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During much of the modem era in epi-
demiology, the analytic methods and causal
models of epidemiology have been directed
toward risk factor effects on individuals.
Recently, epidemiology has turned again to
more broadly addressing population phe-
nomena whose effects on the health ofpopu-
lations cannot be viewed as the sum ofeffects
on the individuals in that population.'-3 These
phenomena include how population patterns
ofexposure, and notjust numbers ofexposed
individuals, affect the health of populations.
For instance, exposure patterns are particu-
larly important detenrinants of infection lev-
els in populations. Changing the pattern of
connections between exposed and unexposed
individuals can often affect population infec-
tion levels more than changing the exposure
status of individuals in that population.47
Similarly, different patterns in the distribution
of income in a population can have popula-
tion health effects beyond the effects attribut-
able to individual incomes.-'0

Analysis of how population level char-
acteristics and patterns ofexposure affect dis-
ease levels could be called "population sys-
tem epidemiology." In a system, in contrast to
a "heap," the arrangement ofelements makes
a difference. When the pattern of exposures
or connections between individuals in a pop-
ulation has the potential to make a difference
to disease levels, we are dealing with a popu-
lation system, not just a heap of individuals.

The thesis of this commentary is that
population system epidemiology needs causal
models that formulate dynamic interactions
between individuals in ways that the suffi-
cient-component cause model" does not, while
still preserving the virtues of this model. The
sufficient-component cause model has been
valuable because it abstracts joint effects of
multiple exposures in individuals. In popula-
tion systems modeling, however, models of
nonlinear population processes are needed
that define how time-varying patterns of con-
nections among individuals affect population
level outcomes. Because infection transmis-
sion models do this explicitly, they define
causal mechanisms that determine how out-
comes in some individuals determine out-
comes in other individuals.

The sufficient-component cause model,
however, has a structure that assumes that
populations can be defmed by linear combi-
nations of individuals. Rather than modeling
the origins ofdependencies between individu-
als that make a population different than the

sum of its individuals, the structure ofthe suf-
ficient-component cause model requires that
variables be defined so that the outcome of
each individual is independently determined.
Schwartz and Carpenter in this issue employ
the sufficient-component cause model to ana-
lyze effects whose origins lie at a population
rather than an individual level.'2 We will
attempt to show here, however, the deficien-
cies ofthe sufficient-component cause model
for modeling population-level effects.

SomeAspects ofCausal Models

To contrast sufficient-component cause
models with infection transmission models,
we should consider first the nature of causal
models. Causal models help scientists by
abstracting particular elements of a causal
phenomenon while discarding details that
get in the way of deriving useful theory and
insights about the phenomenon under study.

Reality, especially the biological and
social reality with which epidemiology deals,
is diverse and multifaceted. But theory, by its
very nature, must be focused and unifying. A
narrow focus on a causal phenomenon that dis-
regards realistic details can help achieve wide
applicability oftheory. For example, to develop
a revolutionizing and productive theory about
bodies in motion, Newton had to ignore Aris-
totle's insistence that the slowing ofbodies in
motion had to be a central part of theories of
motion because the observation of such slow-
ing was so universal. To formulate universal
laws ofmotion, Newton used amodel ofmotion
that ignored this universal reality. Newton's
laws ofmotion are validated by their theoreti-
cal utility, not their fit to reality.

Sufficient-component cause theory, in a
similar fashion to Newton's laws, ignores
several aspects of reality but has demon-
strated its utility for developing theory about
the effects of multiple exposures in individu-
als. The ability of this model to generate pro-
ductive new insights is linked to the way it
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ignores details on timing of exposure and on
population phenomena arising from patterns
of connection between individuals that it
cannot neatly encompass. Transmission sys-
tem theory, on the other hand, has employed
dynamic models in which timing and con-
nection between individuals are central but
joint effects ofmultiple exposures are ignored.
Rather than modeling discrete individuals,
transmission system models most commonly
model interactions between continuous popu-
lation segments. This enables transmission
system theory to use differential equations to
focus on population rather than individual
outcomes.

