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ABSTRACT

One of the most common regulatory elements is the
GC box and the related GT/CACC box, which are
widely distributed in promoters, enhancers and locus
control regions of housekeeping as well as tissue-
specific genes. For long it was generally thought that
Sp1 is the major factor acting through these motifs.
Recent discoveries have shown that Sp1 is only one
of many transcription factors binding and acting
through these elements. Sp1 simply represents the
first identified and cloned protein of a family of tran-
scription factors characterised by a highly conserved
DNA-binding domain consisting of three zinc fingers.
Currently this new family of transcription factors has
at least 16 different mammalian members. Here, we
will summarise and discuss recent advances that have
been directed towards understanding the biological
role of these proteins.

INTRODUCTION

G-rich elements such as GC (GGGGCGGGG) and GT/CACC
boxes (GGTGTGGGG) are importantcis-acting elements
required for the appropriate expression of housekeeping as
well as many tissue-specific and viral genes. These motifs have
been found and functionally analysed in promoters, enhancers
and locus control regions (LCRs) of genes that are under
different modes of control, such as cell cycle regulation,
hormonal activation and developmental patterning. Moreover,
GC/GT boxes are commonly found in promoters embedded in
CpG-rich methylation-free islands. Maintenance of the appro-
priate methylation patterns is essential for normal development
(1). It has been shown for the APRT gene that the GC/GT
motifs are required to maintain the methylation-free active status
of the gene (2,3).

For long it has been known that the general transcription
factor Sp1 (named according to the original purification
scheme that included Sephacryl and phosphocellulose columns)
(4) can bind and act through GC/GT boxes, and Sp1 was therefore
thought to be an extremely versatile protein essential for many

different functions of the mammalian nucleus. More recent
however, it has become clear that Sp1 is not the only transcrip
factor binding and acting through these elements. It simp
represents the first identified and cloned protein of a new a
still growing family of transcription factors. Family member
contain a highly conserved DNA-binding domain consisting
three zinc fingers. Currently this family of transcription factor
comprises at least 16 different mammalian members (Fig.
Accordingly, our view on Sp1 recognition elements as well
Sp1 itself has changed dramatically. The identification of a
these transcription factors binding to Sp1 sites raises the ques
that is central to this review: what are the functions of the
proteins?

THE ZINC FINGER REGION DEFINES THE FAMILY

The 81 amino acid DNA-binding domain that is found close
the C-termini of all members essentially defines the Sp/XKL
family of transcription factors. It consists of three C2H2-typ
zinc fingers arranged similar to those found in theDrosophila
melanogasterregulator protein Krüppel. Accordingly, some o
the proteins have been named Krüppel-like factors. The strik
similarity of the linker amino acids between the individua
fingers as well as the identical length of the DNA-bindin
domain strongly suggest that the higher order structure of
three fingers is crucial for the biological function of the pro
teins (Fig. 2). Structural studies on zinc finger peptides bou
to DNA have provided information that allows predictions o
the DNA sequence recognised by finger domains. The am
acids of the Sp1 zinc fingers that are most likely to make spec
contacts with the DNA are the amino acids KHA within th
first, RER within the second and RHK within the third zin
finger domain (Fig. 2). These critical amino acids are conserv
in Sp3, Sp4, BTEB1, TIEG1 and TIEG2 proteins (Fig. 2). Co
sistent with this conservation, Sp3, Sp4, BTEB1 and TIEG
recognise classical Sp1-binding sites (5–7). In addition, t
relative affinity for the GC box is very similar, if not identical,
between these proteins (5,6). GT or CACCC boxes are a
recognised by these proteins but with slightly lower affinitie
(5). In Sp2, a leucine residue replaces the critical histidine resi
within the first zinc finger (Fig. 2). Although not studied in
detail, it was shown that Sp2 does not bind to the classical S

*To whom correspondence should be addressed. Tel: +49 6421 286697; Fax: +49 6421 285398; Email: suske@imt.uni-marburg.de



