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We reviewed toxicological studies, both experimental and epidemiological, that appeared in inter-
national literature in the period 1990-1997 and induded both leaded and unleaded gasolines as
well as their components and additives. The aim of this overview was to select, arrange, and pre-
sent references of scientific papers published during the period under consideration and to sum-
marize the data in order to give a comprehensive picture ofthe results of toxicological studies per-
formed in laboratory animals (induding carcinogenic, teratogenic, or embryotoxic activity), muta-
genicity and genotoxic aspects in mammalian and bacterial systems, and epidemiological results
obtained in humans in relation to gasoline exposure. This paper draws attention to the inherent
difficulties in assessing with precision any potential adverse effects on health, that is, the risk of
possible damage to man and his environment from gasoline. The difficulty of risk assessment still
exists despite the fact that the studies examined are definitely more technically valid than those of
earlier years. The uncertainty in overall risk determination from gasoline exposure also derives
from the conflicting results of different studies, from the lack of a correct scientific approach in
some studies, from the variable characteristics of the different gasoline mixtures, and from the dif-
ficulties of correcdy handling potentially confounding variables related to lifestyle (e.g., cigarette
smoking, drug use) or to preeisting pathological conditions. In this respect, this paper highlights
the need for accurately assessing the condusive explanations reported in scientific papers so as to
avoid the spread of inaccurate or misleading information on gasoline toxidty in nonscientific
papers and in mass-media messages. Key words alkylbenzenes, antiknocking agents, benzene,
gasoline, gasoline constituents, methanol, MTBE, toxicity. Environ Health Perspece 106:115-125
(1998). [Online 3 February 1998]
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Gasoline is the generic term for petroleum
fuel used mainly for internal combustion
engines. It is complex, volatile, and inflam-
mable and contains over 500 saturated or
unsaturated hydrocarbons having from 3 to
12 carbons. The variable mixture characteris-
tics depend on crude oil origin, differences in
process techniques and blends, season to sea-
son changes, and the additives required to
meet particular performance specifications.

In the strategy for reducing motor vehi-
cle pollution by removing lead and many
potentially toxic hydrocarbons in gasoline
mixtures, the addition of oxygenates (alco-
hols and alcohol-derived ethers) has led to
the development of reformulated fuels with
lower quantities of benzene and aromatics
without the use of heavy metal additives.
Generally speaking, a common gasoline for-
mulation contains approximately 62% al-
kanes, 7% alkenes, and 31% aromatics, as
well as alcohols, ethers, and additives. The
percentage composition may vary significant-
ly according to regulations in force in differ-
ent countries, not only among the various
leaded compositions but also among the
unleaded, the reformulated, and the oxy-
genated.

About 1 10 million people are exposed to
gasoline constituents in the course of refuel-
ing at self-service gasoline stations (1), an
operation that requires only a few minutes

per week, accruing to approximately 100
min/year. During refueling, total hydrocar-
bon concentrations in the air fall within the
range of 20-200 ppm by volume. Major
toxic risk comes from breathing exhaust
fumes and evaporative and refueling emis-
sions rather than from occasional skin con-
tact from spills. At modern service stations,
designed to dispense gasoline quickly and
safely, the typical consumer risk of suffering
serious negative health effects due to expo-
sure to gasoline is negligible. However,
available information on general population
exposure is either nonexistent, incomplete,
or inconsistent with other data (2).

With increasing frequency over recent
years, articles on gasoline appear in scientific
and nonscientific printed matter. Among
the scientific articles, some refer to new and
interesting results, some provide already
known information, and others give inter-
esting but incomplete data. In the nonscien-
tific area, some papers make ambiguous or
incorrect considerations and provide inter-
pretative explanations capable of instilling
deep concern in public opinion on the dan-
gers of gasoline.

In this paper, we examine a series of
experimental and epidemiological toxicolog-
ical studies that have appeared in interna-
tional literature over the period 1990-1997,
in regard to leaded and unleaded gasolines

as well as their components or additives.
Certain constituents are mentioned that may
not be present in all gasoline mixtures, but
are mentioned because scientific studies pub-
lished during the period contribute to a
more exhaustive picture of the toxicological
profile of gasolines.

Toxicity Studies on Gasoline
Experimental Animal Data

In 1992 the Dutch Directorate-General for
Labour carried out an exhaustive review on
potential gasoline toxicity (3). The report
gives results of toxicity studies in different
animal species treated with a gasoline having
pretedermined quantities of the various con-
stituents. Data on acute oral toxicity, acute
and short-term inhalation exposure, intratra-
cheal instillation and long-term toxicity
(including carcinogenesis), teratogenic or
embryotoxic activity, mutagenicity, and clas-
togenicity are included. The report refers to a
species/sex-specific carcinogenic effect and,
even if data are limited, suggests a lack of ter-
atogenic and embryotoxic activity and little
evidence of mutagenic and clastogenic effect.

Human and Epidemiological Studies
A relationship between gasoline exposure and
the onset of renal and liver cancer, acute
myeloid leukemia, myeloma, heart disease,
changes in the central nervous system (CNS),
skin alterations (including melanoma), and
modifications of mucous membranes has
been indicated.

Cancer, leukemia, and myeloma. An
association between kidney cancer and expo-
sure to gasoline has been suggested in some
studies (4-9).

