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Tyrosine phosphorylation of proteins, controlled by tyrosine kinases and protein tyrosine
phosphatases, plays a key role in cellular growth and differentiating. A wide variety of hormones,
growth factors, and cytokines modulate cellular tyrosine phosphorylation to transmit signals across

the plasma membrane to the nucleus. Recent studies suggest that reactive oxygen species (ROS)
also induce cellular protein tyrosine phosphorylation through receptor or nonreceptor tyrosine
kinases. To determine whether protein tyrosine phosphorylation by ROS regulates endothelial cell
(EC) metabolism and function, we exposed vascular ECs to H202 or H202 plus vanadate. This
resulted in a time- and dose-dependent increase in protein tyrosine phosphorylation of several
proteins (Mr 21-200 kDa), as determined by immunoprecipitation and Western blot analysis with
antiphosphotyrosine antibody. Immunoprecipitation with specific antibodies identified increased
tyrosine phosphorylation of mitogen-activated protein kinases (42-44 kDa), paxillin (68 kDa), and
FAK (125 kDa) by ROS. An immediate signaling response to increased protein tyrosine
phosphorylation by ROS was activation of phospholipases such as A2, C, and D. Suramin
pretreatment inhibited ROS stimulation of phospholipase D (PLD), suggesting a role for growth
factor receptors in this activation. Further, PLD activation by ROS was attenuated by N-
acetylcysteine, indicating that intracellular thiol status is critical to ROS-mediated signal transduction.
These results provide evidence that ROS modulate EC signal transduction via a protein tyrosine
phosphorylation-dependent mechanism. Environ Health Perspect 106(Suppl 5):1205-1212
(1998). http//ehpnetl.niehs.nih.gov/docs/1998/Suppl-5/1205-1212natarajan/abstract.html
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Introduction

Reactive oxygen species (ROS), generated at implicated in cell damage through oxidative
relatively high levels by activated leukocytes, modification of cellular macromolecules
or by inhalation of environmental toxins (1,2). Several studies have implicated ROS
such as asbestos, silica, and ozone, have been in the pathophysiology ofvascular disorders
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including atherosclerosis, pulmonary
hypertension, vasculitis, and ischemia-
reperfusion (3-6). However, the mecha-
nisms of ROS-induced vascular disorders
are poorly defined. Recent studies suggest
that the effects of ROS in the vascular
endothelium are not entirely mediated
through damage to cellular components
but may involve modulation of signal
transduction pathways (7,8). This concept
is supported by a number of recent observa-
tions that ROS stimulate protein kinase C,
tyrosine kinases, mitogen-activated protein
(MAP) kinases, Ca2+ signaling pathways,
phospholipases, and regulate transcription
factors. Furthermore, some of the toxic
effects mediated by environmental toxins
and ROS are blocked by free radical
scavengers and antioxidants (7).

Tyrosine phosphorylation of proteins,
a balance between tyrosine kinases and
protein tyrosine phosphatases (PTPs), is
modulated by a variety of hormones,
growth factors, and cytokines (9,10).
Recent reports indicate that ROS induce
cellular protein tyrosine phosphorylation
through receptor and nonreceptor tyrosine
kinases (11,12). H202 alone or in combi-
nation with vanadate, which generates
peroxovanadium compounds, modulates
intracellular calcium (13), and activates
phospholipases (14-16) and mitogen-
activated protein kinases (17) through mod-
ulation of protein kinase/phosphatases.
However, the physiologic significance of
protein tyrosine phosphorylation by ROS
in endothelial cell (EC) metabolism and
function is not well understood. This
study was undertaken to examine the abil-
ity of ROS to modulate EC function
through protein tyrosine phosphorylation-
dependent signaling pathways. Our data
show that H202 and H202 plus vanadate
(diperoxovanadate [DPV]) stimulate tyro-
sine phosphorylation of several EC pro-
teins. Furthermore, our results suggest that
ROS-induced stimulation of protein tyro-
sine phosphorylation alters downstream
signaling pathways such as Ca2+ signaling
and activation of phospholipases A2
(PLA2), phospholipase C (PLC), and
phospholipase D (PLD), and generation of
lipid-derived second messengers.

Materials and Methods
Materials

Minimal essential medium (MEM), H202,
sodium orthovanadate, nonessential amino
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acids, genistein, 12- O-tetradecanoylphorbol-
13-acetate (TPA), and fetal bovine serum
were obtained from Sigma Chemical Co.
(St. Louis, MO). [32P]Orthophosphate
(carrier-free) was purchased from New
England Nuclear (Wilmington, DE).
[3H]Arachidonic acid ([3H]AA) (sp act 18
Ci/mmol) and [3H]myoinositol (sp act
10-20 Ci/mmol) were from ARC (St.
Louis, MO). Bovine pulmonary artery
endothelial cells (BPAECs) (CCL-209)
were from American Type Culture
Collection (Rockville, MD). Antiphos-
photyrosine antibody (4G10) and EC
growth factor were procured from Upstate
Biotechnology Inc. (Lake Placid, NY).
Diperoxovanadate (potassium salt), a gift
from T. Ramasarma (Indian Institute of
Science, India), was prepared by bubbling
SO2 gas through a solution of triperoxo-
vanadate and characterized as described
earlier (18). Enhanced chemiluminescence
(ECL) kit for the detection of tyrosine
phosphorylated proteins was from
Amersham (Arlington Heights, IL).
Phosphatidylbutanol (PBt) was purchased
from Avanti Polar Lipids (Alabaster, AL).