2992 Nucleic Acids Research, 1999, Vol. 27, No. 15

ht
e
al
a
2).

ins
o
e
d

p.
in

lian
ery
l

n
vo-
of
on
2/

ch
of
s

o
n-
ical

rs
ly

by
-

exception

d between all
GC box but to a GT-rich element in the TCR Vα promoter (8).
In all the other family members, the DNA-contacting amino
acids of the first and second fingers are conserved. In the third
finger, however, the critical lysine is replaced in some

members by a leucine (Fig. 2). Thus, one would expect slig
differences in the DNA-binding site preferences of th
members of this subfamily. In agreement with this structur
determinant it was shown that EKLF, UKLF and BKLF have
binding preference for GT boxes over classical GC boxes (9–1

NOMENCLATURE AND CLASSIFICATION

Based on the structural relationships between the prote
(Figs 1 and 2), we suggest dividing the Sp/XKLF family int
three subgroups: (i) the four Sp transcription factors; (ii) th
close relatives, which currently consist of BTEB1, TIEG1 an
TIEG2; (iii) the Krüppel-like factors (XKLFs). The latter sub-
family also includes BTEB2, GBF/ZF9, ZNF741 and AP-2re
Features of individual family members are summarised
Table 1.

To date, four Sp genes have been identified in the mamma
genome. The overall domain structure of these factors is v
similar (Fig. 3). In addition to the highly conserved C-termina
zinc finger region, they contain glutamine-rich activatio
domains flanked by serine/threonine-rich stretches. Their e
lutionary relationship is well documented by the co-localisation
the four human Sp genes with the four HOX gene clusters
chromosomes 12q13 (Sp1/HOX C) (13), 17q21.3–q22 (Sp
HOX B) (14), 2q31 (Sp3/HOX D) (15) and 7p15 (Sp4/HOX
A) (16). Sp1, Sp3 and Sp4 are more closely related to ea
other than to Sp2. This is especially evident on comparison
the three zinc fingers, which reveal significant difference
between Sp2 and the other three factors (Fig. 2).

As outlined above, in BTEB1, TIEG1 and TIEG2 all amin
acids that are believed to specifically contact the DNA are co
served and these proteins consistently recognise the class
GC box. However, the domains N-terminal to the zinc finge
do not share any similarity to the Sp factors. BTEB1, original
named simply BTEB (basic transcription element binding
protein), has been identified and cloned along with rat Sp1
virtue of its binding to the basal transcriptional element (GA
GAAGGAGGCGTGGCCAAC) of the cytochrome P-4501A1

Figure 1. Phylogenetic tree of the Sp/XKLF transcription factors. The tree was
generated with the CLUSTAL W Multiple Sequence Alignment Program v.1.7
(June 1997) (90) using the amino acid sequences of the DNA-binding domains
of the Sp/XKLF proteins.

Figure 2. Protein sequence alignment of the zinc finger domains of mammalian Sp/XKLF family members. All sequences are human sequences with the
of LKLF, AP-2rep, BKLF and IKLF, which are of mouse origin. The cysteine and histidine residues that are involved in zinc coordination are in blue. Arrows point
to the amino acid positions that probably determine the recognition specificity of the fingers by contacting specific bases of the DNA. Black lines indicateα-
helices;β-sheets are shown as zig-zag lines. The amino acids that are thought to make base contacts are boxed (adapted from 69). Residues conserve
family members are indicated (*).
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(CYP1A1) gene promoter (17). More recently, BTEB1 has
also been cloned from mouse (18) and man (19). Human
TIEG1 (TGFβ-inducible early gene), also named EGRα (early
growth response geneα), has been cloned independently by
differential display PCR from a human fetal osteoblast cell line
after TGFβ treatment (TIEG1; 20) and an androgen-dependent
prostate cell line (EGRα; 21). Both proteins are expressed
from alternative promoters of the same gene. TIEG1 differs
from EGRα by the presence of 11 additional amino acids at its
N-terminus (22). The mouse orthologue of human TIEG1 has
been termed mGIF (mouse glial cell-derived neurotrophic fac-
tor inducible factor) (23). The recently cloned human TIEG2
protein (7) is distinct from TIEG1/EGRα/mGIF, although
structurally and functionally closely related to TIEG1. The 512
amino acid protein contains several proline-rich regions and
shares 44% similarity to TIEG1 outside the DNA-binding
domain (Fig. 3) (7). The expression of TIEG proteins is up-
regulated in response to TGFβ, by the glial cell-derived neuro-
trophic factor (GDNF) (23), a distant member of the TGFβ
family of proteins, and by other hormones like EGF and
oestrogens (24,25).