In 1993, Infante (10) referred to two
studies in gasoline-exposed workers: the first
study suggested an association with kidney
cancer, but the second study did not. This
apparent contradiction might be explained by
other factors such as cigarette smoking, which
was not sufficiently considered in the analysis
(10). Other epidemiological studies published
in 1993, which include a cohort of approxi-
mately 100,000 male refinery workers (11)
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and another of 18,135 distribution employ-
ees (12), do not support an increased kidney
or liver cancer risk when compared with gen-
eral population. McLaughlin (13), in review-
ing epidemiology of renal cell cancer, exam-
ined the following risk factors: cigarette
smoking, gasoline, obesity, diet, and use of
analgesics and diuretics. No link between
gasoline exposure and renal cell cancer was
found.

A previously unnotified risk of nasal
cancer has recently been reported in service
station workers in the Nordic countries by
Lynge et al. (9). The study also reports an
increased incidence of pharyngeal, laryngeal,
and lung cancers.

A relationship between the development
of acute leukemia and myeloma and expo-
sure to petroleum products such as fuels and
exhaust fumes has also been suggested
(5,14).

Risk of acute myeloid leukemia has
been studied in Sweden, and results indi-
cate that other constituents of gasoline
could potentiate the leukemic effect of ben-
zene (15). A mortality study among 6,672
Canadian petroleum marketing and distrib-
ution workers and tank truck drivers, con-
ducted by Schnatter et al. in 1993 (6), gave
an overall mortality lower than the general
Canadian population in marketing and dis-
tribution workers; leukemia findings were
not evident in the latter category, but were
significantly elevated in tank truck drivers.
Infante (10) referred to three studies con-
ducted in gasoline-exposed workers: one
showed strong associations between gaso-
line exposure, leukemia, and multiple
myeloma; the second suggested a slight
association with leukemia, but did not ana-
lyze data for multiple myeloma; and the
third was inconclusive due to problems
linked with study design. In 1996
Collingwood et al. (16) reported that in a
cohort study of 4,855 refinery workers in
New Jersey, all of whom had been
employed for a minimum of 1 year in an
arc of time going from 1946 to 1979, mor-
tality from overall leukemia and lymphatic
and hematopoietic cancer was at the expect-
ed level; mortality from multiple myeloma
was, however, lower than expected.

Exposure to gasoline vapors was classi-
fied by the International Agency for
Research on Cancer (IARC) in 1989 as pos-
sibly carcinogenic to humans (Group 2B)
(17), mainly on the basis of the established
carcinogenicity of some constituents such as
benzene.

Skin lesions and mucous membranes. In
humans, gasoline causes irritation to eyes at
exposures up to 200 ppm in the air over a
period of 30 min (3). After gasoline applica-
tion to skin, a decrease in glutathione

concentration, glutathione S-transferase
activity, and lipid peroxidation was observed
in liver and brain (18).

Some studies in refinery workers and
gasoline-exposed workers indicated an
increased mortality risk from malignant
melanoma; whether this was the result of
exposure to gasoline, benzene, or sunlight,
or a combination of these factors has been
difficult to establish (10).

Heart disease. No clear association has
been found between gasoline exposure and
refinery workers in regard to heart disease
(6,7). Evaluation of risk is complicated by
important related factors, e.g., cigarette smok-
ing, a point that is particularly relevant when
studying gasoline-exposed workers who, due
to danger of explosion in their work environ-
ment, would naturally have a lower smoking
factor than the general population (6).

Neurotoxicity. Occupational exposure to
gasoline has been associated with numerous
neurotoxicity signs including significant
effects on intellectual capacity, modifica-
tions of psychomotor and visualmotor func-
tions, and immediate and delayed memory
(19). Other gasoline-induced neurotoxic
effects (ataxia, tremor, acute or subacute
encephalopathic syndrome) are ascribable to
intentional use (gasoline sniffing) and not to
occupational exposure (19).

Current epidemiological data are gener-
ally considered inadequate for a global
assessment of health risk, but it is to be
hoped that ongoing studies will remedy this
situation.

Toxicity Studies on Unleaded
Gasoline
Most of the animal toxicity studies that we
reviewed were performed with an unleaded
gasoline (UG) known as PS-6 [American
Petroleum Institute (API), Washington,
DC], a blend with the benzene content
adjusted to 2% and regarded as a representa-
tive UG (20). The formulation for PS-6
gasoline was described in a 1995 API publi-
cation (21).

As with leaded gasoline, major toxico-
logical problems concern carcinogenic
potential, namely, liver tumors in female
mice and renal tumors in male rats. In
female rats, only a mild proximal tubular
dysfunction was found (22).

Renal Tumors
In explaining renal tumors in F344 male
rats exposed to UG, Raabe (23) suggested
that the presence of hyaline droplets, or the
increase in a2u-globulin in the renal tubules
of UG-treated male rats, could be involved
in the mechanism for this pathology. The
increase was attributed to the higher compo-
sition of branched hydrocarbons in UG (24)

to which a2u-globulin could bind, thus
inducing renal tubule cell death followed by
a proliferative sequence that increases renal
tubule tumors (23,25). In any case, no clear
conclusion can yet be drawn concerning the
role of cc2u-globulin in the development of
renal disease and the association between
oc2u-globulin nephropathy and renal car-
cinogenesis (25,26).

Extrapolation of male rat renal tubule
tumors to humans is questionable (27): if
ct2u-globulin is involved in male rat kidney
tumors, because it is a rat-specific protein
and unique to the male rat (28-30), it
would not relate to humans (30,31).

