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STATISTICS FROM THE INSIDE

17. Survival data

M J R Healy

(1) Introduction and terminology
In certain situations a quantity of interest is the
time interval between two events. The statisti-
cal theory for handling data of this kind has
grown up in the cancer research community
where the two events are commonly diagnosis
and death. As a result the appropriate methods
are often referred to under the heading of
survival data. It is important to realise that
these methods are of much wider applicability.
The terminal event may be relapse rather than
death, or it may be a desirable outcome such as
a manifest response to treatment. None the
less, the survival terminology is convenient and
I shall use it here.
The statistical analysis of survival data

presents two special problems which often
make it inappropriate to use the commoner
statistical methods. To begin with, the fre-
quency distribution of survival times is usually
very far from being Normal, or even of a form
transformable to Normality by a simple trans-
formation. Instead the distribution is often
extremely skew with a relatively small propor-
tion of survival times being much longer than
the rest. Statistical models exist for data of this
kind. A very simple distribution which some-
times provides a realistic model for survival
times is the exponential distribution, illus-
trated in fig 1. The distribution has only one
parameter, and it has the odd characteristic
that the average length of survival for any
individual who is still alive is the same no
matter how long that individual has survived so
far (the average time to a prize for a regular
player of the National Lottery has this prop-
erty). More general distributions such as the
Weibull and Gompertz distributions have
proved to be applicable to certain types of
cancer survival data.

Suppose that the proportion of the popula-
tion dying before time t is given by a function
F(t) (note that what is plotted in fig 1 is the
proportion surviving, which is S(t)=1-F(t)).
Then the proportion of the total which dies
between times t1 and t2 is F(t2)-F(tj). The
survivors at time t1 are a proportion 1 -F(tl) of
the total and so the proportion of these
survivors who die in the interval is

F(t2) -F(tj)
1-F(tl)

Ifwe divide this proportion by the length of the
interval, (t2 - tl), we get the death rate across

the interval. Now let (t2-tl) be very small.
Then {F(t2)-F(t1)}/(t2-t) becomes the slope
of the curve of F(t) against t at time t1 which we
write as f(tl), and the death rate at time t1 is
given by

-(tl) f(t)
1-F(tl)

This 'instantaneous death rate' is called the
hazard. For an exponential distribution of
survival times, the hazard is constant - the
death rate is the same for long term as for short
term survivors. In other models the hazard may
increase or decrease with time. For all causes
of death in the general population the hazard
decreases sharply in early infancy and then
rises steadily into old age.
The second peculiarity of survival time data

as they arise in the context of clinical investiga-
tions lies in the fact that at the time the data are
to be evaluated the terminating event may not
have yet occurred for some of the subjects. In a
trial of an anticancer treatment, for example,
with death as the terminating event, some of
the patients may still be alive at the end of the
trial. For such cases we do not known the
survival time exactly, but we do know that it
is greater than the duration of observation so
far (this, of course, may differ from one subject
to another). Times of this nature are said
to be censored, and the results of a study
involving survival times will typically be a
mixture of censored and exactly known times.
Conventional methods of analysis cannot
handle this kind of data.
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Figure 1 Exponential distribution ofsurvival times.
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17. Survival data

(2) Plotting the survival curve
As usual, the first thing that needs doing
when confronted with a sample of survival
times is to make some kind of plot of the sur-
vival function, S(t)= 1 -F(t). The usual way of
doing this is due to Kaplan and Meier.
Suppose the survival times are recorded to the
nearest day. Suppose too that at the start of day
j there were nj subjects still alive (and so at risk
of dying) and that on that day a number dj
(usually 0 or 1) ofthem died. Then an estimate
of the probability of dying on day j assuming
survival up to that time is simply qj=d/nj. The
estimated probability of one of the original
subjects surviving up to day k can now be
found by multiplying together all the quantities
pj=l-qj for all the days from 0 up to k (we

k
write this as i where the n symbol is

analogous to the more familiar l;). Note
that most of the dj will be equal to 0 (only a
minority ofdays will see a death occurring) and
for the corresponding days pj will equal 1. This
means that the product can be taken simply
over the days on which one or more deaths
occur.
A miniature example is shown in tables 1

and 2. The estimated survival curve is shown
in fig 2. Note that it consists of horizontal lines
with a step as each of the deaths occur. The
censored survival times are marked as ticks on
the horizontal stretches.
The interpretation of Kaplan-Meier plots

does require some experience. In particular,
too much attention must not be paid to the
right hand ends of the plots where the numbers
surviving are small (the example above is
obviously too small to carry any weight of
interpretation). It is good practice to label the
time axis with the numbers surviving at regular
intervals.

