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Cell Cycle Controls: Potential Targets for
Chemical Carcinogens?
by Cynthia A. Afshari1 23 and J. Carl Barrett'

The progression of the cell cycle is controlled by the action of both positive and negative
growth regulators. The key players in this activity include a family of cyclins and cyclin-depen-
dent kinases, which are themselves regulated by other kinases and phosphatases. Maintenance
of balanced cell cycle controls may be directly linked to genomic stability. Loss of the check-
points involved in cell cycle control may result in unrepaired DNA damage during DNA synthe-
sis or mitosis leading to genetic mutations and contributing to carcinogenesis.

This overview provides a general review of cell cycle
control and describes how chemicals may interfere
with these controls, leading to neoplastic development.
For us to discuss mechanisms of cell cycle control, the
cell cycle must first be defined. The most basic cell
cycle, which exists- in the cleavage stage of frog
embryos, consists of only two phases, DNA synthesis
(S phase) and mitosis (M phase) or cell division (1).
This cell cycle lacks two additional phases or gaps (G1
and G2) observed in more complex cycles in adult cells
and most embryonic cells. The G1 and G2 gaps, inter-
vening between the M- and the S-phase, allow growth
control points to regulate cell size and cell number and
to monitor the cell's environment for nutrients and
growth signals (2,3). The existence of G1 and G2 phases
also allows the cell to insure that certain intracellular
events are completed before the cell progresses to the
next phase of the cell cycle (4). For example, DNA
replication and chromosome segregation must be com-
pleted before a cell continues through the cell cycle.
These controls have been referred to as cell cycle
checkpoints (4). Several G1 checkpoints have been pro-
posed for mammalian fibroblasts (5). The most studied
of these is the R, or restriction, point (6). Cells that do
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not have sufficient nutrients may arrest in late G1 at
this point. It has been proposed that critical proteins
must accumulate to a certain level before a cell can
pass the R point to enter S-phase and that some cancer
cells may stabilize these proteins and therefore over-
ride these checkpoints. This may lead to infidelity in
replication and provide a partial explanation for the
observance of the high level of chromosome aberra-
tions in cancer cells (4).

Cell Cycle Control Proteins
Several classes of proteins are important in cell cycle

control. Progression through the cell cycle depends on
the action of a family of kinases known as cyclin-depen-
dent kinases (cdk) and the interaction of these kinases
with another class of proteins called cyclins. The activi-
ty of these complexes in turn appears to be regulated
by various phosphatases and kinases.
The first member of the cdk family identified was

the S. pombe cdc2 gene (Table 1). Cell division cycle
(cdc) mutants in yeast have mutations in specific genes
involved in cell cycle progression. Conditional muta-
tions of these genes results in cell arrest at very specif-
ic points of the cell cycle when the mutants are placed
under restrictive conditions (7). Study of these mutants
led to the cloning of the cdc2 gene, which codes for a
protein (8) that is a key regulator of the cell cycle in
eukaryotic cells including yeast and human cells. In
fact, the human cdc2 gene was cloned by functional
complementation of the yeast cdc2 mutant by human
cDNA (9), indicating that this gene is highly conserved
between yeast and humans. In addition, the cdc2 gene
has been cloned in mouse (10) and several other
species (11-13). The conservation of this gene suggests
that it plays an important, fundamental role in growth
and division. The cdc2 protein (p34cdc2) is a serine-
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Table 1. Characteristics of p34cdc2.

p34cdc2 is required for G1/S and G2/M transitions in the cell cycle.
Protein levels of p34cdc2 are usually constant during the cell cycle but
activity is periodic.
cdc2 protein is the 34 Kd catalytic subunit of a serine-threonine pro-
tein kinase complex.
Kinase activity is regulated by protein-protein interactions, particu-
larly with different members of the cyclin family, and also by phos-
phorylation and dephosphorylation.
Kinase phosphorylates a number of substrates that are possibly
involved in regulation of specific events in the cell cycle.
This protein kinase complex is responsible for M-phase-specific his-
tone H-1 kinase activity.
Homologous to important cell control gene, CDC28, of the budding
yeast Saccharomyces cerevisiase, which was isolated as a mutation
that arrested cells at "start" in GI.
Start defines a central control point in yeast at which the cell decides
to continue to grow and divide, to enter into stationary phase, or to
mate. This is the first point in the cell cycle under genetic control in
S. cerevisiae.
cdc2 is a member of a family of genes that are cyclin-dependent
kinases (cdk).
CDC2Hs was cloned by complementation of cdc2 ts mutant in fission
yeast (S. pombe) with human cDNA.