Liver Tumors
Standeven et al. (32,33) attempted to deter-
mine the mechanism of induction of liver
tumors with concomitant uterine changes in
B6C3F1 female mice chronically exposed to
UG (PS-6) vapors and concluded that high-
level exposures could produce an increase in
liver tumors in female mice due to interfer-
ence with estrogen hormone function.
Standeven et al. (34) demonstrated an induc-
tion of estrogen metabolism in isolated hepa-
tocytes from UG-treated mice, which sug-
gested a potential mechanism for apparent
antiestrogenic activity of UG. Tilbury et al.
(35) surmised that some biological effects,
such as the induction of cell turnover or
altered growth control, could play a role in
the carcinogenic process in PS-6 gasoline-
treated mice. Furthermore, Standeven and
Goldsworthy (36,37) demonstrated an
induction of CYP2B, a subfamily of
cytochrome P450, in female mouse liver.

Toxicity Studies on Gasoline
Constituents
Individual constituents of gasoline mixtures,
regardless of their presence or quantity in
any one formulation, have been examined
because they have been the subjects of scien-
tific publications that provide a contribution
to knowledge already acquired on the rele-
vant toxicological profile. Particular atten-
tion has been given to the new constituents
recently adopted as gasoline additives.

Organic Compounds ofLead
To improve yield and performance, fuel
combustion must be rapid, and the search
for suitable antiknock agents has resulted in
the development of alkyl leads (tetramethyl
and tetraethyl lead) as cost-effective octane
enhancers. Increase in the compression ratio
began in the 1950s, leading to the need for
higher octane fuels; therefore, lead concen-
trations were increased up to the limit of
1.14 gPb/l.
A 1990 study carried out in employees,

with an average of 14 years exposure to
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organic compounds of lead, demonstrated
that neurotoxic damage can result from
exposure to such antiknock additives (38).

As a matter of fact, it has been well
known for decades that organolead com-
pounds are potent neurotoxics on the CNS
and its development. In neonatal rats, these
compounds produced persistent and dose-
dependent behavioral hyperreactivity and
hippocampal damage; a relationship
between these effects via cholinergic, but not
dopaminergic, pathways was hypothesized
by Booze and Mactutus (39). In a recent
study carried out on cultured E18 rat hip-
pocampal neurons (40), triethyl lead, the
major metabolite of tetraethyl lead, was
shown to disrupt cytoskeletal elements, par-
ticularly neurofilaments, at very low levels
(nanomolar concentrations).

In humans, the organolead compounds,
especially tetraethyl lead, are known to have
a toxic impact on the CNS, as suggested by
pathological changes in brain stem neurons
and subtle cognitive and neurological
deficits. Infants are the most susceptible
population (41-43). Other effects are
nephropathy, hematologic alteration, hyper-
tension, congenital malformations, growth
and development deficiencies, and impair-
ment of immune system responses. Due to
the probable involvement of multiple etio-
logic factors in the above pathological situa-
tions, the actual scientific challenge is to
develop sensitive methodologies capable of
detecting the rate of organolead compound
involvement.

Improvements brought about by the
introduction of unleaded fuels determined a
gradual decrease in lead content in gasoline,
which in many countries has been associated
with a lowering of blood lead levels in the
general population (44-48). However, over
the past two decades, research has demon-
strated that adverse health effects occur at
levels previously considered safe (49-51).
Organometals, like organolead, are difficult
to eliminate from the CNS, and the injuries
induced usually result in permanent neuro-
logical deficits that cause medical as well as
social-economical problems (52).

Oxygenates
Oxygenates are used as antiknock agents in
place of lead derivatives and as substitutes
for high octane aromatics in fuel (53,54); by
permitting a more efficient fuel combustion,
they diminish exhaust emissions of carbon
monoxide and hydrocarbons. Oxygenate
concentrations in gasoline formulations vary
from 0.7% by volume in leaded gasoline
[mostly methyl tertiary butyl ether
(MTBE)] currently used in some European
countries to 15% in some types of U.S. oxy-
genated gasolines.

Oxygenates include substances such as
ethanol, methanol, MTBE, ethyl tertiary
butyl ether (ETBE), tertiary butyl alcohol
(TBA), and tertiary amyl methyl ether
(TAME).

Ethanol. Ethanol is a chemical to which
man is particularly exposed. It is widely used
as an industrial solvent and is also consumed
in alcoholic beverages. Abundant literature
exists on the effect of ethanol ingestion
(CNS, endocrine, renal, gastrointestinal,
hepatic, and cardiovascular systems), which
is outside the purpose of this paper.

In reference to ethanol use as a gasoline
additive (approximatively 10% volume), it is
worth noting that exposure to ethanol in
gasoline should not increase toxicity risk for
human health. In fact, the potential levels of
exposure are much lower than the levels
associated with the toxic effects observed in
experimental animals or in humans, as
described by Burbacher (19) and Reese and
Kimbrough (55).

MethanoL Methanol can be used as a
fuel either alone or as a gasoline additive. Its
toxicological profile has been widely studied,
and only recent references are reported here.

Methanol is well absorbed in humans
following inhalation, ingestion, or cutaneous
exposure; it produces a transient mild
depression of the CNS with headache, verti-
go, and vomiting. It is oxidized to formalde-
hyde in the liver and then to formic acid,
which contributes to the metabolic acidosis
that occurs in acute methanol poisoning.
Intoxication has delayed onset characterized
by acidosis, mental confusion, ocular toxici-
ty with visual disturbance [recently suggest-
ed (56,52) as due to intraretinal metabolism
of methanol, rather than to elevated blood
formate levels], reversible or permanent
blindness, and, in severe cases, death. These
effects represent a classic example of lethal
synthesis in which toxic metabolites can
cause fatality after a characteristic latency
period (58).

A significant increase in incidence of
exencephalia and cleft palate has been
observed in mice, as well as an increase in
embryo/fetal death, after inhalation of high
concentrations of methanol (59).
Cummings (60) obtained similar results
together with reduced uterine pregnancies
and implantations in rats and mice. An in
vitro study performed by Andrews et al. (61)
reported a dysmorphogenic effect of
methanol on rat and mouse embryos and
suggested a higher sensitivity in the mouse
to the developmental toxicity of methanol.

