SUPPLEMENTAL DATA

Supplemental Figure 1. (A-C) Fragment analysis electropherograms illustrating fluorescence-based detection of SCA3 cDNAs, performed following the method described in Ponce et al. (2000). Total RNA was extracted from leaves of the Ler wild-type (A), and the sca3-1 mutant (B, C) grown at 20°C (B) and 26°C (C). Two SCA3 splice forms are present in the mutant, whose lengths differ in 8 nt. The horizontal and vertical axes indicate, respectively, the size of the electrophoresed molecules (in nucleotides) and the intensity of fluorophore emissions (in arbitrary units of fluorescent signal strength). The electropherograms were produced by the Genescan 3.7 software and had been simplified by removing the peaks corresponding to the internal molecular weight standard. Every peak is denoted with the name of the mRNA to which it corresponds. (D-F) Sequencing electropherograms showing the 16th-17th exon junction region of the SCA3 gene in cDNA obtained from the wild-type Ler (D), and the sca3-1a (E) and sca3-1b (F) splice forms found in the sca3-1 mutant. The F10 forward primer and the sca3-1aR and sca3-1bR reverse primers (Supplemental Table 1) allowed the separate amplification of the sca3-1a and sca3-1b cDNAs, which were sequenced using the F10 primer. A circle indicates the nucleotide change found in sca3-1a. The 8-nt segment absent from sca3-1b mRNA is underlined.

Supplemental Figure 2. rRNA abundance in the sca3 mutants. Total RNA was extracted from 3-week-old wild-type (Ler and Col-0), and sca3-1/sca3-1 and sca3-2/sca3-2 mutant plants. Eight µg from each line were separated on a denaturing formaldehyde gel and visualized by ethidium bromide staining. The asterisks denote the in vivo breakdown product of chloroplast 23S rRNA. Numbers at the bottom indicate the levels of chloroplast 16S, 23S* and 23S** rRNAs relative to those of the cytoplasmic 25S rRNA in a given sample. rRNA quantification performed was using the Image-J program (http://rsb.info.nih.gov/ij/docs/menus/file.html).

Supplemental Figure 3. Cold sensitivity of the *sca3* mutants. Plants were grown at the temperatures shown. A circle highlights a *sca3-2/sca3-2* seedling grown at 16°C and arrested in the stage of expanded cotyledons, a phenotype never observed in the wild types. All plants were homozygous for the mutations shown. Pictures were taken 21 days after sowing. The scale bar indicates 5 mm.

Supplemental Figure 4. Effect of sucrose on the growth of the *sca3-2* mutant. (A) Nineteen-day-old plants grown on culture media in the presence or absence of sucrose. All plants were homozygous for the mutations shown. The scale bar indicates 5 mm. (B) Percentage of plants with arrested development caused by the absence of sucrose. Data are means of two different replicates of 50-100 seeds, scored three weeks after sowing. We considered as arrested those seedlings displaying expanded cotyledons and a first pair of leaves of small size.