The third group of proteins have been dubbed XKLFs
(pronounce X-klefs) or ‘Krüppel-like factors’ after theD.melano-
gasterzinc finger protein Krüppel. The ‘X’ usually indicates
the major expression site of the factor, i.e. erythroid cells
(EKLF) (12,26), gut (GKLF) (27), also called epithelial zinc
finger protein (EZF) (28), intestine (IKLF) (29), lung (LKLF)
(30), ubiquitous (UKLF) (10) or fetal (FKLF) (31). However,
these names are somewhat misleading because expression is

not always restricted to these tissues. Another ubiquitou
expressed factor has been named basic (BKLF) because it
terminus is rich in basic residues (9). BKLF is probably identic
to TEF-2, a protein that binds to the GT-I motif of the SV4
enhancer (32). Furthermore, four additional members of t
subfamily have been reported, including basic transcription
element binding protein 2 (BTEB2) (33), zinc finger protein
741 (ZNF741) (only sequence in database), repressor of A
transcription (AP-2rep) (18) and zinc finger protein 9(Zf9)
(34). The latter is also known as core promoter binding protein
(CPBP) (35) and GC-rich binding factor (GBF) (36).

Zf9/CPBP/GBF is distinct from but closely related to UKLF
(10). Similarities are not only seen in the C-terminal zinc fing
region but also in the N-terminal part of the protein. Mo
significantly, the first N-terminal 47 amino acids of UKLF and
Zf9/CPBP/GBF are highly conserved (Fig. 3). This conserv
domain is rich in acidic amino acids and lies within the tran
activation domain of the proteins (10).

BTEB2 has been originally cloned from a human placen
cDNA library using rat BTEB1 as a probe (33). Howeve
BTEB2 is more related to the Krüppel-like factors than to BTEB
BTEB2 is probably an N-terminal truncated human orthologue
murine IKLF, since the designated 5'-untranslated region
human BTEB2 is highly conserved within the coding region
IKLF. It remains to be clarified whether the published BTEB
cDNA sequence is incomplete or might contain mutations
the assigned 5'-untranslated region that would lead to an
terminal truncated protein.

Table 1. Classification and function of Sp/XKLF proteins

Species: H, human; M, mouse; R, rat; S, pig; X,Xenopus.
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ACTIVATION VERSUS REPRESSION

The majority of the Sp/XKLF transcription factors have been
reported to act in a positive manner. Some factors, however,
exert an inhibitory effect on transcription. Sp3 was originally
found to repress Sp1-mediated activation by binding to the
same site and thereby preventing Sp1 binding and activation
(37). Similarly, BTEB1 activated the AP2 promoter while AP-2rep
repressed it by competing for the same site (18). In addition,
BKLF has been shown to compete with EKLF thereby silencing
EKLF-mediated activation (38). These examples suggest
mechanisms by which the expression of target genes might be
regulated by competition between repressors and activators.
However, the attractive simplicity of such models is already
challenged by the observation that repressors can also function
as activators, as has been demonstrated for Sp3 and BKLF
(9,39,40). In addition, TIEG1/EGRα was reported to be an
activator (24), yet in other experiments it acted as a repressor
(7,23). The features determining whether these proteins act as
repressors or activators are not well understood. In the case of
Sp3 and BTEB1, the structure and the arrangement of the
recognition sites appear to determine the effect on transcription.
Promoters containing a single binding site are activated,
whereas promoters with multiple binding sites often do not or

only weakly respond to Sp3 (40). Vice versa, BTEB1 activat
promoter constructs with multiple GC boxes but repress
transcription of constructs containing a single GC box (17
Whether Sp3 acts as an activator or as a repressor of Sp1-med
activation might also depend on the cellular context (41).

