act through GC/GT boxes, and Sp1 was therefongthin the first zinc finger (Fig. 2). Although not studied in
thought to be an extremely versatile protein essential for mangtetail, it was shown that Sp2 does not bind to the classical Sp1
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members by a leucine (Fig. 2). Thus, one would expect slight
differences in the DNA-binding site preferences of the
members of this subfamily. In agreement with this structural
determinant it was shown that EKLF, UKLF and BKLF have a

binding preference for GT boxes over classical GC boxes (9-12).

_@ NOMENCLATURE AND CLASSIFICATION

- Based on the structural relationships between the proteins
— (Figs 1 and 2), we suggest dividing the Sp/XKLF family into
| BTEB three subgroups: (i) the four Sp transcription factors; (ii) the
- close relatives, which currently consist of BTEB1, TIEG1 and
TIEGZ; (iii) the Kriippel-like factors (XKLFs). The latter sub-

family also includes BTEB2, GBF/ZF9, ZNF741 and AP-2rep.

Features of individual family members are summarised in
— (G Table[].

To date, four Sp genes have been identified in the mammalian

genome. The overall domain structure of these factors is very
similar (Fig. 3). In addition to the highly conserved C-terminal
BTEB1 zinc finger region, they contain glutamine-rich activation
domains flanked by serine/threonine-rich stretches. Their evo-
—{"Sp2 ") lutionary relationship is well documented by the co-localisation of
the four human Sp genes with the four HOX gene clusters on
_‘ — chromosomes 1213 (Sp1/HOX C) (13), 17q21.3—g22 (Sp2/
HOX B) (14), 231 (Sp3/HOX D) (15) and 7p15 (Sp4/HOX
e A) (16). Spl, Sp3 and Sp4 are more closely related to each
Sp1 other than to Sp2. This is especially evident on comparison of

the three zinc fingers, which reveal significant differences
between Sp2 and the other three factors (Fig. 2).

Figure 1. Bhylogenetic iree of the Sp/XKLE iranscription factors. The lree was - A outlined above, in BTEBL, TIEGL and TIEG2 all amino
generated with the ultiple Sequence Alignment Program v.1.7 _ _: ; P _
(June 1997) (90) using the amino acid sequences of the DNA-binding domain%CIdS that are believed to specifically contact the DNA are con

of the Sp/XKLF proteins. served and these proteins consistently recognise the classical
GC box. However, the domains N-terminal to the zinc fingers
do not share any similarity to the Sp factors. BTEBL, originally

GC box but to a GT-rich element in the TCRx\promoter (8). named simply BTEB (hsic ranscription _tement linding

In all the other family members, the DNA-contacting aminoprotein), has been identified and cloned along with rat Sp1 by

acids of the first and second fingers are conserved. In the thingdrtue of its binding to the basal transcriptional element (GA-

finger, however, the critical lysine is replaced in someGAAGGAGGCGTGGCCAAC) of the cytochrome P-4501A1
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Figure 2. Protein sequence alignment of the zinc finger domains of mammalian Sp/XKLF family members. All sequences are human sequences with the exceptic
of LKLF, AP-2rep, BKLF and IKLF, which are of mouse origin. The cysteine and histidine residues that are involved in zinc coordination are in lisgadinto

to the amino acid positions that probably determine the recognition specificity of the fingers by contacting specific bases of the DNA. Bladichies-in
helices;B-sheets are shown as zig-zag lines. The amino acids that are thought to make base contacts are boxed (adapted from 69). Residues conserved betwee
family members are indicated (*).