Purpose Primer names		Oligonucleotide sequences $(5^{-}\rightarrow 3^{-})$		
(Forward/Reverse)				
		Forward primer	Reverse primer	
RT-PCR and cycle sequencing	At2g24120F1/R1	GGGATATTTAATGTTCATATTCC	CACGACTCAACACATCATTTC	
	At2g24120F2/R2	GCTCCTCATATTGAGCTTTTG	CACAGCATTTGCATACGTAAG	
	At2g24120F3/R3	CAGGCTAAGCATATGTTAATTC	GAATCCATTATATCATCCAAATG	
	At2g24120F4/R4	CGTGGAACCCTGGAGTTTC	ACCATATACTGACGTCATTAC	
	At2g24120F5/R5	TGTCAGGTGTAGCTTCTTATG	GCAGTTTAGTTCTGTCAATTC	
	At2g24120F6/R6	GCAGTTTAGTTCTGTCAATTC	ATCAGTTTGTCTTTCTTGCAC	
	At2g24120F7/R7	TGAAACATATGTTCTTGGGATG	TAAACCTGTGTCTGAATGCAG	
	At2g24120F8/R8	CCTCTATGCAGGTGGTGTTG	GATAAGGATCTTTGCCAGTGC	
	At2g24120F9ª/R10	TGCAGAAGTGAAAGACATCTG	AACAGCAGTCATCATCATGTG	
	At2g24120F10	GCTGCTGCTTGCTATTCTGCA		
	sca3-1aR		TTCCTAACATCCACAGTGTTAC	
	sca3-1bR		TTCCTAACATCCACCCTCTCG	
	OTC3D/R	TCCTTGCCAAATCATGGCCG	GCATGCATGCGATTCTCCGC	
Confirmation of	ည္ LBa1	TGGTTCACGTAGTGGGCCATCG		
	SCI LBb1	GCGTGGACCGCTTGCTGCAACT		
	RpoTmpF1/R1 ^b	TCTCATATGATGATGACTGC	CATTACTTTCTTTATCAGTT	
	⊢ BastaF1/R1 ^b	GTCCAGCTGCCAGAAACCCACGTCATG	CCATCGTCAACCACTACATCGAGACAAG	
	PE-At1g68990F/R	GGAGCCAGTATATGAGGCTTTA	CTCTTCTGGAATGGGTACATCTT	
	PE-At5g15700F/R	GGTAGCGAAAGGAAGCATGAAT	GCTTGGCTCCATGAGTTTTCAT	
	PE-At2g24120F/R	CTTGGTGATTGTGCAAAGATAATT	GGGAGGAAATGCAGTTCTTTGTT	
	PE-ArthCp048F/R	GGTTGACATATACAACCGACTTT	CCATCCACCAGGAGAGTTTATA	
	PE-ArthCp044F/R	GACGGGTGAATAGAGTGACTTT	GGAGTCGACTCACTTCTTTCAA	
ĉ	PE-ArthCp031F/R	GCTAAGTAAAGCAATGGATAGTTT	CGAATGTCCTTGGAGCTAACTAA	
-PCI	PE-Atcg00190F/R	GCAGGTTAGAATTAGAGATTGATA	GGGTAGCAAACATTCTCTAGAAT	
qRT	PE-ArthCp013F/R	GCCTAGTATACTGCGATTTTTC	CTCGATTTCGAAATATATCGAAAC	
	PE-At1g24260F/R	TTAGCAGTTGAACTTAGTAGCC	CCAAGATCTTCTCCCAACAGAT	
	PE-At1g30380F/R	CCTGTACAAGGCCTGGCAA	CTGATGGCGCAAGTCCGAAT	
	PE-At1g64860F/R	CACACCCTCCATTGATAGGATT	CCAGGGAGACCATTCAAAGAA	
	PE-At2g05070F/R	CTCCCCAAAGCATCTGGTAT	CCCATCTGCTGTGGATTACTT	
	PE-At5g67030F/R	GGCATTTGGTCTAAGGTGAGAA	CAGACTCGATATCCGCTGGTA	
	PE-OTCF/R	TGAAGGGACAAAGGTTGTGTA	CGCAGACAAAGTGGAATGGA	

Supplemental Table 1. Primers used in this work

^aPrimer labeled with 6-FAM phosphoramidite. ^bPrimers used to confirm the presence of a T-DNA insertion in the *rpoT;2* mutant.

Genotype	Chlorophyll a	Chlorophyll b	Carotenoids
Col-0	999.40 ± 122.05	421.18 ± 130.24	288.28 ± 77.34
sca3-2/sca3-2	193.32 ± 70.86	$\textbf{39.70} \pm \textbf{12.48}$	$\textbf{93.74} \pm \textbf{23.91}$
Ler	993.91 ± 122.14	482.22 ± 140.67	256.03 ± 35.17
sca3-1/sca3-1	612.34 ± 148.80	$\textbf{236.95} \pm \textbf{99.94}$	215.12 ± 43.31

Supplemental Table 2. Chlorophyll and carotenoid content in the sca3 mutants

Chlorophylls and carotenoids were extracted as described in Methods. Values represent means \pm standard deviations (in micrograms per gram of fresh weight) of four independent samples, each containing 80 mg of 3-week-old plants. All the mutant values were significantly different (P < 0.05) from those of the corresponding wild type (Col-0 for *sca3-3* and L*er* for *sca3-1*), the only exception being the carotenoid content of *sca3-1*/*sca3-1* plants.