These 2 contrasting approaches to mod-
eling causal issues of central concern to epi-
demiology focus on such different phenom-
ena as to seem perhaps incommensurate. We
propose, however, that causal model formula-
tions unifying the virtues of each approach
are needed and possible.

The Structure ofEpidemiologic
Data

Perhaps the best way to see the need for
integrating sufficient-component cause the-
ory with transmission theory is to begin with
data rather than theory. Standard epidemio-
logic analysis methods array data for separate
individuals into rows and data on both out-
come and predictor variables for each individ-
ual into columns. This is represented in the
individual data plane in Figure 1. The fact that
most standard analyses do not view individu-
als as being part ofa system is manifest by the
assumption that the row an individual is in
(i.e., the arrangement of individuals) makes
no difference to the results of standard analy-
ses. This 2-dimensional data arrangement at
the individual level can be viewed as the face
ofa 3-dimensional cube, depicted in Figure 1,
where the third dimension defines the pattern
of connections between individuals that gen-
erate population system phenomena.

Both social network analysis'3 and phy-
logenetic analysis'4 are performed in the
network plane that is perpendicular to the
individual data plane. For these analytic meth-
ods, the data are arranged as a square matrix
with individuals along both axes. The values
in the matrix represent degrees of connec-
tion between individuals. If connections are
described dichotomously, there may be a 1 or
a 0 in each cell depending on whether a con-
nection between 2 individuals exists, or there
may be multiple continuous connection vari-
ables. These might have directionality from
axis 1 to axis 2, or vice versa. In the case of
phylogenetic analysis using DNA sequence
data, there might be a variable for each base

pair location indicating identity or difference
at the site.

Many variables collected in field studies
might not directly measure degrees of con-
nection between individuals; they might only
reflect chances of having connections with
different groups of individuals. One class of
variables of this type includes variables that
describe an aspect of a contact that both indi-
viduals report identically. For example, the
type of sex act or the courtship time between
meeting and having sex can be used to reflect
who is likely to be connected to whom. Geo-
graphic or social locations where contacts are

made could be used to reflect many different
types of contact beyond sexual contact. The
intrinsic value of these variables lies in the
network plane. If they are analyzed only in
the individual data plane, much oftheir value
will be lost because their value to population
systems epidemiology lies in describing rela-
tionships in the network plane.

Figure 1 is presented for its heuristic value.
It is not an exact reprsentation ofthe shape of
epidemiologic data needed for the analysis of
any particular model. The number of different
connection variables may not correspond to the
nunber ofindividual variables measured, as the
exisece ofa layer ofconnection for each indi-
vidual variable in the figure might imply.
Although Figure 1 does not include the time
dimension that is central to dynamic analysis of
population systems, it captures the essential
argument we wish to make: that the dimension

of connections between individuals is an inte-
gral part of epidemiologic data, even if it is
ignored in the data analysis itself.

Standard epidemiologic analyses assume
that causal events in the dimension connecting
individuals are irrelevant. Even models that
take into account dependence between indi-

viduals generated by clustered sampling
assume that the outcome in one individual is
independent ofthe outcome in other individu-
als. This assumption is also inherent to any use
of the sufficient-component cause model to
represent populations. This assumption is vio-
lated whenever transmission of infection gen-

erates new sources of infectious agent or

whenever the level ofinfection in one segment
of a population affects the risk of infection in
other population segments. Because this viola-
tion is so readily apparent for infectious dis-
eases, we use infectious disease examples in
this commentary. But the existence of social
network connections is also likely to have
other health effects that violate this standard
assumption of epidemiologic analysis. Exam-
ples include social support, social stress, trans-
mission of behavior norms, transmission of
knowledge that influences behavior, and trans-
mission ofpower relationships imposing order
or generating exploitation.

Because standard epidemiologic analy-
ses and the sufficient-component cause

model ignore network connections between
individuals, they also ignore the larger
political, cultural, and economic forces that
determine different patterns of network
connections. Models that incorporate net-
work structure could help highlight these
important determinants of disease and
bring them into the realm of epidemiologic
investigation.