Table 1. Classification and function of Sp/XKLF proteins
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Factor, Accessionnumbers  Known expression siles Function / knockout phenotype Features / remarks H.chrom.  Ref
Spl H: J03133 Ubiquitous. Knockout: transcriptional activator required for ealy ~ Glutamine-rich transcriptional activation domains.  12q13 (4,13,51,79,
M: AF062566 mouse development and the maintenance of Phosphorylated, glycosylated (O-linked). 80,91-93)
R: D12768 differentiated cells.
Sp2 H: M97190, D28588 Various cell tines. Does not bind to GC-boxes. Full length Sp2 179213922 (B)
Tissues: unknown. recently cloned from myeloblast cell line KG1
D28588.
Sp3 H: X68560 $52144 Ubiquitous. Transcriptional repressor or activator, dependingon  Glutamine-rich transcriptional activation domains.  2q31 (5815374
M: AF062567 promoter context and cell type. KEE sequence required for repressor function. 0.44)
Sp4 H: X68561 §50516 Predominantly in brain; also in Knockout: transcriptional activator required for Glutamine-rich transcriptional activation domains.  7p15.3-p21 (5,16,53,94,
M: U62522 testis, epithelial tissues, developing  murine growth and male reproductive behaviour. Human genomic sequence ACO04595. 95)
R: U07610 (HF-1b) teeth
BTEB1 H: D31716 mRNA: ubiquitous. Positive regulation of AP-2a expression. Bindsto  Protein levels controlled post-transcriptionally. 9q13 a7-
M: Y 14296 Protein: Liver, brain. the Basic Transcription element in the promoter of ~ Up-regulated by thyroid hormone in tadpoles 19,72,96-98)
R: D12769 the rat P-4501A1 gene.
S: US7346
X: U35409
TIEG1 H: U21847; 882439 (EGRa)  H: High in osteoblasts, muscte and ~ TGFf-inducible early protein. Transcriptional Proline-rich N-terminal domain; potential SH3- 8q22.2 (20,22,23,25
M: AF049880 (GCBIPR, pancreas. M.: high in brain, liver, activator. Overexpression induces apoptosis in binding regions. ,74,75,99-
GCBP-23b, GIF, ZF10) heart, kidney, lung and testis. pancreatic epithelial cells; inhibitor of DNA 102)
R: U78875 (CPG20) synthesis
TIEG2 H: AF028008 Ubiquitous, high in pancreas and TGFp-inducible early protein involved in the Homologous to TIEG1 @
muscle. regulation of cel} growth. Repressor.
EKLF H: U65404 Erythroid cells. Knockout: transcriptional activator.essential for the  Proline-rich N-terminal activation domain. 19p13.2 (12,26,43,54
M: M97200 expression of the adult $-globin gene Phosphorylated and acetylated. Human genomic ,55,82,103-
sequence AD000092. 106)
GKLF H: U70663 (EZF) Gut, epithelium, placenta, Growth arrest. Negative regulator of cell divisionin  Downregulated during intestinal tumorigenesis. 9q31 (27,28,107-
M: U20344 (EZF) fibroblasts the gut. Activator/repressor. 110)
LKLF M: U25096 Lung, blood vessels, Knockout: essential for tunica media formation in 19p13.11- -
haematopoietic cells. blood vessels. Required for the survival of resting pl13.13 64,111,112)
Tcells, and possibly for fetal liver haematopoiesis.
ZNF741 H: U28282 Xpl1.21
AP-2rep M: Y 14295 Brain, kidney, liver, lung. Negative regulation of AP-2a expression. (18)
Upregulated during kidney development.
BKLF M: U36340 Ubiquitous, high in brain and Activator / repressor. Knockout: required for murine  Interacts with the co-repressor mCIBP2 (9.38,65)
haematopoietic cells. growth; negative regulator of proliferation of
myeloid cells.
IKLF/ BTEB2 H: D14520 (BTEB2) Placenta, epithelial lining of the High levels in proliferating cells in the intestine (29.33)
M: AF079852 (IKLF) intestine. (mouse). Transcriptional activator.
7ZF9 H: AB017493 (GBF) Ubiquitous; high in liver, Up-regulated during early hepatic fibrosis in rats. Homology with the proto-oncogene Bed 10p15 (34-36,113)
M: AF072403 (CPBP) lymphocytes and placenta. Transcriptional activator. (U51869), on chromosome 10.
R: AF001417 U (ZF9)
UKLF H: AB015132 Ubiquitous. ‘Iranscriptional activator 2432 (10)