Discrepant reports on activation/repression functions a
likely due to the use of different experimental systems and co
ditions, but might also reflect the modular structure of the
transcription factors. Both activation and repression doma
have been identified in Sp1 (42), Sp3 (40), EKLF (43) an
GKLF/EZF (28). The molecular basis for the inhibitory activity o
Sp3 has been mapped to a transferable repression dom
located between the second glutamine-rich activation dom
and the first zinc finger function (Fig. 3) (40). The amino aci
triplet KEE within this domain is absolutely essential fo
repressor function (40). Unraveling the transcriptional role
Sp3 is further complicated by the fact that three Sp3 isoform
exist. The full-length 115 kDa Sp3 is initiated at a non-AUG
codon (8) whereas two smaller ~70 kDa Sp3 species arise fr
internal translation initiation sites (44). All three isoform
contain the inhibitory domain. The full-length Sp3 carries bo
glutamine-rich activation domains whereas the smaller spec
contain only the second activation domain B and thus can
only as very weak activators. So far, it is not known wheth
the relative abundance of the different Sp3 isoforms var
under certain conditions. We can only assume that such mod
structures would allow regulation of the transcriptional activi
of these factors.

PHYSIOLOGICAL FUNCTION OF Sp/XKLF PROTEINS

Although it is satisfactory that there are at least 16 differe
proteins that can serve as effectors of the large variety
biological functions that have been assigned to Sp1 bind
sites, the downside is that it raises the question which tasks
performed by which family membersin vivo? This question is
particularly complicated because different factors are oft
present in the same cells and hence the prospect of overlap
functions is always looming. Gene inactivation in mice ha
been the most powerful tool to elucidate specific functions
individual family members. Knockouts of Sp1, Sp4, EKLF
LKLF and BKLF have been described, all of them resulting
surprisingly different phenotypes. This is consistent with th
idea that the number of zinc finger genes has increased du
evolution to fulfil the requirement for specialised functions i
multicellular organisms.

Sp1: a complex puzzle with few easy pieces

The ubiquitously expressed Sp1 protein has been implicate
the activation of a very large number of genes and is though
be involved in cellular processes such as cell cycle regulati
chromatin remodelling and the propagation of methylatio
free islands (2,3,45–50). Thus, a cell lacking Sp1 would
predicted to stand little chance of survival. Surprisingly, Sp
null ES cells could be generated without any difficulty an
these cells showed normal growth characteristics, maintain
their methylation-free islands and could differentiatein vitro to
form embryoid bodies with similar efficiencies to control ES
cells (51; U.Jägle, unpublished results). However, all Sp1 n
embryos are severely retarded in growth and die after day 10
development. They display a wide range of abnormalities