Network Connections, Individual
Risk, and Population Risk

We can tiink ofinfection as flowing in the
network plane that is ignored by standard ana-

lytic methods in epidemiology. Transmission
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FIGURE 1-The 3-dimensional shape of epidemiologic data.
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system models are constructed mainly so that
their contact rates and transmission probabili-
ties describe causal phenomena in this plane.
Transmission models must incorporate the
interactions of all individuals in a population.

Epidemiologic data, in contrast, usually
deal only with a sample of individuals from
the population. Consequently, the most com-
mon network data in epidemiology indicate
only the class of individuals contacted rather
than the exact individuals who were con-
tacted. Data gathered from individuals about
their contacts are said to be "egocentric": they
describe the contacts around individuals but
not the overall population pattern of contacts.
The examples we present in Figures 2 and 3
use complete network data. In our examples,
circles represent individuals and lines repre-
sent the existence of a connection between
individuals. Time relationships are ignored.

The example in Figure 2 demonstrates
that egocentric data are critically incom-
plete even when all the individuals in the
population are identical. Egocentric data
describe the connections of individuals but
not how those connections are linked into a
population network. Such data from either
population A or population B in Figure 2
would indicate that each individual is con-
nected to 2 other individuals. But egocen-
tric information does not establish whether
those individuals form chains that sustain
transmission. In A, they would; in B, they
would not. Although all individuals in pop-
ulations with either pattern A or B would
appear to be the same, the population with
patternA would have higher levels of infec-
tion. This illustrates the fact that the 2 pop-
ulations are not just the sum of the indi-
viduals therein as would be assumed by
analysis restricted to the individual data
plane. The 2 populations need to be defined
by the pattern of connections between indi-
viduals in the network plane as well.

Different Effects ofNetwork
Roles and Individual Risk on
Population Risk

In Figure 2, all individuals in a network
play the same role in their network. Now we
consider an example in which individuals play
different roles in their network. In Figure 3,
individuals with 3 contacts can be distin-
guished by their proximity to a connecting link
between 2 groups. Moreover, most individuals
have 3 connections, but 1 individual has only 2.

Consider the situation in which transmis-
sion across each link occurs with some speci-
fied probability and there is random introduc-
tion of infection into the network. A range of
transimssion probability values exists in which

Pattern A
U,

Patter B
0dp--~~~~~~~b
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FIGURE 2-Distinct patterns of connection between Identical individuals with 2
connections.

the individual with only 2 links has the lowest
chance of becoming infected after random
introduction of infection to the population.
Thus, fiom an individual risk view, this individ-
ual has the lowest risk of infection. The contri-
bution of that individual to infection levels in
the population system can, however, at certain
tnismssion probabilities, be greater than that
of any other individual. Eliminating one con-
nection to this individual can do more to lower
average infection levels in the population after
introduction of infection than eliminating a
connection to any other individual. Any risk
analysis assuming independence of outcomes
in individuals at risk would miss this fact.

Risk Factorsfor Transmission

The failure of individual risk analyses to
identify key individuals determining trans-
mission at the population level is particularly
notable when individuals are distinguished by
risk factor status. Consider 2 populations in
which for each individual in the first popula-
tion, there is a corresponding individual in
the second population with exactly the same
risk factors and exactly the same history of
contacts. Any description of individuals in
the individual data plane will find these 2
populations to be identical: they differ only in
the way individuals are connected. By chang-
ing contact patterns, however, we can change
the level of infection from zero to complete.

Consider the trasmission of an infection
that does not induce immunity in a population
with individuals who do and do not have a risk
factor. Suppose for the sake of exposition that

this risk factor is a gene that increases suscepti-
bility to infection. Individuals in the group with
the gene might make all of their contacts with
individuals who do not have this gene. If these
latter individuals are incapable of sustaining
chains of transmission on their own, then the
population will not sustain transmission. If
individuals with the gene make all of their con-
tacts with each other, infection might flow
quickly between them but not at all to the
group without the gene. If individuals in the
group with the gene make just enough contacts
with each other to sustain circulation between
them, they might make the rest oftheir contacts
with the group without the gene and infect
many or most ofthat group's members.