Species: H, human; M, mouse; R, rat; S, pig;X&nopus

(CYP1A1) gene promoter (17). More recently, BTEB1 hasnot always restricted to these tissues. Another ubiquitously
also been cloned from mouse (18) and man (19). Humasxpressed factor has been named basic (BKLF) because its N-
TIEG1 (TGHB-inducible_arly gene), also named EGRearly  terminus is rich in basic residues (9). BKLF is probably identical
growth response gene), has been cloned independently byto TEF-2, a protein that binds to the GT-I motif of the SV40
differential display PCR from a human fetal osteoblast cell lineenhancer (32). Furthermore, four additional members of this
after TG treatment (TIEG1; 20) and an androgen-dependendubfamily have been reported, includingsic tanscription
prostate cell line (EGR; 21). Both proteins are expressed glement_inding protein 2 (BTEB2) (33).inc finger protein
from alternative promoters of the same gene. TIEG1 differy41 (zNF741) (only sequence in database), repressor of AP-2
from EGRu by the presence of 11 additional amino acids at it§yanscription (AP-2rep) (18) andre finger protein_9(Zf9)
N-terminus (22). The mouse orthologue of human TIEG1 ha§34)_ The latter is also known as_ttegamoter thnding_j;rotein
been termed mGIF (ouse_gjal cell-derived neurotrophic fac- (CPBP) (35) and G-rich b’ndin_g factor (GBFS (36).

tor inducible_&ctor) (23). The recently cloned human TIEG2 ™ 74q,-ppp/GRF is distinct from but closely related to UKLF

protein (7) is distinct from TIEG1/EG&mGIF, although ST . ) : e
structurally and functionally closely related to TIEG1. The 512(18?&??3?%@3 ?r:etﬂgt mlgrﬁﬁﬁwa ; tﬁ]r;m;%ltsi?]c ];\';]gsetr

amino acid protein contains several proline-rich regions and: <" ! . . :
h 44% similari TIEG1 : he DNA-bindi significantly, the first l_\I-termlnaI a7 amino acids ofUKLF and
Snares o simParity fo Gl outside the binding Zf9/CPBP/GBF are highly conserved (Fig. 3). This conserved

domain (Fig. 3) (7). The expression of TIEG proteins is up- g - ) ) ; s
regulated in response to TBby the dial cell-derived reuro- domain is rich in acidic amino acids and lies within the trans-

trophic factor (GDNF) (23), a distant member of the TEF 2ctivation domain of the proteins (10).
family of proteins, and by other hormones like EGF and BTEB2 has been originally cloned from a human placenta
oestrogens (24,25). cDNA library using rat BTEB1 as a probe (33). However,

The third group of proteins have been dubbed XKLFsBTEBZismore related to the Kriippel-like factors than to BTEB1.
(pronounce X-klefs) or ‘Kiippel-Ilke factors’ after thd>.melano-  BTEBZ is probably an N-terminal truncated human orthologue of
gasterzinc finger protein Kriippel. The ‘X’ usually indicates murine IKLF, since the designated 5-untranslated region of
the major expression site of the factor, i.e. erythroid celldiuman BTEB2 is highly conserved within the coding region of
(EKLF) (12,26), gut (GKLF) (27), also called epithelial zinc IKLF. It remains to be clarified whether the published BTEB2
finger protein (EZF) (28), intestine (IKLF) (29), lung (LKLF) cDNA sequence is incomplete or might contain mutations in
(30), ubiquitous (UKLF) (10) or fetal (FKLF) (31). However, the assigned 5'-untranslated region that would lead to an N-
these names are somewhat misleading because expressiofeisninal truncated protein.



2994 Nucleic Acids Research, 1999, Vol. 27, No. 15

Spt MA [ [HEAEE | e EEN <778 only weakly respond to Sp3 (40). Vice versa, BTEB1 activated
promoter constructs with multiple GC boxes but repressed

92 Moo | lmmmm— BRRC 606 transcription of constructs containing a single GC box (17).
Sp3 N T N F O WENC 697 Whether Sp3 acts as an activator or as a repressor of Sp1l-mediated
Spa N [T T SN WEE 784 activation might also depend on the cellular context (41).

Discrepant reports on activation/repression functions are

el 244 likely due to the use of different experimental systems and con-
TIEG1 480 ditions, but might also reflect the modular structure of these
S 512 transcription factors. Both activation and repression domains
have been identified in Spl (42), Sp3 (40), EKLF (43) and
EKLF 362 GKLF/EZF (28). The molecular basis for the inhibitory activity of
GKLF 470 Sp3 has been mapped to a transferable repression domain
LKLF 254 located between the second glutamine-rich activation domain
and the first zinc finger function (Fig. 3) (40). The amino acid
ZNFT41 359 triplet KEE within this domain is absolutely essential for
AP2-REP 402 repressor function (40). Unraveling the transcriptional role of
BKLF 344 Sp3 is further complicated by the fact that three Sp3 isoforms
exist. The full-length 115 kDa Sp3 is initiated at a non-AUG
BTEB2 219 codon (8) whereas two smaller ~70 kDa Sp3 species arise from
IKLF 445 internal translation initiation sites (44). All three isoforms
ZFe 1T 289 contain the inhibitory domain. The full-length Sp3 carries both

glutamine-rich activation domains whereas the smaller species
UKLF M TNNEC 302 contain only the second activation domain B and thus can act
only as very weak activators. So far, it is not known whether
BN Grich  EEMAciaic § & B Ze 0 the relative abundance of the different Sp3 isoforms varies
CJsT-rich EEMP-rich g pepression domain under certain conditions. We can only assume that such modular
structures would allow regulation of the transcriptional activity
of these factors.