threonine kinase that is constitutively expressed in
dividing cells but is down-regulated when cells exit the
cell cycle, such as in quiescence, senescence, and differ-
entiation (14-18). p34cdc2 is required for both S- and M-
phase progression (19-22). Protein levels are constant
during the cell cycle; however, the kinase activity is
regulated by interaction of p34edc2 with proteins as well
as by phosphorylation (23-25). In addition, recent data
suggest that there is some regulation at the level of
transcription (26,27).
Cyclins are proteins that bind cdks and modulate

their function (28) (Table 2). Cyclins were first identi-
fied as proteins whose levels fluctuate during the cell
cycle. These proteins share sequence homology in a
region known as the cyclin box. Cyclin activity is gen-
erally controlled at the level of protein expression
since the proteins are synthesized and degraded very
rapidly at specific times during the cell cycle (29,30).
Multiple cyclins are present in the cell and appear to
function at different stages of the cell cycle. For exam-
ple, cyclin B binds p34cda at G2/M and is required for its
activation as a mitotic kinase complex (31). Cyclin A is
expressed earlier than cyclin B in the cell cycle and is
probably involved in regulation of S phase (32). Other
cyclins (cyclins C, D, and E) are involved in the G,
phase of the cell cycle.
The kinase activation of p34cdc2 iS subject to negative

control by phosphorylation on tyrosine 15 and dephos-
phorylation of this site is required for activation (33).
The phosphorylation state of p34cdc2 fluctuates through
the cell cycle (34). Two yeast gene products, the weel
kinase (35-37) and the cdc25 phosphatase (38,39), are

responsible in part for this regulation. cdc25 is believed
to be the factor responsible for initiation of mitosis,
which is dependent upon completion of DNA replica-
tion. p80cdc25 is the tyrosine phosphatase that activates
p34cdc2 by dephosphorylation of the tyrosine 15 residue
of p34cdc2 when it is complexed to cyclin B (39,40-42).
Several cdc25 genes have been identified, suggesting
that a family of these proteins exists and association
between cyclin B and cdc25 has been observed (43,44).
Therefore, one function of cyclin B may be to target
p80cda5 to p34dc2 for G2/M activation. The weel+ gene
product negatively regulates entry into mitosis (36).
The p107weel+ protein is a dual function kinase that
phosphorylates serine, threonine, as well as tyrosine
residues (45). Weel+ and a related gene product, mikl,
are responsible for phosphorylating p34cdc2 on tyrosine
15, thereby inactivating it (35,37). Analysis of yeast
weel mutants that have lost cdc25 control have lost
mitotic dependency on completion of DNA replication
(46). The gene was first cloned in fission yeast and a
human weel-like gene has been cloned by complemen-
tation of human cDNA into a yeast mutant (47).

In addition to p107weel and p80cdc25, activated p34cdc2
binds a protein of unknown function, pl3sucl (48). It is
known, however, that binding of p34cdc2 to p13Sucl is
required for p34cdc2 activity (49,50). It has been pro-
posed that pl3sucl may act as a facilitator of the forma-
tion or localization of the p34cdc2 kinase complex (49).
The expression of the weel+, sucl, cyclins A and B as

well as cdc25 homologs in human cells suggest that not
only is the structure of cdc2 conserved across species,
but also that its regulaton is conserved, further indi-
cating that p34cda plays a basic and important role in
growth control. Very little is known about the in vivo
functions of the cdc2/cyclin complexes; however, it has
been shown that this kinase is involved in the break-
down of the nuclear envelope during mitosis (51,52).