Even if data are available on whether
each contact ofan individual does or does not
have a susceptibility gene, analysis ofthis net-
work data in the individual data plane cannot
determine the population level of infection.
Thus, individual risks for infection cannot be
determined. This is true regardless ofwhether
the population system is at equilibrium. Given
such data, a transmission model analysis cap-
turing phenomena occurring in the network
plane can detrmine expected infection levels.

The need for network analysis is further
emphasized when the gene under considera-
tion does not increase the chances that an
individual will be infected but does increase
the level of infectious agent in the event of
infection and therefore increases contagious-
ness. Gene effects on susceptibility and con-
tagiousness can be quite distinct, because the
survival ofa transmitted agent can depend on
very different things than the proliferation of
the agent in the host. Standard risk factor
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analysis has a strong bias to detect risk fac-
tors for susceptibility rather than risk fac-
tors for contagiousness. By defining expo-
sure as contact with someone who has the
gene under consideration, a standard analy-
sis could detect a risk factor affecting conta-
giousness. Given difficulties in determining
the identity and gene status of individuals
contacted, however, the ability to detect con-
tagiousness effects will be limited. Just as in
the susceptibility case, even if perfect mea-
surements are available, an individual-level
analysis cannot determine population levels
of infection or individual infection risks in a
transmission system.

An important observation that does not
even fall into the realm of individual-level
analysis is that ifthe gene we are considering
increases contagiousness, it will affect popu-
lation levels of infection more than if it
affects susceptibility. A gene might make an
individual x times as susceptible to infection
or x times as contagious if infected. An
increase in contagiousness will raise infection
to higher levels than will a comparable
increase in susceptibility. Not only do conta-
giousness risk factors have greater effects
than susceptibility risk factors, they are also
likely to be more frequent. There are more
opportunities to affect agent replication once
it is underway than there are opportunities to
keep replication from beginning. Standard
methods in epidemiology do not focus on
contagiousness risk factors, whereas trans-
mission system analyses more naturally focus
on such risk factors. Transmission system
analysis may thus not only move us beyond a
risk factor focus but also enhance the focus on
a class of risk factors that has been ignored.

The Sufficient-Component
Cause Model

The sufficient-component cause model
has been and should continue to be a produc-
tive causal model. It has focused and unified
epidemiologic thinking,'I clarified concepts
of confounding and effect modification, and
helped to clarify the mathematical relation-
ships for assessing the public health impact
of exposure to risk factors.'5 It has served as
the basis for defining observations that can
distinguish whether 2 risk factors act in dis-
tinct causal pathways, have distinct roles in
the same causal pathway, or play the same
role in pathogenesis.16 Its limitations for
analysis of infectious disease effects, how-
ever, have long been noted.'7

Two such limitations deserve discussion.
The first is that the sufficient-component cause
model does not treat time in a fashion that
allows for dynamic analysis. For a dynamic

analysis, dynamic processes must be explicitly
formulated in time. In the sufficient-compo-
nent cause model, time is invoked in the defmi-
tion ofwhether a factor is present or absent but
dynamic processes are not formulated.

The second limitation of the sufficient-
component cause model is that effects in the
network plane are not incorporated in an ana-
lyzable fashion. The examplesjust provided are
meant to make that clear. The problem is not
just that defining exposure as a function of the
contacts made is unwieldy in the context ofthe
sufficient-component cause model. Rather, the
problem is that individual characteistics alone
do not detmine the population risks. The out-
come ofthe sufficient-component cause model
is a dichotomous disease classification ofindi-
viduals. The way that the outcome in one indi-
vidual depends on the outcomes in other indi-
viduals, though, makes it impossible for the
sufficient-component cause model to define
individual infection risks in a tranission sys-
tem before infection spreads in the population.
In nonlinear population systems, such as infec-
tious agent transmission systems, population
risks are not the sum of individual risks as the
sufficient-component model assumes.