Figure 3. Structural features of Sp/XKLF family members. Each coloured box

refers to the region containing a preponderance of one or several tjpes #HYSIOLOGICAL FUNCTION OF Sp/XKLF PROTEINS

amino acids. The black boxes represent the zinc fingers. Activation (A) and L . .
repression (R) domains are indicated. Connecting lines depict similarities dAlthough it is satisfactory that there are at least 16 different

the transcription factors outside the zinc fingers. The sizes (amino acids) oftrproteins that can serve as effectors of the Iarge Variety of
proteins are indicated on the right and refer to the human proteins with thBioIogicaI functions that have been assigned to Sp1l binding
exception of LKLF, AP-2rep, BKLF and IKLF, which refer to mouse proteins. sites, the downside is that it raises the question which tasks are
performed by which family membeis vivo? This question is
particularly complicated because different factors are often
ACTIVATION VERSUS REPRESSION present in the same cells and hence the prospect of overlapping
o o functions is always looming. Gene inactivation in mice has
The majority of the Sp/XKLF transcription factors have beenpeen the most powerful tool to elucidate specific functions of
reported to act in a positive manner. Some factors, howevemdividual family members. Knockouts of Sp1, Sp4, EKLF,
exert an inhibitory effect on transcription. Sp3 was originallyLKLF and BKLF have been described, all of them resulting in
found to repress Spl-mediated activation by binding to th@urprisingly different phenotypes. This is consistent with the
same site and thereby preventing Sp1 binding and activatiodea that the number of zinc finger genes has increased during
(37). Similarly, BTEBL1 activated the AP2 promoter while AP-2repevolution to fulfil the requirement for specialised functions in
repressed it by competing for the same site (18). In additionmulticellular organisms.
BKLF has been shown to compete with EKLF thereby silencing . .
EKLF-mediated activation (38). These examples suggestPl:acomplex puzzle with few easy pieces
mechanisms by which the expression of target genes might behe ubiquitously expressed Sp1 protein has been implicated in
regulated by competition between repressors and activatonie activation of a very large number of genes and is thought to
However, the attractive simplicity of such models is alreadybe involved in cellular processes such as cell cycle regulation,
challenged by the observation that repressors can also functi@hromatin remodelling and the propagation of methylation-
as activators, as has been demonstrated for Sp3 and BKlffee islands (2,3,45-50). Thus, a cell lacking Sp1 would be
(9,39,40). In addition, TIEG1/EGR was reported to be an predicted to stand little chance of survival. Surprisingly, Sp1
activator (24), yet in other experiments it acted as a represseoll ES cells could be generated without any difficulty and
(7,23). The features determining whether these proteins act @sese cells showed normal growth characteristics, maintained
repressors or activators are not well understood. In the case thfeir methylation-free islands and could differentimt®itro to
Sp3 and BTEBI, the structure and the arrangement of thiarm embryoid bodies with similar efficiencies to control ES
recognition sites appear to determine the effect on transcriptionells (51; U.Jagle, unpublished results). However, all Sp1 null
Promoters containing a single binding site are activatedgmbryos are severely retarded in growth and die after day 10 of
whereas promoters with multiple binding sites often do not odevelopment. They display a wide range of abnormalities at
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this stage. Some embryos appear as an undifferentiated masseofthroid-specific genes examined at normal levels, including
cells, while in others all the typical hallmarks of early embryo-the embryonig-like globins in primitive cells (54,55).