Figure 3. Structural features of Sp/XKLF family members. Each coloured box
refers to the region containing a preponderance of one or several types of
amino acids. The black boxes represent the zinc fingers. Activation (A) and
repression (R) domains are indicated. Connecting lines depict similarities of
the transcription factors outside the zinc fingers. The sizes (amino acids) of the
proteins are indicated on the right and refer to the human proteins with the
exception of LKLF, AP-2rep, BKLF and IKLF, which refer to mouse proteins.
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this stage. Some embryos appear as an undifferentiated mass of
cells, while in others all the typical hallmarks of early embryo-
genesis are present, such as the developing heart, eyes, otic
vesicles, somites, erythroid cells and extra-embryonic tissues.
Blastocyst injections with Sp1 null ES cells showed that these
cells initially contribute efficiently to chimaeric embryos, but
after day 11 of development this declines very rapidly, with no
detectable contribution to any tissue of newborn animals.
Thus, Sp1 deficiency causes a cell-autonomous defect and it
appears that Sp1 function is generally required for cellular
survival after day 10 of mouse development (51). The Sp1 null
phenotype is remarkably similar to the phenotypes described
for two proteins involved in DNA methylation: the DNA
methyltransferase enzyme, Dnmt1 (1), and the methyl-CpG-
binding protein, MeCP2 (52). Expression levels of Dnmt1
were normal in the Sp1 knockout embryos and no changes in
DNA methylation patterns could be detected. However, MeCP2
protein levels were reduced 20-fold in the absence of Sp1. Like
Sp1, MeCP2 is dispensable for growth and differentiation of ES
cells, but MeCP2-deficient cells are unable to contribute to
mouse tissues after early embryogenesis. Thus, it has been
proposed that MeCP2 is required for the maintenance of differ-
entiated cells. The phenotype of the Sp1 knockout suggests
that Sp1 has an essential role in cellular survival during mouse
development by acting as a regulator of MeCP2 expression.

Sp4: is it all between the ears?

Sp4 is highly expressed in the developing central nervous system,
but it is also abundant in epithelial tissues, developing teeth
and testes. Sp4 knockout mice are born at normal Mendelian
ratios but two-thirds of these mice die within a few days after
birth (53). Reduced body weight and a slightly stunted
appearance are features of Sp4 null mice (our own unpublished
observations). The most interesting aspect of the phenotype is
the complete absence of mating behaviour in Sp4 null males.
Since their reproductive organs are fully developed and
apparently normal, with the testes containing motile mature
sperm, the most likely cause of this behavioural abnormality is
a neurological defect. Surgical removal of the vomeronasal
organ in newborn mice results in the absence of mating behaviour
later in life and the hypothalamus is also known to play an
important role in reproductive behaviour. However, both the
vomeronasal organ and the hypothalamus have a histologically
normal appearance in Sp4 null mice (53). It remains possible
that a specific subset of cells is missing in either of these
organs. The vomeronasal organ is primarily important for the
detection of pheromones and a family of putative pheromone
receptors expressed in this organ has been described. It is con-
ceivable that the subset of neurons expressing the pheromone
receptors that elicit reproductive behaviour are missing in the
Sp4 null males, but this awaits further investigation.

EKLF: one factor to activate one gene?

Since EKLF is expressed specifically in erythroid cells it was
not surprising that EKLF null mutants diein utero due to
severe anaemia (54,55). The production of the first, nucleated
red cells in the yolk sac (primitive erythropoiesis) was not
affected but the generation of enucleated erythrocytes in the
fetal liver (definitive erythropoiesis) was severely impaired.
EKLF null mice fail to express adult-typeβ-like globin genes
in definitive erythroid cells, but do express all the other

erythroid-specific genes examined at normal levels, includi
the embryonicβ-like globins in primitive cells (54,55).

Unlike humans, mice do not possess fetal-specificβ-globin
genes. Nevertheless, the switch from fetal (γ) to adult (β) gene
expression is reproduced in definitive erythropoiesis of tran
genic mice harbouring the complete humanβ-globin locus
(56). This switching process was studied in EKLF knockou
revealing that theγ-globin genes were fully activated as
opposed to a complete failure to express theβ-globin gene.
Furthermore, the kinetics of switching correlates with EKL
levels. It is delayed in EKLF heterozygotes, but expedited
transgenic overexpression of EKLF. This has identified EKL
as the first factor that is directly involved inγ to β switching
(57). Since theγ genes are still silenced after the switchin
period, it is unlikely that EKLF has a role to play inγ gene
silencing. Thus, EKLF is an adult-specific factor required fo
activation of theβ gene promoter in definitive erythropoiesis
It is noteworthy that mutations in the EKLF-binding site of th
β promoter have been described in certainβ-thalassaemia
patients (58).