Methods
Cell Culture. BPAECs (passage 16) were
cultured in MEM as described previously
(19). Confluent cells showed cobblestone
morphology and stained positive for Factor
VIII. All experiments were performed at 90
to 95% confluency and at passage 19 or 20.

Measurement ofPhospholipase D
BPAECs in 35-mm dishes (5 x 105
cells/dish) were incubated with [32P]ortho-
phosphate (5 pCi/ml) in phosphate-free
Dulbecco's modified Eagle's medium
(DMEM) containing 2% fetal calf serum
for 18 to 24 hr at 37°C (19,20). About 2%
of the added radioactivity was incorporated
into total phospholipids. Labeled cells were
washed in serum-free MEM and were
incubated with MEM or MEM containing
ROS or other agents, at concentrations and
time periods as indicated, in the presence
of 0.05% butanol. Incubations were termi-
nated by the addition of 1 ml of methanol:
HCI (100:1 v/v) followed by extraction of
lipids in chloroform: methanol (19).
[32P]PBt formed as a result of PLD activa-
tion (19) was separated by thin-layer
chromatography (TLC) and quantified by
scintillation spectrometry.

Measurement ofPhospholipase C
Determination of diacylglycerol (DAG)
and inositol trisphosphate (IP3) served as

an index of PLC activation. BPAECs
grown in T-75 cm2 flasks were labeled with
[3H]myoinositol (sp act 10-20 Ci/mmol)
(5 pCi/flask) for 48 hr. Cells were washed
in MEM and challenged with ROS for
indicated time periods; at the end of the
incubation, lipids were extracted under
acidic conditions (19). The methanol-
water phase of the lipid extract containing
the [3H]inositol phosphates was subjected
to anion exchange chromatography in AG
1 x 8 column as described earlier (21) and
[3H]1P3 formed was quantified by liquid
scintillation counting. For the measure-
ment of DAG formed, BPAECs in T-75
cm2 flasks were challenged with ROS and
reaction was terminated by the addition of
2 ml of ice-cold methanol. Lipids were
extracted by addition of chloroform,
methanol, and water, and DAG levels were
determined by measuring incorporation of
[y 32p] ATP into DAG using DAG kinase
from Escherichia coli (22). Appropriate
sample blanks and 25 to 250 pmol diole-
oylglycerol served as control and standards.
DAG levels in the lipid extract were
expressed as nmoles of [32P] phosphatadic
acid (PA) formed per milligram of protein.

Measurement ofArachidonic Acid
Released and 6-Keto Prostaglndin F,a
Confluent BPAECs in 35-mm dishes
(5 x 105 cells/dish) were incubated in 1 ml
of MEM containing 0.5 pCi of [3H]AA
(18 Ci/mmol) for 24 hr at 370C. The cells
were then washed and incubated with ROS
or other agents for indicated time periods.
The medium was removed and radioactiv-
ity was quantified by scintillation counting.
In some experiments the media containing
the [3H]AA metabolites were acidified with
formic acid to pH 3.0 and extracted
3 times with 4.5 ml of ethylacetate. The
ethylacetate fractions were evaporated
under nitrogen and 6-keto prostaglandin
F,a (6-keto PGFl.), the stable metabolite
of prostacyclin, was separated by TLC
using the upper phase of ethylacetate:isooc-
tane:glacial acetic acid:water (90:50:20:100
by vol). Areas corresponding to free AA
and 6-keto PGFia were visualized under
iodine vapors using standards and radioac-
tivity was determined. About 40% of the
added [3H]AA was incorporated into the
total lipids of the ECs. TLC analysis
showed that 70 to 80% of the released
radioactivity comigrated with authentic 6-
keto PGFla and 10 to 20% with AA. In
some experiments, the cells were treated
with MeOH:HCl (100:1 v/v) and lipids
were extracted as described earlier (19).

The chloroform phase was dried under N2
and radioactivity in [3H]AA and DAG was
determined after TLC, using hexane:
diethylether:glacial acetic acid (50:50:1 by
vol) as the developing solvent.