In a cellular culture of a specific and sen-
sitive target, craniofacial tissue, methanol
selectively affected sensitive cell populations
and modified proliferation and cell fate (62).
Lee et al. (63), studying effects of methanol

vapors on testicular morphology and on
testosterone production in rats, hypothe-
sized that methanol could potentially accel-
erate age-related degeneration of the testes.

Two papers on methanol inhalation tox-
icity that are especially pertinent to the sub-
ject include a 1995 study in which no inter-
active effects between methanol and gasoline
were found in a short-term inhalation study
in rats (64), and a study on perinatal expo-
sure to low concentrations of methanol,
which resulted in no significant abnormali-
ties in the brains of treated rats (65).

There is little evidence from available
information of human health effects from
low-level exposure which demonstrates that
methanol vapors from motor vehicle fuel can
cause acute adverse effects to health (55,66).
Lee et al. (67) demonstrated that after a 6-hr
exposure to the current methanol threshold
limit value (TLV) of 200 ppm, the formate
does not accumulate in blood in human sub-
jects at rest or during exercise. This result
was confirmed by other authors (68,6p).

The neurotoxic effects recorded at cur-
rent TLVs (70) are not significant in assess-
ing human risk from methanol as a fuel or
additive; in fact, Costantini (66) found lev-
els lower than 50 ppm in most exposure sce-
narios, but reported methanol exposure lev-
els from methanol-fueled car emissions at
approximately 150 ppm in public garages.
For the most part, the general public's expo-
sure to methanol would be brief but repeti-
tive, and further studies on the relationship
between chronic low-level exposure and sub-
tle changes in CNS function need to be per-
formed (19,66,71).

Methyl tertiary butyl ether. MTBE is an
aliphatic ether, a volatile, colorless, and
inflammable liquid, currently the most wide-
ly used oxygenate. It has been employed as
an octane enhancer in gasoline blends at con-
centrations up to 7% since 1979. In 1992, in
those areas in the United States where car-
bon monoxide exceeded national standards,
MTBE was raised to 15% by volume to
reduce atmospheric pollution. Raising the
oxygen content in gasoline reduces emissions
ofcarbon monoxide, especially in older cars.

Experimental animal data. Acute toxic-
ity data show a low order of MTBE toxicity
in rodents following inhalation, oral admin-
istration, or cutaneous exposure (72-75). In
subchronic and chronic toxicity studies
(75-79), MTBE appears to have low sys-
temic toxicity; the main findings observed in
rats were depressant effects on the CNS,
typical of similar ethers. Such effects were
transient and completely reversible
(75,77,79): no histopathological changes in
tissues of the peripheral or central nervous
system occurred (75,79). Other target
organs following repeated oral or inhalatory
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exposure at high doses have been identified
as liver, kidneys, and adrenal glands
(77-79). No significant immunological, car-
diovascular, hematological, or pulmonary
effects in animals have been observed
(73,76,77,759. Finally, MTBE appears to be
slightly irritating to eyes and mucous mem-
branes (72-74).

In rats and mice, MTBE is rapidly and
completely absorbed by inhalation and
ingestion, whereas absorption following der-
mal exposure is limited (80). The main
metabolites deriving in equimolar amounts
from the oxidative demethylation ofMTBE
are TBA and formaldehyde (55,81-83).
TBA is oxidized to 2-methyl- 1,2-propane-
diol and a-hydroxyisobutyric acid
(55,74,80,82). Brady et al. (81) indicated a
selective increase in hepatic microsomal oxi-
dase activity (P450) in rats treated with
MTBE, showing that MTBE may stimulate
its own metabolism. After inhalation expo-
sure in rats, MTBE is rapidly exhaled
(20-70% depending on dose); the remain-
der is eliminated through urine (55,80).

MTBE has not been found to induce
adverse effects on fetal development in rab-
bits, rats, or mice (84-87). Furthermore,
adverse effects on reproduction have not
been observed in one- and two-generation
studies in rats (88,89).

After high MTBE exposure, female mice
showed increased incidence of hepatocellular
adenoma and male rats showed increased
incidence of renal tubular cell tumors and
interstitial-cell testicular tumors (78). A
nongenotoxic mechanism is supported by
the substantial lack of in vitro and in vivo
evidence of mutagenicity and other genotox-
ic endpoints in both mammalian and bacte-
rial systems (90-95). It could be maintained
that an MTBE carcinogenic effect can result
from cellular injury, which is induced only
by high doses (78).

In particular, the species- (mice) and sex-
(female) specific MTBE hepatocellular ade-
noma at high doses suggests an involvement
of antiestrogenic-like effects ascribable to
MTBE. The antiestrogenicity is often linked
to hepatic tumor promoting activity as
described for UG and for several other
chemicals (33). Evidence of an anti-
estrogenic effect was recently confirmed by
Moser et al. (96,97). The question of how
MTBE elicits these antiestrogenic effects
remains unanswered. Experiments under
way at the Chemical Industry Institute of
Toxicology (CIIT) are showing that MTBE
does not produce its antiestrogenic effects
through interaction with the estrogen recep-
tor (S. Borghoff, unpublished data).

In contrast with what has been previous-
ly suggested (98), a lack of involvement of
formaldehyde (metabolic product of

MTBE) in the onset of mouse liver tumors
has recently been reported (99). In condu-
sion, nongenotoxic hormonally related
mechanisms appear to be the most plausible
explanation for the development of these
tumors, as suggested by the National
Research Council (100). In any case, such a
manifestation in a single animal species
(mouse) relating exclusively to the female
sex, renders any extrapolation to humans
questionable to say the least.