Erythroid precursors are found in normal numbers in EKL
null mutants and erythroid maturationper se is thought to
ensue normally (54,55,59). This leaves us with an uncomforta
question: does EKLF activate only one particular gene in o
particular locus? This would be a very cumbersome mechanism
regulate gene expression. Fortunately, there exist some d
suggesting additional roles for EKLF. One piece of da
suggests that EKLF function is required for red cell stabili
(60). This suggestion is underpinned by the observation t
forced expression ofγ-globin or β-globin chains under the
control of EKLF-independent promoters does not alleviate t
fatal anaemia of EKLF null mutants (61; M.Wijgerde, unpublishe
data).

LKLF: a survival and maturation factor?

Analysis of the LKLF knockout has revealed several interesti
aspects of its function in the development and physiology
mice. LKLF null fetuses diein uteroas a result of exsanguination
due to intra-embryonic and intra-amniotic bleeding. Impaire
fetal liver haematopoiesis has been observed (62), but
primary cause of lethality is a defect in blood vessel mo
phology (63). The mechanism of action of LKLF is unknown
LKLF might be required for the survival of endothelial cell
after completion of the primitive vasculature. Alternatively
LKLF null vessels might fail to produce growth factors tha
serve as signals to attract and organise the cells required
tunica media formation, an essential process for vessel w
stabilisation. Expression of the prospective factors (ang
poietins 1 and 2, TGFβ, Tie 1 and Tie 2, epidermal growth
factor and platelet-derived growth factor B) has been asses
by in situ hybridisation and was found to be normal (63
Therefore, the downstream effector molecules of LKL
function in vessel wall stabilisation remain elusive.

A first glimpse of LKLF functions at later developmenta
stages has been provided by the analysis of chimaeric m
made with LKLF null ES cells. These data have demonstra
a role for LKLF in the maintenance of mature T cells (64
Mature T cells are present in the circulation in a resting sta
and become activated if their T cell receptors bind the app
priate peptide antigens presented by major histocompatibi
molecules. Activated T cells start expressing a large numbe
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new genes and this is followed by cell cycle entry and cell division.
LKLF protein levels are significantly reduced upon activation
of mature T cells. Activated T cells are more prone to undergo
apoptosis in the peripheral lymphoid organs. This is thought to
reflect a host defence mechanism against autoimmune reactions.
In chimaeric mice, LKLF null T cells are in a spontaneously
activated state, triggering their removal from the circulation
through apoptosis in the peripheral lymphoid organs. Thus,
these data demonstrate that LKLF regulates the resting state
and survival of mature T cells. The link between proliferation,
differentiation and survival of highly specialised cell types
could very well serve as a paradigm for the other Sp/XKLF
family members.

BKLF: a proliferation switch?

Only a preliminary report on the phenotype of the BKLF
knockout has appeared (65). BKLF null mice come to term and
develop normally. However, they develop a chronic myelo-
proliferative disease during adulthood. An excess of myeloid
cells is already foundin utero and BKLF null myeloid cells
have an increased proliferative capacityin vitro (65). A
detailed description of the phenotype would be of interest, in
particular in relation to the activated phenotype of LKLF null
T cells. Are similar switches controlling cellular proliferation
operated by BKLF in myeloid and by LKLF in T cells? Fur-
thermore, BKLF levels are reduced in fetal livers of EKLF
knockout mice (55) and it would therefore be interesting to
know what happens to EKLF levels in BKLF null mice.

Who’s done it?

