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in Epidemiologic Studies of
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Introduction
The researchofHatch (1) hasgreatly increasedour understand-

ing ofthe use and potential limitations ofbiological markers for
adverse reproductive effects. Likewise, there are great potentials
and pitfalls in the emerging field of exposure biomarkers for
reproductive health. This area of research has lagged con-

siderably behind the field ofdeveloping new effect markers, such
as semen analysis and early pregnancy loss. However, its impor-
tance in quantitative risk assessment cannot be overemphasized.
As Hulka has so clearly stated, "the most important current
limitation in many epidemiological studies is the relative inac-
curacy of methods for measuring the exposure variable" (2).
Exposure to a potential fetal health hazard can be estimated

through ecological assessment (e.g., testing the community
water supply), questionnaires (e.g., classifying residents accord-
ing to whether they drink bottled or tap water), or biological
markers (e.g., testing for exposures to chemicals or solvents
found in tap water). In a community with an environmental factr
suspected of adversely affecting reproductive outcome,
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measuring environmental contaminants provides a gross,
ecological esimate ofthe exposure incurred by pregnantwomen
and their fetuses. However, ecological estimates can lead to
significant misclassification of individual exposure (3). Such
misclassification, ifnondifferential, will underestimate the true
effect of the exposure. If misclassification is differential,
misleading results in either direction can occur.
Using questionnaires to assess the extent of an individual's

potential for exposure may help to reduce misclassification bias.
Yet reports of individual exposures can be erroneous in either
direction (4). In addition, people are often unaware of their
potential for exposure, and researchers may not know or be able
to account for all the pathways ofexposure. For example, certain
mothers in a Yugoslav community with a lead smelter had
elevated blood-lead levels. Questionnaire data detennined which
ofthesewomen were wives ofmen employed in the lead industry.
However, these data could not distinguish between women with
low blood-lead levels and women with elevated levels (4). In this
example, a biological exposure marker (blood lead-level) was
available for classifying mothers according to their exposure to
lead. To date, such biological markers have not been widely
available nor have they been widely used when they are available.

Several years ago, the Environmental Protection Agency co-
sponsored a National Research Council study on The Role of
Biomarkers in Reproductive and Developmental Toxicology (5).
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After reviewing the situation, Longo described a "paradox" (6).
Although several techniques for identifying individual exposures
have been developed and tested, and although more and more
xenobiotics have been recognized to have teratogenic and
mutagenic potential, "essentially no specific biomarkers are cur-
rently available to indicate that exposure to a given xenobiotic is
directly associated with a cellular, subcellular, or phar-
macodynamic event" (6). The paradox continues, despite con-
tinuing advancements in laboratory science and the growing
recognition of the need for biological markers to improve ex-
posure measurement in the field ofenvironmental epidemiology
(3,4,7-9). To further the development and application ofexposure
markers in studying the environmental hazards to reproductive
health, we have attempted to synthesize recent examinations of
the issues surrounding exposure measurements in reproductive
epidemiology. The specific goals ofthis paper are to explore the
potential uses ofbiomarkers as measures ofexposure, particular-
ly as they may be used in an environmental setting as screening
tools.

Biomarkers As Measures of Exposure
Hulka defines biological markers in environmental

epidemiology as "cellular, biochemical or molecular alterations
which are measurable in biological media such as human tissues,
cells or fluids and are indicative of exposure to environmental
chemicals" (2). Biomarkers are not environmental measures in
air, soil, water, or food; nor reports from research subjects; nor
results of physical, anthropometric, or mental examinations.
Rather, they are material measures obtained from physical
samples (4).
Biomarkers used to estimate environmental exposues must be

distinguished from those used to estimate the effects ofthose ex-
posures. Biological markers ofeffects can be subclassified into
biologically effective doses (such as DNA adducts) and
biological responses (2). Examples ofthe biological response in-
clude sensitive tests of early pregnancy loss and serum
alphafetoprotein to detect etal neurl tube defect. The National
Research Council study prinarily dealt with effect markers (5).
Although both exposure and outcome measures are necessary for
an epidemiologic investigation, we will focus on measuring ex-
posures. In Hulka's classification, these are "internal dose
markers" (2).