Table 2. Characteristics of cyclin proteins

Identified in marine invertebrates as two proteins (cyclins A and B)
whose abundance oscillates in early invertebrate embryonic cell
cycles and regulate G2/M transition.
A family of cyclins exists that regulates progression through the cell
cycle.
Cyclin A is required for two points in the cell cycle, S-phase and
G2/M phase.
Different cyclins (GI cyclins) regulate the G1/S transition in yeast
(CLN1-3), and at least 5 proteins (cyclins C, D1-3, and E) are identi-
fied as candidate GI cyclins in mammalian cells.
There are also other cyclins involved in mitosis in yeast (e.g., MCS).
Cyclins combine with p34cdc2 ( and other cdk proteins) to form an
active cdc2 kinase
Cyclins are involved in regulation of phosphorylation/dephosphory-
lation of p34cdc2.
Cyclins are degraded rapidly at specific times in the cell cycle by
proteolysis mediated by the ubiquitin pathway.
Cyclins are altered in certain cancer cells.
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Studies of cell-free extracts show that p34cdc2 may be
involved in complex formation at the replication origin
prior to intiation of DNA synthesis (53). Several pro-
teins have been identified as substrates for the p34cdc2
kinase. These include the retinoblastoma protein
(54,56), nucleolar proteins (57), c-src (58), histone Hi
(59,60) and other proteins (61).
Other cyclin-dependent kinases have been described.

Human cdk2 was discovered as a target for binding by
the E lA protein of a DNA tumor virus. The p33Cd"' pro-
tein, like p34Ndc2, has protein kinase activity and binds
cyclin A (62). It also binds GI cyclins, cyclin E (63) and
possibly cyclin D (28). Its kinase activity peaks in late
G1 or early S phase indicating that it plays an important
role at a point earlier in the cell cycle than p34cd,2 (64).
In addition, cdk2 is part of a complex formed with the
transcription factor, E2F, indicating its kinase activity
may be important in gene regulation (65,66). Pines and
Hunter have proposed that the functions of cdks are
critical for the eukaryotic cell cycle and are required to
traverse checkpoints (28).
Cyclin A association with p33cdk2 has been shown to

be required for entry into DNA synthesis in mam-
malian cells (67,68). In addition, several new cyclins
that appear to play a role in G, have been cloned.
Human cyclin D1 was cloned for its ability to comple-
ment a yeast deficient in a GI cyclin function and also
as a gene induced late in GI in growth factor (CSF-1)
stimulated mouse macrophages (69,70). This gene is
the same as the PRADI oncogene that is overex-
pressed in parathyroid tumors (71). Cyclins C and E
are two other cylin molecules expressed during G,
(72,73). Cyclin E protein is associated with a histone
kinase activity that is most likely derived from its
interaction with p33cdk (74). Although the exact func-
tions of these different GI cyclin/kinase complexes are
unknown, the nature of their cycle-dependent expres-
sion indicates their importance in the G1/S transition.

Cell Cycle Checkpoints and
Perturbations
While the functions of these cell cycle control pro-

teins are just beginning to be understood, perturba-
tions of these controls are already being observed dur-
ing abnormal growth states such as transformation.
For example, cyclin A and cdk2 are both targets for
binding by DNA tumor viral protein ElA (62). In addi-
tion, the hepatitis B virus is integrated into the cyclin
A gene in a hepatocellular carcinoma (75). As previous-
ly mentioned, cyclin D1 is overexpressed in parathy-
roid tumors (71). Several cyclins have been shown to
be overexpressed in breast cancer (76).
However, these control proteins are not the only

potential targets for carcinogens or tumor promoters.
In addition to cell cycle control proteins involved in
normal cell cycle progression, there are other proteins
that are important in the regulation of cell cycle check-
points in response to agents that damage DNA or per-

turb the cell cycle. For example, the RAD 9 gene of S.
cerevisiae is responsible for arresting cells after DNA
damage by X-irradiation. The RAD 9 gene is not
required for cell growth, but RAD 9 mutants fail to
arrest after treatment with radiation and therefore
have no time to repair DNA damage (4). In addition to
rad 9, the weel kinase has been shown to be required
for mitotic delay after irradiation (77). Therefore,
mutation of this gene not only perturbs normal cell
cycle progression but also makes a cell more suscepti-
ble to radiation-induced damage. Recently, it has been
shown in human cells that p53 protein levels increase
in response to radiation damage (78,79). This leads to
the hypothesis that p53 may be acting similarly to rad
9 as a checkpoint in order to inhibit cell division until
repair has occurred. However, p53 is involved in a G1
checkpoint whereas RAD 9 is a G2 checkpoint. Loss of
this checkpoint may lead to an increase in genetic
instability (80).