To understand regulation by Sp/XKLF family members it is of
pivotal importance to determine the binding site–transcription
factor relationships that are relevant under physiological
conditions. Knockouts may provide the first clues to answer
this question. However, these data are always indirect because
the effects on gene transcription may be due to secondary
effects of the knockout phenotype. A systematic approach to
tackle this problem for Sp/XKLF proteins has recently been
described. It is based on earlier work in which a DNA-binding
specificity mutant was used to show a directin vivo interaction
between a DNA target site and a transcription factor in
D.melanogaster(66). This protocol was adapted to a function-
ally important GT box motif in theβ-globin LCR that interacts
with Sp/XKLF factors. Sp1, Sp3, BKLF, EKLF and possibly
other Sp factors are present in erythroid cells (50,67). Which of
these factors is directly acting through the GT box motif in the
β-globin LCR? To address this issue, the GT box of theβ-
globin LCR was first mutated to abolish binding of wild-type
Sp/XKLF factors. The amino acids in EKLF and Sp1 involved
in DNA recognition were changed such that the mutated zinc
finger domains would recognise the mutated element (68,69).
The capacity of the mutated Sp1 and EKLF factors to activate
β-globin gene transcription through the mutant GT box was
then assayed in transgenic mice. The analysis showed that
EKLF actsin vivo through this element, resulting in a stronger
DNase I hypersensitive site over the LCR fragment and activation
of β-globin gene transcription. No such effect was observed
with Sp1, emphasising the specific role of EKLF in this context
(67). Thus, in addition to theβ-globin promoter site revealed
by the knockout (see above), EKLF has a functional target site
in the main regulatory element of theβ-globin locus, the LCR.

These data do not exclude a functional role for other Sp fact
in LCR activity. It would be of particular interest to find EKLF
relatives that activate other erythroid-specific genes throu
GT boxes and to extend this analysis to primitive erythro
cells, since these are unaffected by the EKLF knockout. In t
regard, the recently reported FKLF protein is an excitin
candidate (31).

HOW TO GET SPECIFICITY?

The initial characterisation of the different Sp/XKLF family
members provides much information about the potent
functions and activities of these proteins. The most obvio
question, however, concerns the specificity of the individu
family members. That specificity exists is illustrated by th
distinct knockout phenotypes of the different family member
The question remains: how is it obtained? Binding site prefe
ences confer a certain level of specificity. Although all protein
recognise very similar DNA target sites, the relative affinitie
for specific sequences differ. For instance, Sp factors bi
more tightly to GC boxes than to GT boxes (70) while XKL
bind preferentially to GT boxes (9–11,71).

Another level of specificity is obtained by the expressio
patterns of individual family members. Some factors, like Sp
and Sp3, are ubiquitously expressed, and others, like
TIEGs, have a quite widespread distribution (Table 1). A thi
group is restricted to certain cell types, for instance EKLF
erythroid cells. However, it should be mentioned that in mo
cases only the mRNA distribution has been analysed. T
does not necessarily reflect the distribution and the level of t
protein. BTEB1 mRNA is expressed ubiquitously, but the pr
tein was found in only a few tissues (72). A careful analysis
the expression pattern of the protein rather than the mRNA w
yield new insights into the real distribution of the other famil
members that might be helpful in understanding their functio

It is clear that in any given cell type co-expression of seve
family members occurs and we have to assume that th
proteins will compete for the same binding sites. The abunda
of factors may vary among different cell types and und
certain conditions. Alterations in relative abundance have be
reported in some cases. In primary keratinocytes, Sp3 lev
exceed those of Sp1. This Sp3:Sp1 ratio becomes inverte
the cells are allowed to differentiate (73). In NIH 3T3 cells
GKLF mRNA is high in quiescent cells, but almost undetectab
in proliferating cells (27). TIEG1 is induced by TGFβ, EGF
and oestrogens in several cell types (24,25,74,75).

DNA-binding studies are usually performedin vitro on isolated
recognition sequences. However, promoters contain recogni
sequences for many different transcription factors and f
activation requires simultaneous binding of a whole set of tra
scription factors that might bind cooperatively to their sites
act synergistically by other mechanisms. So far, little is know
of how the different Sp/XKLFs proteins act on natural promote
in combination with other transcription factorsin vivo.