(3) Comparing two or more groups
If in a clinical trial survival time is used as an
outcome, we shall probably want to make a
significance test for the difference between the
survival curves for the treated and control
groups (I assume for simplicity that simple
randomisation had been used with no pairing
or matching). One apparently simple tech-
nique is to compare the proportions surviving
at some fixed time. If there is no censoring
these will be binomial variates and the com-
parison is straightforward using standard
methods. This technique has the merit of
comprehensibility, both to clinician and
patient. It has the drawback of wasting much
of the available information, and it must not be
used if some of the observations are censored.
In particular, it is not sufficient when estimat-
ing survival at, say, five years simply to ignore

Table 1

Survival times (days)

7 12 15+ 28 33+ 47+ 79 103 116+

The times followed by a + sign are censored.

Table 2 Kaplan-Meier plot calculations for data in table 1

Day At risk Deaths dj/nj 1-q
j nj dj qj Pi Hip1

0 9 0 0 1 1-000
7 9 1 0 111 0-889 0-889
12 8 1 0-125 0-875 0-778
28 6 1 0-167 0-833 0-648
79 3 1 0 333 0-667 0-432
103 2 1 0 500 0500 0-216

subjects whose length of follow up is less than
five years. It is obviously invalid to select the
time of evaluation after rather than before
inspection of the data.

Various significance tests can be devised
using some kind of parametric form for the
population survival curves, but it is simpler to
use a non-parametric approach which makes
no assumption about the shapes of the curves.
A suitable test is known (for obscure theoreti-
cal reasons) as the log rank test.
The principle of the log rank test is quite

simple. A miniature example is shown in tables
3 and 4 and the two survival curves are plotted
in fig 3. The first step is to tabulate the
numbers of survivors (nj) and the number
dying (dj) for every day on which one or more
deaths occur in either of the samples. In table 4
on day 7, for example, one death occurred at a
time when there were nine survivors in group 1
and eight in group 2. If the null hypothesis that
the two survival curves are the same is true,
the 'expected' numbers of deaths on that day
would be proportional to the numbers of
survivors at risk, 9/17 in group 1 and 8/17 in
group 2. (I put 'expected' in quotes as under
some exceptional circumstances the total
'expected' number of deaths may exceed the
total number of the group.) In the same way,
on day 87 the numbers at risk have been
reduced by deaths and censoring to two in
group 1 and four in group 2. There was one
death on that day, so the 'expected' numbers
were 2/6 and 4/6 respectively. These expected
numbers are shown in table 4 as el and e2. Now
form the totals of the observed and expected
deaths for each of the groups, calling them 01,
02 and E1, E2. Then the quantity

(01 -E1)2+(+2-E2)2
E1 E2
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Figure 2 Kaplan-Meier plot of data from table 1.
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Figure 3 Kaplan-Meier plot of data from table 3.

is approximately a x2 with 1 degree offreedom.
In the example, XI2=128, giving p=O-26 and
no convincing evidence for a difference
between the survival curves - not surprising
with such tiny samples.
The log rank test, like all other statistical

techniques, needs to be handled with care. It
is designed to be especially sensitive to
departures from the null hypothesis in which
the two hazards ( the 'instantaneous death
rates') are in a constant ratio independent of
time. It is very insensitive to situations in
which the survival curves cross, so that the
death rate in one of the groups is initially
greater than that in the other but subsequently
becomes less. As always, an initial plot of the
data is imperative. With this proviso it is a use-
ful technique. The analogy with the standard
X2 test can be pursued to take in comparisons
between three or more groups, including a
test for trend if the groups are defined by a
quantitative factor.

(4) A regression approach
The log rank test, like most non-parametric
methods, provides nothing but a mere signifi-
cance test. At first glance it seems difficult to
know how we can estimate the difference
between two survival curves when these can
differ from each other in an infinite number of
ways. A solution was provided by D R Cox
who suggested making the assumption men-
tioned above in connection with the log rank
test, that the ratio of the hazards is the same at
all time points. This is known as the propor-
tional hazards model - note that it does not
have to make any assumptions about the actual
shapes of the curves, only for the relationship
between them. It is often described as a semi-
parametric model.

Suppose then that we have a number of
subjects each of whom is described by the
values of one or more covariates xl, x2, ... and

Table 3 Survival times (days) for two groups

Group 1
7 12 15+ 28 33+ 47+ 79 103 116+

Group 2
14 42 54+ 87 110+ 136 152 198+

The times followed by a + sign are censored.

Table 4 Log rank test calculations for data in table 3

At risk Observed deaths 'Expected deaths'
Day
I n0j n2j ij 02j e e2

7 9 8 1 0 0-529 0-471
12 8 8 1 0 0-500 0-500
14 7 8 0 1 0-467 0 533
28 6 7 1 0 0-462 0-538
42 4 7 0 1 0-364 0-636
79 3 5 1 0 0 375 0-625
87 2 5 0 1 0-286 0-714
103 2 4 1 0 0-333 0-667
136 0 3 0 1 0-000 1 000
152 0 2 0 1 0.000 1 000
Total 5 5 3-316 6-684