Kidney tumors in male rats are associat-
ed with concurrent nephrotoxicity charac-
terized by increased concentrations of rat-
specific a2u-globulin in renal tubules
(77,78,101-103). A 1997 in vitro study
(104) demonstrated that the binding of
MTBE to this protein contributes to the
uptake and accumulation ofMTBE in male
rat kidney in vivo (105).

Knowing the role of a2u-globulin in the
renal toxicity of MTBE is useful in assessing
human risk because the protein involved is
present only in male rats and not in humans
(28-31,106). Due to the above considera-
tions, these kidney tumors cannot be used as
weight of evidence in the assessment of
human cancer risk. Finally, the increase in
interstitial-cell testicular tumors in rats does
not appear to be significant because an
increase in testicular tumors is a common
occurrence in aging rats of this strain
(78,107,108).
A 1995 study (109) reported an increase

in lympho-hematopoietic cancers in rats
treated with high doses of MTBE dissolved
in olive oil by oral gavage. This study is
fraught with uncertainty because it employs
only two doses, both high, of MTBE and
was carried out in highly inbred rats having
a significant incidence of spontaneous
tumors of hemolymphoreticular tissue; fur-
thermore, oral administration is subject to a
hepatic first pass, and forced-feeding itself
can induce a toxicological response. These
considerations are shared by Mennear (110)
who, furthermore, in accordance with an
opinion issued by the National Toxicology
Program working committee in 1986, con-
tested the scientific validity of combining
lymphomas and leukemias for statistical
purposes.

Also, a study on oral toxicity of MTBE
has less value for estimating cancer risk to
humans than an inhalation study when nor-
mal human exposure is by inhalation; fur-
thermore, a single high concentrated oral
dose is vastly different to any possible
human exposure. It is therefore impossible
to evaluate this study or accept its statement
that "... MTBE must be considered an ani-
mal carcinogen" (109).

Finally, tumor findings in rats and mice
are not relevant to humans and support the

condusion that exposure to MTBE does not

pose an added cancer risk for the population
in respect to whole gasoline, considering the
current levels maintained in MTBE-oxy-
genated gasoline and the MTBE exposure
levels in marketing and distribution workers,
as well as in the general population
(111-115).

The EPA, on the basis of limited animal
evidence, has not provided a final carcino-
genicity classification for MTBE, but tenta-

tively suggested that MTBE be classified as a

possible human carcinogen (Group C) (116).
Human and epidemiological studies.

To date, information regarding MTBE
effects on human health is limited. Some
data (117-119) ensuing from clinical use
(MTBE infusion for gallstone treatment) are
irrelevant to the evaluation ofMTBE toxici-
ty when it is used as an additive to gasoline
(55). In humans, the principal route of
absorption remains inhalation (55,120);
skin application shows little absorption
(121). MTBE uptake and distribution in
male volunteers has been reported (122). In
vitro metabolism of MTBE in human liver
has recently been studied by Hong et al.
(123).

When MTBE-oxygenated fuels were
introduced in the winter of 1992 in
Fairbanks and Anchorage, Alaska (4 years
later than in other states in the United
States), acute health complaints were report-
ed. These complaints were characterized by
three types of nonspecific symptoms at vary-
ing levels in the respiratory tract and eyes
(i.e., burning of the nose, throat, and eyes,
cough), the gastrointestinal tract (nausea),
and the CNS (headache, dizziness, feelings
of disorientation).

While preliminary studies by public
health officials seemed to indicate a positive
association between these symptoms and
acute exposure to MTBE-oxygenated gaso-
line (124,125), further data, either from
studies in exposed workers (126-132) or
from human exposure under controlled
experimental conditions (133-136), did not
substantiate these results. In Alaska, research
using a wide-range questionnaire showed no
exposure-response relationship (126), emer-
gency room visits for headache did not
increase (129), and insurance daim statistics
for respiratory complaints revealed no signif-
icant difference to pre-MTBE-oxygenated
fuel periods (131). Other studies in
Stamford, Connecticut, and Albany, New
York, did not show any association between
symptoms and exposure (127,128). Results
in favor of MTBE were also obtained in a
study performed in 1994 in garage workers
in New Jersey (130). A recent Finnish study
(132) showed no statistically significant dif-
ferences in neuropsychological symptoms
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that occurred between chronically exposed
tanker drivers and milk delivery drivers.

Finally, the results of experimental stud-
ies in humans in controlled MTBE exposure
chambers showed no effects on health
(133-136).

Several hypotheses have been formulated
to explain these findings, which are in con-
trast with previously mentioned health com-
plaints. The first is that certain individuals,
abnormally sensitive to chemicals, may be
particularly sensitive to low concentrations
of MTBE. This was studied but not con-
firmed by Fiedler et al. (137). Another
hypothesis infers an effect brought about by
media exposure regarding antipathy toward
the oxyfuiels program, a form of suggestion
that causes people to attribute symptoms to
MTBE exposure. A third hypothesis blames
the distinctive and unpleasant odor of
MTBE for being a trigger for stress-related
symptoms and for increasing existing symp-
tom awareness.

MTBE determination methods in gaso-
line vapors and on MTBE degradation in
soil systems have also been reported
(138-140).