That different Sp/XKLF proteins might act in a highly specifi
manner with other transcription factors would be expect
since the domains N-terminal of the zinc finger region ha
little homology between individual family members. Evidenc
for promoter specificity came from experiments with th
EKLF and Sp1 activation domains. In Gal4 fusions, the EKL
activation domain activated the appropriateβ-globin promoter



Nucleic Acids Research, 1999, Vol. 27, No. 152997

of
ing
es.
/

e
ion
c
ns
by
ch-
g
g

ty,
re.

g

A

e
pG

n
e

n

n

ily

n.

he

.

t of
constructs better than the Sp1 activation region (76). That
EKLF provides crucial transactivation functions forβ-globin
expression was also demonstrated in transgenic mice experi-
ments (67).

A further level of specificity could be obtained by interaction
with specific co-activators or co-repressors. In the case of
BKLF, a protein termed mCtBP2 (murine C-terminal binding
protein 2) that binds to the repression domain of BKLF and
that could act as a co-repressor has been cloned (38). EKLF
requires a SWI/SNF-related chromatin remodelling complex,
the so-called EKLF co-activator remodelling complex 1 (E-RC1),
to generate a DNase I hypersensitive, transcriptionally active
β-globin promoter on chromatin templatesin vitro (77). In
addition, the co-activator complex CRSP (cofactor required for
Sp1 activation) is required for transcriptional activation by Sp1
in vitro (78). Whether CRSP is specific for Sp1 or whether it
could also cooperate with other Sp family members remains to
be established.

One could speculate that protein modifications control the
interaction with cofactors that would generate specificity. Sp1
for instance is phosphorylated (79) and glycosylated (80).
EKLF is phosphorylated at serine and threonine residuesin
vivo and the minimal 40 amino acid transactivation domain
contains a casein kinase II phosphorylation site (81). Mutation of
this site abolished the activity of this domain in transactivation
assays. Furthermore, EKLF undergoes post-translational
acetylation within its inhibitory domain and co-transfection
with the acetyltransferases CBP and p300, but not P/CAF,
enhances the transactivation potential of EKLF (82). Altogether,
unravelling the molecular basis for the specificity of individual
Sp/XKLF family members represents a formidable scientific
challenge.

FUTURE DIRECTIONS

Research on Sp/XKLF proteins has made rapid advances in the
last few years, with more and more family members being
identified. Most of the knowledge is derived from biochemical
analyses,in vitro protein–DNA interaction studies and trans-
fection experiments. The knockouts published to date show
that individual family members do have specific functions in
the mouse. However, even knockout mice may not reflect the
whole truth because so little is known about the extent of over-
lapping functions. For instance, inactivation of Sp1 was
expected to have dramatic effects at the cellular level since it
was generally believed that Sp1 is the essential transcription
factor for expression of housekeeping genes. Possibly, Sp1 is
indeed engaged in the expression of these genesin vivo, but
functionally replaced by Sp3 under knockout conditions. In
addition, since deletion of the Sp1 gene leads to lethality early
in development, the role of Sp1 in fully developed tissues
remains an open question. In this regard, it is interesting to note
that mutations of Sp1-binding sites in the LDL receptor and
collagen type Iα1 genes have been associated with hyper-
cholesterolaemia and osteoporosis in humans (83–85).

Conditional disruption (86–88) of the Sp1 gene in specific
tissues at any given stage of development will be an important
step to further unravel the physiological role of Sp1in vivo.
The identification of target genes presents another formidable
challenge. Recent advances in the detection of differentially
expressed genes and the development of DNA microchip

arrays provide very useful tools for high throughput analysis
target genes (89). This should be of great help in understand
the downstream effects that result in the knockout phenotyp

To fully understand the physiological function of the Sp
XKLF proteins, it will be equally important to understand th
mechanisms of their mode of action. Detailed characterisat
of the individual transcription factors, identification of specifi
interaction partners, careful analysis of protein modificatio
and the identification of signals and transduction pathways
which these proteins are regulated will be essential for a me
anistic understanding of transcriptional control by this growin
family of transcription factors. With the steadily increasin
collection of knockout mice and the large arsenal ofin vitro
andin vivoanalysis systems available to the scientific communi
many more exciting results can be expected in the near futu
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