Transmission Models

Transmission system models explicitly
model phenomena in the network plane that
most epidemiologic analysis ignores. These
models have a long and exponentially grow-
ing tradition of development in epidemiol-
ogy. Many useful concepts coming out ofthis
tradition have been presented by Anderson
and May.'8 The differential equation models
commonly used in this tradition handle time
explicitly and therefore offer a basis for
dynamic analysis that the sufficient-compo-
nent cause model lacks. Perhaps the charac-
teristic that most distinguishes transmission
models from the sufficient-component cause
model is that they model nonlinear popula-
tion effects.4 Nonlinearity of effects at the
population system level has 2 important
implications: first, individual effects will not
sum to population effects, and, second, pat-
terns of connection between individuals will
have effects at the population level.

The dominant tradition in transmission
system modeling ignores many aspects of
reality so that, as with Newton's model of
motion, the essence of the phenomenon
under study can be illuminated, insights can
be gained, and new analytic tools can be
developed. The major simplification made by
transmission models is that populations are
treated as continuous entities and individuals
are ignored. This simplification is intrinsic to
the use of differential equation models, and it

imposes further simplifications with regard
to contact patterns. The type of differential
equations commonly used to construct trans-
mission system models cannot capture details
of individual connection patterns like those
seen in Figures 2 and 3. Moreover, in differ-
ential equation transmission models, contact
is an instantaneous event. Differential equa-
tions can be defined that incorporate continu-
ous population segments in which the basic
units are not individuals but pairs ofindividu-
als.'9 In this type of differential equation
model, contact can have duration and need
not be instantaneous. But contact models of
this type still cannot define individual net-
works ofthe type in Figure 2 or 3.

Recently there has been better acceptance
of discrete individual models in the transmis-
sion system modeling tradition. Discrete indi-
vidual models of transmission have been espe-
cially useful in the examination of sexually
transmitted infections.2-24 The reason for this
acceptance is that individual network patterns
in which contacts occur in ongoing relation-
ships are now seen to be important determi-
nants ofpopulation infection levels ofsexually
transmitted infections. Individual models can
capture these determinants better than differ-
ential equation models.

Blended Transmission and
Sufficient-Component Cause
Models

One reason for promoting the develop-
ment of transmission models with discrete
individuals who connect to each other in pop-
ulation pattems is that by including individu-
als in transmission models, one can meld the
theoretical insights of transmission models
with the theoretical insights of the sufficient-
component cause model. Such blended mod-
els could provide a basis for fully using all the
dimensions of epidemiologic data. A new
approach we have taken to discrete individual
models of transmission systems may offer
some advantages in this endeavor.25 One
advantage of this new approach is that it
allows for theoretical model analysis that is
difficult or impossible with other approaches.
Another advantage is that it explicitly incor-
porates data on the social and geographic set-
ting of contact; such data are readily col-
lectible in epidemiologic studies. Most other
discrete individual models incorporate only
data from the network plane relevant to con-
nections between specific individuals, but
such data are not readily collectible in epi-
demiologic studies.

The sufficient-component cause model
cannot be integrated directly into transmission
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models because it lacks an explicit integration
of time. Graph theoretic models may have an
advantage over the sufficient-component
cause model in this regard.26 Graph theoretic
models, like the sufficient-component cause
model, are designed to address the joint effects
in individuals ofmultiple variables. By includ-
ing time relationships in arrows instead of
only in variable definitions, graph theoretic
models clarify some aspects of confounding
that were not so readily apparent from analy-
sis ofthe sufficient-component cause model.26
In their current form, however, graph theoretic
models do not incorporate data relevant to the
network plane. They model only individual
effects, and they assume that there are no
dependencies between individuals. In the
same manner that G-estimation methods have
been used to incorporate time data,27 however,
graph theoretic models might be elaborated to
incorporate network data.

The point of this commentary is not to
advocate any particular approach to develop-
ing integrative causal models. Rather, we
argue that the theoretical foundation for popu-
lation system epidemiology cannot depend
wholly on individual-level models. Dynamic
models of population processes are needed
that incorporate exposure patterns, time, and
contact networks in the manner of transmis-
sion models while also incorporating the joint
effects ofmultiple exposures in individuals in
the manner ofthe sufficient-component cause
model. Bringing both of these traditions
together could enhance the pursuit of a popu-
lation systems approach to epidemiology. D
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