Internal dose-exposure markers may be useful to improve the
quality ofexposure measurement in an epidemiologic investiga-
tion ofaknown environmental hazard; to serve as the "gold stan-
dard" for other infrmation sources; to provide a screening tool
for environmental exposures to a target tissue (in this case, the
fetus); and to provide quantification ofthe biological load from
a known exposure (4). To be useful in epidemiologic investiga-
tions of reproductive health an exposure marker should be bet-
ter than the woman's ability to recall an exposure; allow for dif-
ferentiation between exposure levels, at least qualitatively; allow
the use ofnoninvasive procedures that are applicable on a large
scale; and provide interprable data for short-term or cumulative
exposure regarding time, dose, and duration (4).
For the environmental Sherlock Holmes, internal dose

markers offer strong circumstantial evidence that the perpetator
xenobiotic has invaded the human victim. This evidence is very
specific if the chemical is retrieved unaltered. However, sub-

stantial circumstantial evidence can be gleaned from
metabolically altered chemicals. The metabolic outcome can be
very specific (e.g., urinary cotinine for nicotine in cigarette
smoke) or nonspecific (e.g., thioethers for cigarette smoking).
Nonspecific markers measure a biochemical pathway affected by
a variety of xenobiotic agents.

Exposure Markers As Screening Tools
In addition to possessing the characteristics of all useful ex-

posure markers, biomarkers used as exposure screens should be
able to detect subtoxic exposures and be nonspecific (8).
Nonspecificity ofthe marker is important because the environ-
ment commonly includes complex and unknown chemical mix-
tures, such as those found in drinking water, that could be
misclassifiedby selecting a few specific markers for a screening
battery.
For epidemiologic research, nonspecific markers tend to be

held in lower esteem than specific markers, since it is impossi-
ble, without further evidence, to identify which chemical has
triggered the metabolic response being measured. However, as
screening tools, nonspecific markers hold some promise. A
biomarker that can be used to detect that one or more ofa class
of xenobiotic agents to which the pregnant woman has been
exposed and may have exposed her fetus could be useful for
targeting a subset of women for further investigation and
follow-up. First, however, the fiat that the metabolic pathway has
been altered must be correlated with adverse human reproduc-
tive outcomes so that such alteration can be shown to reflect
fetotoxicity.
We have previously proposed three nonspecific urinary

biomarkers as potential screening tools for reproductive
epidemiology (8): glucaric acid, thioethers, and porphyrin
patterns. Vainio et al. (10) proposed mutagenic activity in
bacteria as another nonspecific urinary screening tool, and
Brewster (9) has added that biomarker to her proposed battery
forpreantm. Let us briefly review the usefulness oftiese
biomarkers.

Bacterial Urinary Assay for Mutagenic
Activity

Vainio et al. (10 critically reviewed the bacterial bioassay pro-
cedu as a test ofmutagenic activity in urine. Like the oher tests
proposed, it has the advantage of demonstrating biological
activity rather than the mere presence ofxenobiotic substances.
However, this procedure poses problems that lead the reviewers
t recommend that it be used in conjunction with other screening
measures. We agree. For example, a bacterial bioassay cannot
detect cumulative exposures and may react to substances
normally present in urine (such as amino acids). Ikble 1 gives
examples of the numerous studies of reported alterations in
muagenicity by extrnal agents (11-59). Occupational exposures
have been associated with alterations in mutagenicity; however,
not all studies are positive. For example, oncology nurses
handling cytotoxic drugs have been studied by several
investigators. i00 studies were positive for altered mutagenicity
(13,17), but two later reports were negative (25,42). This dif-
ference may reflect changes in routines for handling these drugs.
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'Ibbe 1. Reported ons in Imtencity by xenobotics.
Human studies

Anesthesiologists (halogenated anesthetic gases)
Epichlorhydrin-exposed workers
Oncology nurses (cytotoxic drugs)
Foundry workers (PAHs)
Refinery workers (coal tar and pitch)
Chemical workers (various)
Oncology nurses (cytotoxic drugs)
Pharmacists (cytotoxic drugs)
Pharmacists (ctotoxic drugs)

Carbon electmde industry workers
Chemical and coke oven workers
Cold-rolling steel plant workers (mineral oils); synergistic with smoking
Vegan diet
Cancer patients on chemotherapy
Workers at a coal tar distillation plant
Workers at sewage treatment plants
Tool and die workers (N-nitroso diethanolamine, diethylnitosamine)
Cancer patients receiving cyclophosphamide (or doxorubicin)
Fried salmon diet to nonsmokers (reversed by co-intake of parsley)
Tannery workers
Steel mill workers, coal processing
Explosives manufacturing workers (trinitrotoluene)
Smoking, passive
Smoking >25 years