genesis are present, such as the developing heart, eyes, otit/nlike humans, mice do not possess fetal-spefiiobin
vesicles, somites, erythroid cells and extra-embryonic tissuegenes. Nevertheless, the switch from fetalt¢ adult ) gene
Blastocyst injections with Sp1 null ES cells showed that thesexpression is reproduced in definitive erythropoiesis of trans-
cells initially contribute efficiently to chimaeric embryos, but genic mice harbouring the complete humsglobin locus
after day 11 of development this declines very rapidly, with na(56). This switching process was studied in EKLF knockouts,
detectable contribution to any tissue of newborn animalstevealing that they-globin genes were fully activated as
Thus, Spl deficiency causes a cell-autonomous defect anddpposed to a complete failure to express fhglobin gene.
appears that Spl function is generally required for cellulaFurthermore, the kinetics of switching correlates with EKLF
survival after day 10 of mouse development (51). The Spl nullevels. It is delayed in EKLF heterozygotes, but expedited by
phenotype is remarkably similar to the phenotypes describemansgenic overexpression of EKLF. This has identified EKLF
for two proteins involved in DNA methylation: the DNA as the first factor that is directly involved into B switching
methyltransferase enzyme, Dnmtl (1), and the methyl-CpG57). Since they genes are still silenced after the switching
binding protein, MeCP2 (52). Expression levels of Dnmtlperiod, it is unlikely that EKLF has a role to play ingene
were normal in the Spl knockout embryos and no changes silencing. Thus, EKLF is an adult-specific factor required for
DNA methylation patterns could be detected. However, MeCPZctivation of the3 gene promoter in definitive erythropoiesis.
protein levels were reduced 20-fold in the absence of Spl. Lik# is noteworthy that mutations in the EKLF-binding site of the
Spl, MeCP2 is dispensable for growth and differentiation of E® promoter have been described in cert@ithalassaemia
cells, but MeCP2-deficient cells are unable to contribute tgatients (58).

mouse tissues after early embryogenesis. Thus, it has beerErythroid precursors are found in normal numbers in EKLF
proposed that MeCP2 is required for the maintenance of differaull mutants and erythroid maturatiqrer seis thought to
entiated cells. The phenotype of the Spl knockout suggestshsue normally (54,55,59). This leaves us with an uncomfortable
that Sp1 has an essential role in cellular survival during mousguestion: does EKLF activate only one particular gene in one
development by acting as a regulator of MeCP2 expression. particular locus? This would be a very cumbersome mechanism to
L regulate gene expression. Fortunately, there exist some data
Sp4: isitall between the ears? suggesting additional roles for EKLF. One piece of data
Sp4 is highly expressed in the developing central nervous systesuggests that EKLF function is required for red cell stability
but it is also abundant in epithelial tissues, developing teetf60). This suggestion is underpinned by the observation that
and testes. Sp4 knockout mice are born at normal Mendeligiorced expression of-globin or 3-globin chains under the
ratios but two-thirds of these mice die within a few days aftercontrol of EKLF-independent promoters does not alleviate the
birth (53). Reduced body weight and a slightly stuntedfatal anaemia of EKLF null mutants (61; M.Wijgerde, unpublished
appearance are features of Sp4 null mice (our own unpublishetita).

observations). The most interesting aspect of the phenotype is . .

the complete absence of mating behaviour in Sp4 null male&KLF: @ survival and maturation factor?

Since their reproductive organs are fully developed andinalysis of the LKLF knockout has revealed several interesting
apparently normal, with the testes containing motile matur@aspects of its function in the development and physiology of
sperm, the most likely cause of this behavioural abnormality isnice. LKLF null fetuses dién uteroas a result of exsanguination

a neurological defect. Surgical removal of the vomeronasadue to intra-embryonic and intra-amniotic bleeding. Impaired
organ in newborn mice results in the absence of mating behaviotgtal liver haematopoiesis has been observed (62), but the
later in life and the hypothalamus is also known to play amprimary cause of lethality is a defect in blood vessel mor-
important role in reproductive behaviour. However, both thephology (63). The mechanism of action of LKLF is unknown.
vomeronasal organ and the hypothalamus have a histologicallykLF might be required for the survival of endothelial cells
normal appearance in Sp4 null mice (53). It remains possiblafter completion of the primitive vasculature. Alternatively,
that a specific subset of cells is missing in either of thes¢ KLF null vessels might fail to produce growth factors that
organs. The vomeronasal organ is primarily important for theserve as signals to attract and organise the cells required for
detection of pheromones and a family of putative pheromoneunica media formation, an essential process for vessel wall
receptors expressed in this organ has been described. It is catabilisation. Expression of the prospective factors (angio-
ceivable that the subset of neurons expressing the pheromopeietins 1 and 2, TG, Tie 1 and Tie 2, epidermal growth
receptors that elicit reproductive behaviour are missing in théactor and platelet-derived growth factor B) has been assessed
Sp4 null males, but this awaits further investigation. by in situ hybridisation and was found to be normal (63).
Therefore, the downstream effector molecules of LKLF
function in vessel wall stabilisation remain elusive.