In addition to aberrations in repair after exogenous
damage, loss of cell cycle checkpoints can increase the
rate of "spontaneous" mutations. For example, RAD 9
mutants in yeast have a 21-fold elevated rate of chro-
mosome loss (81) and mutant p53 human and mouse
cells have a several hundredfold elevation in the rate
of gene amplification (80,82). Increased genetic insta-
bility may also result from chemical treatments that
block the action of proteins involved in checkpoints.
For example, caffeine blocks upregulation of p53 pro-
tein in irradiated cells and prevents radiation-induced
GI growth arrest (83). Okadaic acid, a tumor promoter,
inhibits phosphatases that regulate G2/M checkpoints
and can induce mitotic abnormalities (84-85). Chemical
carcinogens may also mutate checkpoint genes, and
loss of these protein functions might predispose a cell
to successive mutational events. This is consistent with
a model in which the occurrence of one mutation in a
cell increases susceptibility for a second mutation.
Neoplastic development is a multistep process requir-
ing at least four to five distinct steps (86). Since the
probability that a cell will acquire multiple defects is
low, the existence of predisposing mutations may
explain the ontogeny of many adult cancers.

Role of Cell Proliferation in
Carcinogenesis
Cell proliferation can influence carcinogenesis by

various mechanisms (Table 3). This has led to the
hypothesis that cell proliferation itself may be carcino-
genic and carcinogens that increase cell proliferation
may be operating exclusively by this mechanism. The
failure to detect a measurable mutagenic activity asso-
ciated with nongenotoxic carcinogens indicates that
these chemicals may act by alternative mechanisms of
action, increasing cell proliferation being one possibili-
ty. This hypothesis is supported by the fact that in
some species many types of cancers may arise sponta-
neously. Normal cell division results in a low level of
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Table 3. Mechanisms by which chemicals affecting cell
proliferation might influence carcinogenesis.

Increase fixation and expression of premutagenic DNA lesions.
Increase the number of initiated cells occuring spontaneously during
cell division.
Increase the number of spontaneous initiated cells by blocking cell
death or elimination.
Increase the number of initiated cells by pertubing checkpoints in
the cell cycle leading to mutagenic events.
Increase the rate of neoplastic progression by mechanisms 1-4.
Promote clonal expansion of initiated cells.

spontaneous errors during DNA replication, and spon-
taneous DNA damage can result from cytosine deami-
nation at physiological temperatures, from oxidative
damage associated with normal cellular physiology,
and from mutagens in food, air, or water (87). Thus,
mutations occur "spontaneously" from normal cellular
processes. There are risk factors for human cancers
(e.g., hormones) that also influence the rate of cell pro-
liferation in target tissue (88). However, mechanisms
in addition to cell proliferation should be considered for
these risk factors.
Before cell proliferation can be accepted as the

causative mechanism for certain carcinogens, several
facts should be considered. First, many toxic and/or
hyperplastic stimuli are not carcinogenic (89-91).
Second, cell division occurs frequently in all organisms;
therefore, it is not clear whether cell division is limit-
ing in the carcinogenic process. This, of course,
depends on the target tissue. Furthermore, cell divi-
sion of initiated or intermediate cells may occur at
quite different rates than division of normal cells.
Finally, the observation that multiple mutations are
involved in the development of many neoplasms may
suggest that even a weak mutagenic response, which is
below the level of detection of current assays, is suffi-
cient to influence the neoplastic process in a specific
target tissue. This is a plausible explanation for certain
nongenotoxic carcinogens, some of which may act by
indirect mutagenic processes.

Conclusion
The cell cycle is controlled by a network of proteins

whose activity is intricately regulated. DNA synthesis
and cell division are tightly coupled to these controls.
The observations presented here support the hypothe-
sis that growth arrest points exist to control genetic
fidelity and stability. Disruption of growth arrest
checkpoints by mutation or by chemical treatment may
lead to increased cell growth and genetic instability
(Table 3). Finally, chemicals that induce cell prolifera-
tion and genetic instability by interfering in regulatory
checkpoints, thus disturbing the cell's process of
"checks and balances," are more likely to cause cancer
than chemicals that are only mitogenic.
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