Tertiary butyl alcohol Animal toxicity
studies with TBA indicated the urinary tract
is the target organ in rodents, with males
being more sensitive than females (141).
Takahashi et al. (142) confirmed that TBA,
similar to MTBE, induces nephropathy in
Fischer 344 male rats by increasing renal
accumulation of hyaline protein, which is
consistent with a2u-globulin. Increased
incidence of renal tubular adenomas or
carcinomas in male F344 rats with lifetime
exposure to TBA via drinking water has
been reported (143,144). In female mice,
oral administration ofTBA induced a statis-
tically significant increase in thyroid adeno-
mas (143,144). TBA does not show muta-
genic activity (90,91,116,145).

In humans, irritation of eyes, nose, and
skin have been reported after short-term
exposure; defatting of the skin and dermati-
tis have been recorded after long-term expo-
sure (146).

Tertiary amyl methyl ether. TAME
received serious consideration as an oxy-
genate as early as 1991 (147). Although the
octane content is slightly lower than in other
ethers, it compares favorably for vapor pres-
sure, boiling point, energy density, and
water mixabiity.

TAME causes a significant but transient
CNS depression akin to, but slightly more
severe than, that resulting from MTBE
exposure at the same levels (147,148).

In a short-term study in rats, oral treat-
ment with TAME induced minimal changes
in clinical chemistry and hematology find-
ings and a reduction of food consumption

and animal body weights in high dose
groups (149).

Studies with TAME did not demon-
strate any evidence of genotoxicity in an
Ames assay or in mouse micronudeus assay
(147,149); a preliminary report submitted
by Chevron (R.D. Cavalli, unpublished
data) to the Toxic Substances Control Act
section 8(e) coordinator refers to an
increased incidence of deft palate in some of
the pups after exposure of pregnant mice to
high concentrations, while no effects were
noted in rats. The same report refers to a
positive TAME concentration-related
response in an in vitro study of chromosome
effects in Chinese hamster ovary (CHO)
cells after metabolic activation.

The kinetics and mechanisms of atmos-
pheric removal of TAME have been well
described in a 1994 report (150).

Ethyl teiary butyl ether. ETBE can be
used as a gasoline antiknock additive, but its
use is limited due to the high cost of ethyl
alcohol. In a CASE (Computer-Automated
Structure Evaluation) study where the ETBE
structure was compared with the structures
of recognized determinants of carcinogenici-
ty in rodents, ETBE was predicted to be nei-
ther a genotoxicant nor a carcinogen (93).

Other Additives
Ethylene dibromide (EDB) and ethylene
dichloride (EDC). Leaded gasoline scav-
engers (EDB and EDC) are required to
remove lead from engines. These com-
pounds provide halogen atoms that react
with lead to form the volatile products
which escape through the exhaust. EDB and
EDC are irritating to skin and eyes and are
metabolized by an oxidative pathway
(cytochrome P450) followed by conjugation
(glutathione S-transferase) (151,152). Their
metabolites play an important role in exert-
ing toxicity (151-154).

In 1987, IARC dassified EDB as proba-
bly carcinogenic to humans (Group 2A)
(155) and EDC as possibly carcinogenic to
humans (Group 2B) (156).

Methylcyclopentadienyl manganese tri-
carbonyl (MMT) is an effective octane
enhancer used in Canada since 1976 (157);
it was recently approved for use in the
United States as a gasoline additive (158),
but is not currently in use in Europe.
According to Lynam et al. (159), due to
MMT's low vapor pressure and short half-
life in sunlight, it is unlikely that significant
concentrations of MMT occur in the envi-
ronment from its use as a gasoline additive.

The combustion of MMT in gasoline
may be a source of environmental contami-
nation and manganese exposure [it has been
reported that over 99.9% of Mn from
MMT is converted into inorganic oxides of

Mn during fuel combustion (159)]. The
effects of Mn on lungs and on the nervous
system are common knowledge. In some
occupational studies, a relationship has been
indicated between high inhalation exposure
to Mn, neurological signs, and neurodegen-
erative disorders (160-165).

Information is scarce on potential health
risk derived from MMT as a gasoline addi-
tive (157,166). In a Canadian study (166),
it was reported that MMT use in gasoline is
a potentially important source ofMn for the
occupationally exposed population, even if
recorded Mn values remain well below
established limits for occupational and envi-
ronmental airborne exposure. This was also
reported by Frumkin and Solomon (158).
Sierra et al. (167) obtained data on Mn
environmental exposure in 35 garage
mechanics and suggested that less than 10%
ofMn exposure was due to MMT.

According to Frumkin and Solomon
(158), the critical question is whether the
additional population exposure resulting
from widespread use ofMMT converted to
Mn could lead to toxic effects.

The disposition and toxicity ofMMT in
the brains of 12-month-old MMT-treated
mice was reported in 1994 (168).
Benzene
Benzene is an aromatic organic hydrocarbon
present in leaded gasoline, and it is some-
times added as a blending agent to UG to
improve antiknock characteristics. European
Union requirements state that the benzene
added to leaded and unleaded gasolines
must not exceed 5%; however, in some
European countries, as in the United States,
fuels are currently available with an even
lower benzene content (1%).

The toxic effects of benzene, some of
which also pertain to other aromatic hydro-
carbons, are well known (169,170).
Hematopoietic toxicity is the major effect
and is unique to benzene.

Chronic occupational exposure to ben-
zene (with inhalation as the main route of
absorption) causes bone marrow injury and
hematopoietic toxicity, including leukope-
nia, lymphocytopenia, aplastic anaemia and
leukemia (acute myelogenous leukemia).
Further epidemiological reports on leukemia
have appeared in recent literature
(171-173).

Unlike leukopenia and lymphocytopenia
(174,175), benzene-induced leukemia has
only been observed in humans: no satisfac-
tory animal model exists that can consistent-
ly reproduce the human disease (176).

