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Abstract

In this appendix, we give a proof of the fact that the expected
activity vector of a random canalizing function with one canalizing
variable is equal to E[�f ] =

�
1
2 ;
1
4 ; : : : ;

1
4

�
:

Let the symbols _ and ^ denote the Boolean disjunction and conjunction,
respectively. Also, recall that ^ takes precedence over _ so that writing
a_ b^ c is the same as a_ (b ^ c) : Let f (x1; : : : ; xK) be a random canalizing
function of the form

f (x1; : : : ; xK) = x1 _ g (x2; : : : ; xK) ;

where g is chosen randomly from the set of all 22
K�1

Boolean functions.
Without loss of generality, we are supposing that the �rst variable, x1, is a
canalizing variable. Furthermore, the discussion for other types of canalizing
functions (e.g., f (x1; : : : ; xK) = x1 ^ g (x2; : : : ; xK)) would be nearly iden-
tical. Our �rst aim is to characterize the activities of each of the variables,
which are also random variables themselves by virtue of f being random. It
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is clear that the activity of variables x2; : : : ; xK should behave identically in
the probabilistic sense if g (x2; : : : ; xK) is a random unbiased function. Con-
sequently, it will su¢ ce to examine the activity of variable x2, with the other
variables behaving identically.
Let us �rst compute �f1 �the activity of x1 in f . Firstly, we have

@f

@x1
= (0 _ g (x2; : : : ; xK))� (1 _ g (x2; : : : ; xK))

= g (x2; : : : ; xK)� 1
= g0 (x2; : : : ; xK) :

Now, since g is a random unbiased function (i.e. p = 1=2), the expected
activity of the canalizing variable x1 is equal to

E
h
�f1

i
= E[2�(K�1) �

X
x2f0;1gK�1

g0 (x2; : : : ; xK)]

= 2�(K�1) �
X

x2f0;1gK�1
E [g0 (x2; : : : ; xK)]

= 2�(K�1) �
X

x2f0;1gK�1

1

2

=
1

2
:

Now let us consider the expected activity of variable x2. We have

@f

@x2
=

�
x1 _ g

�
x(2;0)

��
�
�
x1 _ g

�
x(2;1)

��
=

�
x1 _ g

�
x(2;0)

��
^
�
x1 _ g

�
x(2;1)

��0
_
�
x1 _ g

�
x(2;0)

��0 ^ �x1 _ g �x(2;1)��
=

�
x1 _ g

�
x(2;0)

��
^
�
x01 ^ g0

�
x(2;1)

��
_
�
x01 ^ g0

�
x(2;0)

��
^
�
x1 _ g

�
x(2;1)

��
= x01 ^ g

�
x(2;0)

�
^ g0

�
x(2;1)

�
_ x01 ^ g0

�
x(2;0)

�
^ g

�
x(2;1)

�
= x01 ^

�
g
�
x(2;0)

�
� g

�
x(2;1)

��
= x01 ^

@g

@x2
;
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where in the second equality we used the fact that a � b = a ^ b0 _ a0 ^ b,
in the third equality we used de Morgan�s identity: (a _ b)0 = a0 ^ b0, in the
�fth equality we again used the de�nition of �, and in the last equality, we
used the de�nition of partial derivative. The expected activity of variable x2
is now equal to

E
h
�f2

i
= E[2�(K�1) �

X
x2f0;1gK�1

x01 ^
@g

@x2
]:

Note that @g(x2;:::;xK)
@x2

is a Boolean function of K � 2 variables and the above
summation is taken over all x = (x1; x3; : : : ; xK). Let us break up this
summation into parts, corresponding to x1 = 0 and x1 = 1. We have

E
h
�f2

i
= 2�(K�1) �

24 X
x(1;0)2f0;1gK�1

E[1 ^ @g

@x2
] +

X
x(1;1)2f0;1gK�1

E[0 ^ @g

@x2
]

35
= 2�(K�1) �

X
x(1;0)2f0;1gK�1

E[
@g

@x2
]:

Since g is a random unbiased function, so is @g
@x2
. This essentially means that

the probability that a random function g di¤ers on x(j;0) and x(j;1) is equal
to 1=2. Thus,

E
h
�f2

i
= 2�(K�1) �

X
x(1;0)2f0;1gK�1

1

2

and since there are exactly 2K�2 di¤erent vectors x(1;0) = (0; x3; : : : ; xK),

E
h
�f2

i
= 2�(K�1) � 1

2
� 2K�2 = 1

4
:

Thus, the expected activity of all non-canalizing variables is equal to 1=4.
The expected activity vector is then equal to E[�f ] =

�
1
2
; 1
4
; : : : ; 1

4

�
and the

expected sensitivity is equal to E [s (f)] = 1
2
+ 1

4
� (K � 1) = (K + 1)=4.
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