2 (5-3.316)2 (5-6.684)2Xi2 -31 + -=1-28336 6-684

a hazard function denoted by X(t). The x's may
be quantitative, such as age, blood pressure or
carcinoembryonic antigen level, or they may be
dummy variables defining groupings such as
sex or treatment. If the hazards for all these
subjects are proportional, the logs of the haz-
ards will be additive and we can write

log{(t) } =log{XO(t)}+PIxI+12X2+±** +E
where e is an error term and XO(t) is a baseline
hazard applying to a subject all ofwhose x's are
equal to 0. This looks like a regression equa-
tion and can in some ways be treated as such.
Fitting it involves heavy arithmetic, but suit-
able computer programs are readily available.
The method is called proportional hazards
regression or Cox regression after its originator.
The interpretation of the regression coeffi-

cients is reasonably straightforward. If
I3 = +0 3 for example, this means that the log
hazard for a subject is increased by 03 for a
unit increase in xl. The hazard itself is
increased by a factor of e+0 3= 135, in fact by
35%. The fitting procedure produces esti-
mated standard errors for the coefficients and
significance tests and confidence limits can be
calculated in the usual way.

Proportional hazards regression can be
applied to the data in table 3 by introducing a
dummy variable which takes the value 0 for all
the subjects in group 1 and 1 for all the sub-
jects in group 2. The result is a regression
coefficient of -0-88 (SE 074) giving 94%
confidence limits of -2-33 to +057 (the
relevant value of t is 1 96, with infinite
degrees of freedom). Taking exponentials, the
relative hazard is estimated as 0-41 with 95%
limits of 0 10 to 177. Dividing the coefficient
by its standard error gives to,==1 19. The
square of this is 1-41, in fair agreement with
the x2 value from the log rank test. Both of
these techniques assume large samples (with-
out being very clear about how large is large)
and the illustrative data that I have used in
table 3 are too scanty for the results to be
seriously believed.

Proportional hazards regression possesses
all the complexities of ordinary multiple
regression (for which see the previous two
articles in this series) together with others
peculiar to itself. The assumption of propor-
tional hazards is obviously very important and
adherence to it is one aspect of goodness of fit.
There are methods, both arithmetic and
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graphical, for investigating goodness of fit, but
they are in no way straightforward. Those
contemplating the use of the method are
strongly advised to collaborate with a statisti-
cian who has had extensive experience of it.

(5) Further reading
There are many textbooks dealing with the
analysis of survival data, but they are mostly

written for statisticians. For clinical readers
there are a pair of articles by a group of leading
medical statisticians which deserve to be read
by anyone contemplating the use of data of this
type.' 2

1 Peto R, Pike MC, Armitage P, et al. Design and analysis of
randomized clinical trials requiring prolonged observation
of each patient. BrJ Cancer 1976; 34: 585-612.

2 Peto R, Pike MC, Armitage P, et al. Design and analysis of
randomized clinical trials requiring prolonged observation
of each patient. BrJ Cancer 1977; 35: 1-39.

Hirschsprung's enterocolitis

Enterocolitis of uncertain cause is a feared complication of
Hirschsprung's disease. It occurred in 57 (34%) of 168 children
with Hirschsprung's disease in Michigan (Essam A Elhalaby and
colleagues, Journal of Pediatric Surgery 1995; 30: 76-83). In 21
(12-5%) it was the presenting feature of the Hirschsprung's
disease. Thirty six children (63%) developed it both before and
after operation, 13 (23%) had it only preoperatively, and eight
(14%) only after operation. The 57 children had 119 bouts of
enterocolitis and the main clinical features were: abdominal
distension (93% of episodes), explosive diarrhoea (69%), and
vomiting (5 1/%). Fever was a feature of 34% of episodes and
lethargy was noted in 27%. Rectal bleeding occurred in six
episodes (5%) and colonic perforation in three (2-5%). Thirty
one children (54%) had diarrhoea persisting for weeks or
months and in them growth failure was common. In most
children there was no significant bacterial or viral infection in the
stools but enteropathogenic Escherichia coli and retrovirus were
each found separately in six (7%) episodes.

Plain abdominal x ray films were taken during 72 acute
episodes and 78 between episodes. Dilatation of colon and/or
small bowel and multiple fluid levels were all seen commonly
both during and between attacks but the 'intestinal cut-off sign'
(sudden cessation of intestinal gas) was present in 74% of the
radiographs taken during an attack but only 14% of those taken
between attacks. Intramural or intraperitoneal gas was seen on
only two occasions. Barium enema appeared to add little of
importance to the clinical evaluation.
Management was largely conservative with rectal tube

decompression, correction of fluid balance, and antibiotics
although 14 children underwent secondary surgical procedures
because ofrecurrent bouts of enterocolitis. There were no deaths
directly caused by enterocolitis but nine patients had serious
complications; intestinal obstruction (n=5, with gangrenous
bowel in two), colonic perforation (n=2), and cardiac arrest
((n= 1). The authors attribute their 100% survival to a high
degree of suspicion of enterocolitis and early treatment.
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