Snuff users
Pharmacists handing cytostatic drugs
Coke oven emissions exposure
Tire plant workers
Tire plant workers (possible smoking synergism); tetramethyl (thiuram disulfide,

poly-p-dinitrosobenzene, diaryl-p-phenylendiamies)
Oncology nurses handling cytotic drugs
Anode plant workers exposed to coal tar and pitch
Oncology nurses handling cytostatic drugs
Autopsy serviceworkers (formaldehyde)
Nonsmokers on low PAH diet exposed passively to tobacco smoke
Hospital employees handling cancer che_mo py agents

Macrobiotic versus typical western diet
Workers exposed to 2,4,7-tnnitro- 9-fluorenone (low dose)
Operating room personnel

References
McCoy et al. (11)
Kilian et al. (12)
Falck et al. (13)
Schimberg et al. (14)
Inamasu et al. (15)
Dolera et al. (16)
Bos et al. (17)
Anderson (18)
Nguyan et al. (19)
Theiss (20)
Pasquinin et al. (21)
Kriebel et al. (22)
Pasquini et al. (23)
Sasson et al. (24)
Benhamou et al. (25)
Jongeneelen et al. (26)
Scarlett-Krans et al. (27)
Garry et al. (28)
Tuffnall et al. (29)
Ohyama et al. (30)
Gostantini et al. (3)
DeMeo et al. (32)
Ahlborg et al. (33)
Mohtashamipur et al. (34)
Kriebel et al. (35)
Curval et al. (36)
Curvall et al. (36)
Kohmodin-Hedmanetal. (37)
Moller and Dybing (38)
Falck et al. (39,40)
Grebeili et al. (41)

Barale et al. (42)
Venier et al. (43)
Benhamou et al. (25)
Connor et al. (44)
Scherer et al. (45)
Everson et al. (46)
Staiano et al. (47)
Sasson et al. (24)
Grebeili et al. (48)
Baden et al. (49)

Animal studies

+

+

+

+

+

Amniotic fluid
+

Direct chemical mutagenicity

Acrylonitrile
Food mutagens (qurAetin and mtin)
Coal tar, dermal
Hazardous industrial waste samples
2,4,7-Trinitro-9-fluorenone
Benzo(a)pyrene
Cyclophoshamide
Azo dye tartrazin

Mori et al. (50)
Grebelli et al. (51)
Jongeneelen et al. (26)
DeMarini et al. (52)
Crebelli et al. (48)
Jongeneelen et al. (53)
Duverger-van Bogaert et al. (54)
Henschler and Wild (55)

Smoking (heavy) versus nonsmoking, at term
Smokin versus nonsmoking, 2nd trimester

Rivrud et al. (56)
Everson et al. (58)
Rivrud et al. (57)

Compilation of results of >5000 chemicals
N(+) Indicates a slight increase of questionable significance.

EMIC Idex (58)

Urea
+
+
+
+
+
+
+
+
+

+

+

+

-
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Exrin 2. ReporRrd rinned e by me

Excretion' Study
t Pesticide production workers (aldrin, dieldrin, endrin, DlYD) Hunter et al. (65)

Endrin manuficturing plant workers Nottenand Henderson (60)
OttervangerandVan Sitter (66)
Viij-Stanhardt et al. (67)

t (In some) Metal and chemical factory employees Nottenand Henderson (60)
t Pesticide packaging workers Seutter-Berlage et al. (68)
t Electrical workers exposed to PCBs Seutter-Berlage et al. (69)

-b Workers in polyester industry (styrene) Hotz et al. (70
-~ Resident ofTmies Beach, Missouri, in high-exposure risk group for dioxin Steinberg et al. (71)
-~ Steel plant employees (low-risk exposure to minerl oils) Pasquini et al. (23)
t Diuroin, hexachlorobenzene, heptaclor, dieldrin, akdrin, rhotane, disulfiram, 2-phenylphenol Notenand Henderson (61)

in guinea pigS
it Toluene, terethyl lead, Aroclor 1260, ethnl, n-hexane, dodin, atrazine in guinea pigs NoUenand Henderson (61)

-. Captan, dimethoate, nitubenzene, aniline, naphthylacetic acid, benzene, rotenone, Nottenand Henderson (61)
binapacryl in guinea pigs

a() Unchanged; (±) slight elevation of questionable significance.