The mechanism of the leukemogenic
effect of benzene is not fully understood.
The modified base 8-hydroxy-deoxyguano-
sine has been suggested as a sensitive marker
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of DNA damage due to hydroxyl radical
attack at the C8 position of guanine (177).
Biochemical mechanisms of leukemia have
been reviewed and discussed by Snyder and
KaIf (178). In 1987, IARC classified ben-
zene as a human carcinogen (179).

Biotransformation in liver is thought to
be necessary for its hematoxicity and car-
cinogenicity, and differences in species sensi-
tivity have been ascribed to hepatic metabo-
lism (180,181). Benzene biotransformation
is complex, yielding glucuronide and sulfate
conjugates of phenol, quinol, and catechol;
L-Phenylmercapturic acid; muconaldehyde;
and trans-,trans-muconic acid by ring scis-
sion. Furthermore, inhalation of benzene
may stimulate microsomal mixed-function
oxidase, cytochrome P450, responsible for
the oxidation of benzene and for the genera-
tion of oxygen radicals (182). Formation of
oxygen radicals could be a major cause of
benzene toxicity, with involvement of multi-
ple mechanisms including synergism
between arylating and glutathione-depleting
reactive metabolites and oxygen radicals
(183). Because benzene and its hydroxylated
metabolites are substrates for the same
cytochrome P450 enzymes, competitive
interactions among metabolites are possible
(184).

Metabolic interactions between benzene
and ethanol (185) and between benzene and
gasoline (186) vapors have been reported.

A critical question is whether the low
concentrations of benzene that occur in the
environment derived from its use as a gaso-
line component could pose a significant
human health risk (187). In this regard,
Weisel et al. (188) state that the amount of
metabolism by ring-opening pathway is
greater at low exposure in humans than at
high exposure, and maintain that care is
needed when extrapolating potential health
risk from high to low dose.

In a Swedish study, the increased risk of
acute myeloid leukemia in gasoline station
attendants was associated with the benzene
content in gasoline (15). In their 1996
study, Raabe and Wong (189) combined
studies in cohorts of petroleum workers in
the United States and the United Kingdom
in a single database for cell type-specific
leukemia analysis; they did not find an
increase in acute and chronic myeloid
leukemia or in acute lymphocytic or chronic
lymphocytic leukemia. There was also no
excess risk of leukemia or acute myeloid
leukemia reported in an Italian study (190)
or in a Nordic study (9), both carried out in
service station attendants.

Furthermore, an analysis of the pub-
lished case-control studies conducted in
1996 by Bezabeh et al. (191) indicated that
exposure to petroleum products and

employment in petroleum-related occupa-
tions does not represent a risk factor for
multiple myeloma. Wong and Raabe (192)
recently published a study in a multinational
cohort of more than 250,000 petroleum
workers; the pooled analysis indicates no
increased risk of multiple myeloma as a
result of exposure to benzene.

A genotoxic effect at relatively low levels
of benzene exposure (0.1 ppm) has been
reported in a recent study in humans (193).
Various papers reporting benzene blood lev-
els in groups occupationally exposed to
gasoline indicate that occupational activities
are significant determinants of blood ben-
zene concentrations (194-197). A global
evaluation of risks from benzene exposure is
reported by Paustenbach et al. (198) and
Hughes et al. (199).

Alkylbenzenes: Toluene and Xylene
Alkylbenzenes are single ring aromatic com-
pounds containing one (toluene) or more
(xylene) saturated aliphatic side chains.

Toluene and xylene, occurring in small
amounts in gasoline blends and standard
gasoline formulations as a result of the octane
process, are mainly absorbed by inhalation
(acute irritation of eyes and respiratory tract)
and through the skin. Direct skin contact
promotes defatting of the keratin layer, with
vasodilation, erythema, and dry, scaly der-
matitis. Xylenes are more potent skin irritants
than benzene or toluene (55).

Other than liver, kidney, and heart dam-
age, dysfunction in the CNS is the principal
health consequence of exposure to alkylben-
zenes. The effects vary from severe neurolog-
ical disorder (acute inhalation due to sniff-
ing abuse) to deficits in neurobehavioural
function in occupationally exposed groups.

Neurobehavioral effects deriving from
subacute exposure to toluene have been
investigated in rats (200) and mice (201). In
a rat model for Parkinson's disease, Cintra et
al. (202) observed that toluene challenged
the dopaminergic nigrostriatal system.
Persistent damage to CNS functions result-
ing from rat subchronic exposure to m-
xylene has also been reported (203).

Pryor et al. (204) observed that chronic
exposure to toluene produced an irreversible
progressive time- and dose-dependent hear-
ing loss. While this auditory impairment
was recorded in laboratory animals at high
toluene exposures as compared to permissi-
ble exposure levels (205), Liu and Fechter
(206) demonstrated that the toxic effect in
cochlear cells can be observed in vitro at
toluene concentrations that are more realis-
tic for human occupational exposure.
Finally, effects on the thyroid gland (mild
reduction of follide size) have been reported
after toluene inhalation in female rats (207).

Recent papers on embryotoxic potential
indicate that toluene (at much higher levels
than those in the natural environment)
induce some fetotoxic, but not teratogenic,
effects (208-210), while xylenes appeared to
be embryotoxic/fetotoxic and teratogenic,
causing an increase in preimplantation losses,
skeletal anomalies, reduced fetal body
weight, and delayed development (211,212.
Wilkins (213) presented a 1997 update on
toluene teratogenicity.

Because of the wide industrial use of
these alkylbenzenes, studies continue to
describe the effects of these compounds in
occupationally exposed groups (214-217).
Due to the scarce information available, the
long-term effects on human health from the
use of alkybenzenes as additives in gasoline
remain uncertain (19,218).