Since EKLF is expressed specifically in erythroid cells it was A first glimpse of LKLF functions at later developmental
not surprising that EKLF null mutants di@ utero due to  stages has been provided by the analysis of chimaeric mice
severe anaemia (54,55). The production of the first, nucleatemiade with LKLF null ES cells. These data have demonstrated
red cells in the yolk sac (primitive erythropoiesis) was nota role for LKLF in the maintenance of mature T cells (64).
affected but the generation of enucleated erythrocytes in thilature T cells are present in the circulation in a resting state
fetal liver (definitive erythropoiesis) was severely impaired.and become activated if their T cell receptors bind the appro-
EKLF null mice fail to express adult-typ@-like globin genes priate peptide antigens presented by major histocompatibility
in definitive erythroid cells, but do express all the othermolecules. Activated T cells start expressing a large number of

EKLF: one factor to activate one gene?
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new genes and this is followed by cell cycle entry and cell divisionThese data do not exclude a functional role for other Sp factors
LKLF protein levels are significantly reduced upon activationin LCR activity. It would be of particular interest to find EKLF

of mature T cells. Activated T cells are more prone to undergaelatives that activate other erythroid-specific genes through
apoptosis in the peripheral lymphoid organs. This is thought t&T boxes and to extend this analysis to primitive erythroid
reflect a host defence mechanism against autoimmune reactioeglls, since these are unaffected by the EKLF knockout. In this
In chimaeric mice, LKLF null T cells are in a spontaneouslyregard, the recently reported FKLF protein is an exciting
activated state, triggering their removal from the circulationcandidate (31).

through apoptosis in the peripheral lymphoid organs. Thus,
these data demonstrate that LKLF regulates the resting stat
and survival of mature T cells. The link between proliferation, OWTO GET SPECIFICITY?

differentiation and survival of highly specialised cell typesThe initial characterisation of the different Sp/XKLF family
could very well serve as a paradigm for the other Sp/XKLFmembers provides much information about the potential
family members. functions and activities of these proteins. The most obvious
) : . . question, however, concerns the specificity of the individual
BKLF: a proliferation switch? family members. That specificity exists is illustrated by the
Only a preliminary report on the phenotype of the BKLF distinct knockout phenotypes of the different family members.
knockout has appeared (65). BKLF null mice come to term and’he question remains: how is it obtained? Binding site prefer-
develop normally. However, they develop a chronic myelo-ences confer a certain level of specificity. Although all proteins
proliferative disease during adulthood. An excess of myeloidecognise very similar DNA target sites, the relative affinities
cells is already foundn utero and BKLF null myeloid cells for specific sequences differ. For instance, Sp factors bind
have an increased proliferative capacity vitro (65). A more tightly to GC boxes than to GT boxes (70) while XKLF
detailed description of the phenotype would be of interest, ibind preferentially to GT boxes (9-11,71).

particular in relation to the activated phenotype of LKLF null Another level of specificity is obtained by the expression
T cells. Are similar switches controlling cellular proliferation patterns of individual family members. Some factors, like Spl
operated by BKLF in myeloid and by LKLF in T cells? Fur- and Sp3, are ubiquitously expressed, and others, like the
thermore, BKLF levels are reduced in fetal livers of EKLF TIEGS, have a quite widespread distribution (Teﬂ)le 1). A third
knockout mice (55) and it would therefore be interesting togroup is restricted to certain cell types, for instance EKLF to

know what happens to EKLF levels in BKLF null mice. erythroid cells. However, it should be mentioned that in most
, o cases only the mRNA distribution has been analysed. This
Who's done it does not necessarily reflect the distribution and the level of the