Glucaric Acid
NottenandHenderson (60) firstproposedusingurinaryglucaric
acidtoscreenforxenobioticexposures. Glucuronidationisamajor
transformation route for a number of xenobiotics, including
azides, nitrites, alkylamines, and alkyl and aryl alcohols (61).
Stimulation of the glucuronidation pathway results in increased
ecretionofglucaric acid, primarilythughreducedproduction
ofglycogenandpossiblythroughdirectinductionofpathway en-
zymes (9,62).
Althoughpregnancy (63) and estrogen therapy (64) produce a

nonsignificantincreaseinglucaricacideretion, anumberofex-
ogenouschemicalshave produced significant changes in glucaric
acid excretion (Table 2) (65-71). Intraindividual variation, which
can be as high as 50%, may reflect daily variations in environ-
mental exposures (72). Such variations would suggest that daily
measures during vulnerable points in pregnancy would be re-
quired to assure accurate classification ofexposure through the
pathways that increase glucaric acid excretion. Laboratory
methods for measuring urinary glucaric acid have been dev-
eloped and stadardized (9). However, standards for pregnant
women do not yet exist.

Thioethers
Alkylating agents can be detoxified by reaction with gluta-

thione or other sulfhyryl compounds. These conjugates fre-
quently appear in urine as mercapturic acids or other thioether
(R-S-R) products. Xenobiotics known to be detoxified through
this sequence include aromatic hydrocarbons, arylamines, and
many other chemical agents (9). Seutter-Berlage et al. (73) first

posed using urine thioedhers as a screening tool for xenobiotic
exposures. Sincethen, numeros studieshavedocumentedeleva-
tions in urinary excretions related to occupational, enironmen-
tal, and behavioral (i.e., smoking) exposures (Table 3) (73-104).
Henderson et al. (105) and Van Doornet al. (76) have critically

reviewed the literature on the urinary thioether assay as an ex-
posure screening tool. They note that positive results reflect true
exposures, but negative results may not reflect lackofexposure.
This false negativity occurs because thioethers measure short-
term exposure and thus may miss past exposures that could have
a future biological effect. This limitation, althoughprhaps not
as great for exposures in pregnancy (because short-term expo-

sures may be the most valid for measuring fetal exposure), sug-
gests prospective urine collection at several points during
pregnancy.

Porphyrins
Urinary porphyrin patterns are assessable through automated

laboratory methods using high-pressure liquid chromatography
(105). Brewster (9) has reviewed the usefulness ofmeasuring total
urine porphyrins to detect xenobiotic exposures to heavy metals,
hormones, drugs, and halogenated aromatic hydrocarbons.
These chemicals induce chronic disturbances in hepatic syn-
thesis ofporphyrins (Tible 4) and thus lead to excess porphyrin
excretion and skin symptoms in the final stage (107-124).
Presumably, all xenobiotics dtat produce chronic changes would
also show the urinary patten at early stages prior to overt toxici-
ty, but this assumption has not been tested in all circumstances.

Strengths and Limitations of Proposed
Screening Battery
These four tests discussed previously generally meet the

criteria for useful exposure screens. For certain xenobiotic
agents, they accurately differentiate exposure levels, as
demonstrated in occupational and environmental epidemiologic
studies. As urinary screens, they are noninvasive and applicable
on a large scale with current laboratory techniques. For short-
term exposure, glucaric acid, thioethers, and mutagenicity tests
are useful. Pbrphyrin patterns may measure cumulative effects
as well as current exposure levels.
The potential for this battery to identify groups of pregnant

women at risk ofeavironenal insults to their ftuses can be il-
lustraedbycite smoking. Glucaric acidmay (23) ormay not
(125) be elevated by cigaette smoke. However, thioethers are
elevated by cigarette smoke (73,80,90,91). Also, mutagenicity
tests are very sensitive to cigarette smoking (10). Although
cotinine is a specific marker for cigaette smoking (and thus
would be the biomarker of choice if cigarette smoking is the
specific exposure of interest), the factthat this battery is respon-
sive to a known feltotoxic agent lends credence to its potential
value for detecting other, as yetunknown, fetotoxins. However,
as we have previously coented (8), tobe effective screening
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Table 3 Reported alterations in urinary excretion of thioethers by xenobiotics.
Effecta

t Group mean

t Group mean

t Group mean

t Across shift

t Across shift

t From pre-employment

t Group mean

T Group mean

T Group mean

t Group mean and across shift

t Across shift

t Group mean

t Group mean

t Across work week

t Across wvrk shift

t Across work shift

t Post therapy

t Across work shift

t Group mean

t Group mean

Group mean

Group mean

Group mean

Group mean

Group mean

Across shift

Across shift

Across shift

Across shift

t

T

T

Study

Chemical workers (possible exposure: acrylonitrile and biphenyl)