Greenberg (219) pointed out that
because subgroups that are sensitive to neu-
robehavioral effects of toluene exist, ade-
quate measures of protection for the general
population are required [even if atmospheric
levels of toluene in urban environments are
about 10 times lower that the inhalation ref-
erence concentration (RfC) fixed at 0.1 ppm
for general populations chronically exposed
to toluene]. Lagorio et al. (194), Hakkola
and Saarinen (196), and Lawryk et al. (220)
presented evaluations of levels in various
exposure scenarios.

The principal metabolites of alkylben-
zenes appear to have a low order of toxicity
and are readily excreted. Thus, toluene is
oxidized at the level of the methyl group to
benzoic acid, which is conjugated with
glycine to form hippuric acid and then
excreted. Hippuric acids are also metabolites
of xylene. Tardif et al. (221) suggested that
there is a metabolic interaction between
toluene and xylene that affects the metabolic
disposition of both chemicals. An exhaustive
picture of toluene and xylene effects in
plants and acquatic animals has been report-
ed by Nielsen and Howe (208) and Crookes
et al. (211).

In 1989, IARC reviewed the database
for toluene (222) and xylene (223) and con-
cluded that there was inadequate evidence
for carcinogenicity of both compounds in
humans and in experimental animals; thus,
toluene and xylene were not dassifiable as to
their carcinogenicity in humans (Group 3).
In a 1990 study, no evidence of carcino-
genic activity was found in male or female
F344 rats and B6C3F1 mice exposed to
toluene by inhalation (224).

Final Considerations
Toxicological data obtained in laboratory
animals (induding carcinogenic, teratogenic,
and mutagenic activities) and epidemiologi-
cal results from human studies in relation to
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gasoline exposure (published during the last
7 years) provide a broad picture of the cur-
rent aspects of the essential toxicological
properties of gasoline.

Knowledge of the intrinsic toxic proper-
ties of gasoline and its constituents is
undoubtedly important, but to identify the
potential toxicity, i.e., the damage (includ-
ing carcinogenic effects) that can occur in
man and his environment under normal
conditions of use, is even more important.

Concerning gasoline carcinogenicity,
any potential cancer risk in humans from
gasoline cannot yet be identified with preci-
sion for several reasons:
* The diverse and different constituents of

gasolines (leaded, unleaded, oxygenated,
reformulated gasolines)

* The inconclusive evidence of carcinogenic
risk in animals from some constituents

* The carcinogenic effect ascribed to some
constituents detected in experimental ani-
mals but ascribable to mechanisms (e.g.,
x2u-globulin) that are not present in
humans

* The insufficient data for determination of
long-term effects in occupationally
exposed cohorts

* The inadequate information on general
population exposure.
Despite this, it should be noted that

many individual investigators (109,
225-229) who report results of carcino-
genicity studies in experimental animals
(often with insignificant or only borderline
incidence of carcinogenic events) often sug-
gest direct extrapolation of such results to
humans. This abnormal situation is further
aggravated by interpretative manipulation of
valid study data by nonexperts or by scien-
tific dabblers, and by diffusion through
newspapers and other mass-media messages
of real and presumed hazards deriving from
gasolines. Lotti (230), referring to any toxi-
cological study, indicated that the simple
modification of a form of expression by
using "a variety of figures of speech, lexical
forms and rhetorical emphasis" can send
completely different messages.

In reference to the carcinogenic poten-
tial of a chemical, the assumption that what
is carcinogenic in animals is also carcino-
genic in humans is "biologically plausible
and prudent," according to IARC (231),
and there are many scientists who agree. No
single investigator or expert of mass-media
communication can claim carcinogenicity
and/or toxicity for a chemical. Only a
responsible health regulatory agency (such as
IARC, the EPA, etc.) can adequately express
judgment on the toxicity and carcinogenici-
ty of any chemical (including gasoline) in
laboratory animals after reviewing and
assessing all available data, discarding irrele-

vant and confounding data, and utilizing
up-to-date studies in toxicokinetics, metabo-
lism, and receptor binding. Indeed, every
chemical entity represents a unique case due
to its structure, toxicological properties, and
circumstances of use (232).

This overview provides a reference source,
covering the period 1990-1997, for the toxi-
cological aspects of gasoline and its con-
stituents. By reviewing and summarizing the
concordant and conflicting results of such
studies, we intended to highlight the consid-
erable difficulties that exist for any precise
identification of potential toxic effects on
health, meaning the risk for humans, espe-
cially in relation to the need for a correct and
adequate handling of other variables such as
preexisting pathological conditions, cigarette
smoking, drug use, etc. Furthermore, wide
margins of uncertainty in risk assessment
from gasoline exposure also derive from the
variable characteristics of the different gaso-
line mixtures, as well as from incomplete
results or incorrect scientific approach and/or
performance ofsome toxicological studies.

Thus, the problem regarding the poten-
tial toxicity of gasoline is still open, even
though it is clear that modern unleaded
gasolines present less risk to human health
due to the lower quantities of benzene and
lead. With further changes in the formula-
tion of gasoline, manufacturing processes,
and methods of distribution, the future
promises even lower levels of risk to health
and the environment.

The evaluation of potential health effects
of gasoline represents a very complex
process, with wide margins of uncertainty.
On the other hand, uncertainty is a charac-
teristic of any scientific conclusion, while
certainties are frequently, perhaps justifiably,
requested by regulatory authorities in order
to make better decisions and correct political
choices. Moreover: "The demand for [an
absolute] certainty is a sign of weakness, and
by persisting, induces paralysis" [Mark
Rutherford (233)].
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