To understand regulation by Sp/XKLF family members it is of protein. BTEB1 mRNA is expressed ubiquitously, but the pro-
pivotal importance to determine the binding site—transcriptioriein was found in only a few tissues (72). A careful analysis of
factor relationships that are relevant under physiologicalhe expression pattern of the protein rather than the mRNA will
conditions. Knockouts may provide the first clues to answepield new insights into the real distribution of the other family
this question. However, these data are always indirect becausgembers that might be helpful in understanding their function.
the effects on gene transcription may be due to secondaryltis clear that in any given cell type co-expression of several
effects of the knockout phenotype. A systematic approach ttamily members occurs and we have to assume that these
tackle this problem for Sp/XKLF proteins has recently beerproteins will compete for the same binding sites. The abundance
described. It is based on earlier work in which a DNA-bindingof factors may vary among different cell types and under
specificity mutant was used to show a dirgcvivointeraction — certain conditions. Alterations in relative abundance have been
between a DNA target site and a transcription factor irreported in some cases. In primary keratinocytes, Sp3 levels
D.melanogaste(66). This protocol was adapted to a function- exceed those of Spl. This Sp3:Spl ratio becomes inverted if
ally important GT box motif in thg-globin LCR that interacts the cells are allowed to differentiate (73). In NIH 3T3 cells,
with Sp/XKLF factors. Sp1, Sp3, BKLF, EKLF and possibly GKLF mRNA is high in quiescent cells, but almost undetectable
other Sp factors are present in erythroid cells (50,67). Which ah proliferating cells (27). TIEGL1 is induced by TGFEGF
these factors is directly acting through the GT box motif in theand oestrogens in several cell types (24,25,74,75).

B-globin LCR? To address this issue, the GT box of fhe DNA-binding studies are usually performidvitro on isolated
globin LCR was first mutated to abolish binding of wild-type recognition sequences. However, promoters contain recognition
Sp/XKLF factors. The amino acids in EKLF and Sp1 involvedsequences for many different transcription factors and full
in DNA recognition were changed such that the mutated zinectivation requires simultaneous binding of a whole set of tran-
finger domains would recognise the mutated element (68,69%cription factors that might bind cooperatively to their sites or
The capacity of the mutated Sp1 and EKLF factors to activatact synergistically by other mechanisms. So far, little is known
B-globin gene transcription through the mutant GT box wasf how the different Sp/XKLFs proteins act on natural promoters
then assayed in transgenic mice. The analysis showed thiatcombination with other transcription factdrsvivo.

EKLF actsin vivothrough this element, resulting in a stronger That different Sp/XKLF proteins might act in a highly specific
DNase | hypersensitive site over the LCR fragment and activatiomanner with other transcription factors would be expected
of B-globin gene transcription. No such effect was observedince the domains N-terminal of the zinc finger region have
with Sp1, emphasising the specific role of EKLF in this contextlittle homology between individual family members. Evidence
(67). Thus, in addition to th@-globin promoter site revealed for promoter specificity came from experiments with the
by the knockout (see above), EKLF has a functional target sitE KLF and Sp1 activation domains. In Gal4 fusions, the EKLF
in the main regulatory element of tfieglobin locus, the LCR. activation domain activated the appropriftglobin promoter
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constructs better than the Spl activation region (76). Thadrrays provide very useful tools for high throughput analysis of
EKLF provides crucial transactivation functions feiglobin  target genes (89). This should be of great help in understanding
expression was also demonstrated in transgenic mice expetie downstream effects that result in the knockout phenotypes.
ments (67). To fully understand the physiological function of the Sp/

A further level of specificity could be obtained by interaction XKLF proteins, it will be equally important to understand the
with specific co-activators or co-repressors. In the case afechanisms of their mode of action. Detailed characterisation
BKLF, a protein termed mCtBP2 (mine Gterminal bnding  of the individual transcription factors, identification of specific
protein 2 that binds to the repression domain of BKLF andinteraction partners, careful analysis of protein modifications
that could act as a co-repressor has been cloned (38). EKLand the identification of signals and transduction pathways by
requires a SWI/SNF-related chromatin remodelling complexwhich these proteins are regulated will be essential for a mech-
the so-called ELF co-activator emodelling omplex 1 (E-RC1), anistic understanding of transcriptional control by this growing
to generate a DNase | hypersensitive, transcriptionally activeamily of transcription factors. With the steadily increasing
B-globin promoter on chromatin templatés vitro (77). In  collection of knockout mice and the large arsenalro¥/itro
addition, the co-activator complex CRSPfactor lequired for  andin vivoanalysis systems available to the scientific community,
Spl activation) is required for transcriptional activation by Splmany more exciting results can be expected in the near future.
in vitro (78). Whether CRSP is specific for Sp1 or whether it
could also cooperate with other Sp family members remains t
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