Rubber and tire workers

Pesticide packaging workers

Operators of chemical waste incinerators

Spinners in viscose-rayon
Rubber industry (carbon disulfide) women

Nurses handling cytotoxic drugs (cyclophosphamide, vincristin, cytoxan)

Explosives manufacturers (trinitrotoluene)

Oncology nurses (cyclophosphamide, adriamycin)

Petroleum retailers and garage mechanics

Dry cleaning workers

Urban school chldren in smoke-polluted areas (polcyclic aromatic hydrocarbons)

Oncology nurses handling cytotoxic drugs

Road and asphalt plant workers (asphalt)

Chemical plant workers (3,3 -dichlorobenzidine)

Hospital employees handling cytotoxic drugs

Cancer patients receiving cytotoxic drugs

Chemical plant workers (ethylene oxide, epichlorohydrine, formaldehyde, organic
solvents including toluene)

Workers producing polyurethane foams (isocyanates and tertiary amines)

Cigarette smokers

Chemical manufacturing workers (methylchloride)

Pharmaceutical manufacturing workers

Wrkers at waste water treatment plant (chlorinated cyclodiene pesticides and flame
reardants)

Crews of roll-on, roll-off ships and car ferries; bus garage staff (particulates, benzene,
formaldehyde, NO2, benzo(a)pyrene)

Road asphalt plant workers (asphalt)

Roadmen (PAHs)

Asphalt production workers
(PAHs)

Petrochemical plant workers (benzene)

Coke plant workers (PAHs)

Toluene and xylenes in rats

1,3-Dibromopropane in rats

2-cl-and 3-cl-benzylidene malonitrile and benzaldehyde metabolites (chloro BMNs) in
rats

Ethylene dichloride (1,2-dichloroethane) in rats

trans- and cis-epoxy cinnamates in rats

Trichloroethylene in rats

Benzene, naphthalene, anthracene, phenanthrene, benzanthracene, styrene, aniline,
2-naphthylamine, acetophenetidine, halobenzenes, l-chloronaphthalene,
halonitrobenzenes, benzyl chloride, phenethyl bromide, 1-menaphthyl chloride, benzyl
acetate, l-menaphthyl acetate, 3,5-di-tert-butyl-4-hydroxytoluene, iodomethane,
bromoethane, allyl chloride, 1-nitropropane, cyclopentene, bromocyclohexane, maleic
acid, isolvaleric acid, ethyl methanesulfonate, urethane, benzothiazole-2-sulfonamide,
J6iv_R.xhInrethvI aidlfifh- -.thad-rwnir skgiil sirnrnlino- salivl :nrotsito in vskrimtic s:nimsil-c

Reference

Seutter-Berlage et al. (73)

Salvolainen and Vainio (74)

Seutter-Berlage et al. (i5)

Van Doorn et al. (76)

Van Doom et al. (77)

Kilpikari and Salvoainen (78)

Jagun et al. (79)

Ahlberg et al. (80)

Que Hee et al. (81)

Stock et al. (82)

Lafuente and Mallol (83)

Lafuente and Mallol (84)

Bayhan et al. (85)

Lafuente and Mallol (86)

Triebig et al. (87)

Triebig et al. (87)

Triebig et al. (87)

Hagmar et al. (88)

Holmen et al. (89)

Seutter-Berlage et al. (73)
Ahlborg et al. (80)
Van Doom et al. (90)
Buffoni et al. (91)
Heinonen et al. (92)
Lafuente and Mallol (93)

Van Doom et al. (94)

Ahlborg et al. (80)

Que Hee et al. (95)

Ulfvarson et al. (96)

Burgaz et al. (97)

Triebig et al. (87)

Triebog et al. (87)

Triebig et al. (87)

Triebig et al. (87)

Van Doom et al. (98)

Onkenhout et al. (99)

Reitveld et al. (100)

Igwe et al. (101)

Rietveld et al. (102)
Rouisse and Chakrabarti (103)

Boyland (104)

a(-+) Unchanged.
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TIble 4. Reported alterations in porphyrin excretion by xenobiotics
Effecta Study Referenced
Abnormal pattern Polyvinylchloride workers (vinylchloride) Lange et al. (107)

