Table 1. Energetics and dynamics of Coulomb explosion of deuterium containing homonuclear $(D_2)_n$ clusters and heteronuclear $(A_k^{q_k^+}B_\ell^{q_B^+})_n$ or $(A_k^{q_A^+}B_\ell^{q_B^+}C_p^{q_C^+})_n$ clusters at $I_M = 10^{18} \text{ W} \cdot \text{cm}^{-2}$

Cluster	ρ_{mol} ,* Å ⁻³	$q_{ m mol}$ or $q_{ m B}^{\dagger}$	Z, eV SIM [‡] ; EML ^{§¶}	κ SIM [‡] ; EML ^{§¶}	a, fs ⁻¹ SIM; EML [¶]
$(D_2)_n$	0.025	2	12.5; 13.6	0.61; 0.60	0.16; 0.17
$(CD_4)_n$	0.016	8	42.5; 46.7	0.70; 0.60	0.27
$(DI)_n$	0.013	22	115; 165	0.80; 0.83	0.50; 0.45
$(CD_3I)_n$	0.010	26	130; 181	0.80; 0.83	

Simulation data (SIM) are compared with the results of the electrostatic model (EML). The cluster initial radius is related to n by $R_0 = (3n/4\pi\rho_{mol})^{1/3}$.

See text. For the ECLHHs, we neglect a weak cluster size dependence of Z, due to the dependence of $q_{\rm I}$ on n, which arises from ignition and screening effects on inner ionization [Last, I. & Jortner, J. (2004) J. Chem. Phys. **120**, 1336–1347; Last, I. & Jortner, J. (2005) Proc. Natl. Acad. Sci. USA **102**, 1291–1295]. From the time dependence of the first moment of the distribution of the light ions, $\langle R \rangle = \langle R \rangle_0 = a(t - t_{\rm onset})$.

^{*}Initial molecular density of molecular ion.

[†]Ion charge $q_{\text{mol}} = kq_A + \ell q_B + pq_C$ for cases A and B, and $q_{\text{mol}} = \ell q_B + pq_C$ for ECLHH, where $q_1 = 22$ is an average charge in the size domain n = 1061-2171, and $q_C = 4$ for (CD₃I)₂₁₇₁.

 $^{^{\}ddagger}E_{\rm M}(n)=Zn^{2/3}$ and $\kappa=E_{\rm M}(n)/E_{\rm av}(n)$, with Z and κ being independent of n.

[§]See Fig. 3.