Abnormal pattern Michigan farm families exposed to polybrominated biphenyls (PBBs), 2 years prior Strik et al. (108)
Abnormal pattern Seveso explosion 2 years prior, dioxin exposure Strik et al. (109)
Abnormal pattern Occupational exposure to 2,4,5-T Strik et al. (110)
t All porphyrins Transformer/condenser production workers exposed to polychlorinated biphenyls (PCBs) Colombi et al. (111)
t Uro Turkish residents ingesting hexachlorobenzene in wheat, 20-30 years prior Cripps et al. (112)
t Mean uro Residents of Times Beach, Missouri, in dioxin exposure risk group Hoffman et al. (113)
t Uro Persons exposed to smoke from a PCB transformer fire Octerloh et al. (114)
t Copro III Lead-exposed workers Tohiba and Tomokuni (115)
t Copro Alcohol ingestion Doss (116)
t Total porphyrins Children exposed transplacentally to polyhalogenated aromatic hydrocarbons (PCBs, PCDFs, Gladen et al. (117)

PC quaterphenyls)
Normal pattern PCBs exposure via contaminated rice oils, 10 years prior (Yusho) Strik et al. (118)
Normal pattern Possible occupational exposure to hexachlorocyclopentadiene, allyl chloride, Nagelsmit et al. (119)

epichlorohydrin, endrin

t Uro and copro Hexachlorobenzene in rats Kondo and Shimizu (120)
t Uro PCBs, PBBs (20 different congeners) at least 2 Cl or 2 Br at lateral adjacent positions each Sassa et al. (121)

phenyl ring; negative in < 2 or >3 halogens each ring, in CEL cellsb
t Uro 3,4,5,3 ,4 ,5 - Hexachlorobiphenyl, lindane, parathion, nifedipine, verapimil in CEL

cells Sinclair et al. (122)
t Uro and Hepta 3,4,3 ,4 - Tetrachlorobiphenyl in CEL cells Sinclair et al. (122)
t Uro Chlorobenzenes (4 chlorines) in CEL cells Sinclair et al. (123)
t Uro Aroclor 1254, oxidized 3,5-diethoxycarbonyl collidine, sodium phenobarbitone in CEL cells Ferioli et al. (124)

and embryos in ovo

t Copro III Lead in rats Tohiba and Tomokumi (115)
a(t) Increased concentration. Uro, uroporphyrin; hepta, heptacarboxygloporphyrin; copro, coproporphyrin; Copro III, coproporphyrin m.
bCEL, chick embryo liver cells in culture.

tools for adverse reproductive health exposures, several steps
have yet to be taken.

First, tests must be standardized for pregnant women.
Although there is little evidence to suggest that pregnancy itself
can alter these test outcomes, it is important to establish standard
levels for pregnant women with normal pregnancy outcomes. Se-
cond, tests should be administered to women with known ex-
posures, such as maternal smoking, so that patterns ofalterations
can be correlated with reported exposures. Third, the tests must
be associated with adverse pregnancy outcomes, such as reduced
birthweight or gestational length. This last element in the valida-
tion research is particularly important since maternal exposure
rather than fetal exposure is being measured. The extent to which
xenobiotic chemicals cross the placental barrier may vary great-
ly, depending on the type ofexposures, timing in pregnancy, and
maternal detoxification capability. Ifthe battery ofscreening tests
proves useful, further field investigations would be warranted to
determine the tests' ability to measure environmental exposures
that adversely affect fetal development.

In reproductive epidemiology, we may be at a unique point for
implementing this validation process. Because a number of
studies of early pregnancy loss are collecting serial urines dur-
ing pregnancy, the moment may be opportune to begin examin-
ing these urines for metabolic alterations, as tests of the poten-
tial usefulness ofthese nonspecific biomarkers to predict adverse
pregnancy outcomes. Progress is being made in learning about
these tests' response to specific environmental chemicals, but

more research needs to focus on the quantitative relationship of
these agents to body burdens. It would be helpful if this battery
of tests were routinely applied to pregnant women in known ex-
posure situations. Also, ifpregnant wvmen with abnormal tests
(with and without adverse outcomes) were investigated further,
much could be learned about the metabolic functions that are af-
fected and the specific chemicals that are creating the effect.

Conclusion
Without better exposure measures, epidemiologic studies of

reproduction will probably fail to identify xenobiotic fetotoxic
agents in the environment. However, with an adequate battery of
nonspecific exposure biomarkers, prospective studies of en-
vironmental effects on pregnancy outcomes might be possible.
A proposed battery of nonspecific biomarkers should be tested
to determine their usefulness for predicting adverse pregnancy
outcomes.

We acknowledge the extensive and excellent editorial work and typing of
Patricia Huckaby.
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