Immunoprecipitation, SDS-PAGE and
Western Blot Analysis
Cells treated with MEM or MEM
containing DPV or vanadate were rinsed
3 times in ice-cold phosphate-buffered
saline (PBS) containing 1 mM vanadate.
Cells were scraped in 250 pl of lysis buffer
(20 mM Tris-HCI, pH 7.4; 1% NP-40,
137 mM NaCI, 0.5% Triton X-100) sup-
plemented with 2 pg/ml leupeptin, 2 pg/ml
pepstatin, 1 pg/ml aprotinin, 1 mM phenyl-
methylsulfonyl fluoride (PMSF), and 1 mM
vanadate. Cell lysates were sonicated and
centrifuged at 14,000 xgfor 15 min at 4°C.
An aliquot of the supernatant was used for
protein estimation by the Pierce biein-
choninic acid assay. The cell lysates (equal
protein of about 0.5-1 mg) were subjected
to immunoprecipitation with anti-FAK or
antipaxillin or anti-ERK-1 plus ERK-2
(1-2 pg/ml) at 40C for 4 to 12 hr. Protein
A/G (20 jil) was then added and incubated
for an additional 4 to 6 hr at 40C. The
antibody complex was pelleted and one
portion of the immunocomplex was disso-
ciated by boiling in 1 x sodium dodecyl
sulfate (SDS) sample buffer for 5 min.
Another aliquot of the immunocomplex
was washed twice with kinase buffer (50
mM PIPES, pH 7.0; 10 mM MgCl2; 3
mM MnCI2, and 0.1 mM dithiothreitol).
The kinase assays were initiated by the
addition of 1 pg myelin basic protein and
50 M [^y-32P]ATP (10 Ci/mmol) in a final
volume of 100 pl. The reaction was termi-
nated after various time periods at 30°C by
the addition of 10 mM ATP and Laemmli
sample buffer. The phosphorylation of
myelin basic protein was examined by
SDS-polyacrylamide gel electrophoresis
(PAGE) followed by autoradiography. For
Western blot analysis, 40 pl of 6 x Laemmli
SDS-PAGE buffer was added to 200 pl of
the lysate (20,23), and samples were boiled
for 5 min and stored at -200C. Cell lysates
adjusted to equal protein were subjected to
SDS-PAGE on 8 or 14% gels and were
electrotransferred onto polyvinylidene
difluoride (PVDF) membranes for Western
blot analysis. Membranes were blocked
with blocking buffer (GIBCO-BRL,
Gaithersburg, MD) for 1 hr, followed by
incubation with 4G10 monoclonal
antiphosphotyrosine antibody (1:1000
dilution) for 2 hr. The blots were washed
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with TBST (50 mM Tris base, 200 mM
NaCI, and 0.1% Tween 20) and were then
incubated with goat antimouse IgG heavy
and light chains horseradish peroxidase
(1:3000 dilution) for 1 hr. Subsequently,
the blots were washed in TBST and the
phosphotyrosine-containing proteins were
immunodetected using ECL.

Determination ofTyrosine Kinase
and PTP Activities
Tyrosine kinase activity in control and
ROS-treated BPAEC lysates was deter-
mined as described previously (24) using
Raytide peptide and [y-32P]ATP. The
tyrosine kinase activity was expressed as
picomoles of [32p] incorporated into
Raytide per minute per millligram of pro-
tein. PTP activity was assayed by following
the dephosphorylation of [32P]-labeled
Raytide peptide. [32P]-Labeled Raytide
peptide was prepared by tyrosine phospho-
rylation of Raytide peptide with src kinase
and [y-32P]ATP (25). [32P]-Labeled
Raytide peptide was incubated with the cell
lysates prepared in 10 mM HEPES, pH
7.4; 1 mM PMSF; 0.5 ug/ml leupeptin; 5
mM EDTA; 10 mM NaF; 0.5 pg/ml pep-
statin) in an assay buffer containing 20
mM amidazole, 5 mM EGTA, 20 mM
NaF, and 0.2% 2-mercaptoethanol in a
final volume of 200 pl. The reaction was
carried out for 30 min at 30°C in the
absence or presence of 0.2 mM sodium
vanadate to determine vanadate-sensitive
tyrosine phosphatase activity and termi-
nated by the addition of 1.0 ml of a 2%
slurry of activated charcoal. The reaction
mixture was centrifuged and free radio-
activity in the supernatant [32p] iwas
counted. Results are expressed as free
[32P]phosphate released per minute per
milligram of protein.

Changes in [Ca2i
BPAECs grown on glass cover slips as
monolayers were loaded with 10 pM
Fura-2 acetoxymethylester (AM) in the
dark for 45 min as described earlier (16).
The loaded cells were rinsed 3 times and
incubated for an additional 30 min in the
dark in buffer containing: 4.8 mM KCl,
130 mM NaCI, 1.0 mM MgCl2, 1.5 mM
CaCl2, 1.0 mM Na2HPO4, 15 mM glu-
cose, and 10 HEPES (pH 7.4) without
albumin. The Fura-2 loaded cells were
inserted diagonally in the 1.0-cm acryl
cuvettes filled with 2 ml buffer. The cells
were challenged with varying concen-
trations of DPV and Fura-2 fluorescence
was measured with an Aminco-Bowman

Series 2 luminescence spectrometer (SLM/
Aminco, Urbana, IL) at excitation wave-
lengths of 340 and 380 nm and an emission
wavelength of 510 nm. The 340/380 ratio
was taken every half second and measure-
ments were corrected for autofluorescence
by measuring the fluorescence of the cells
not loaded with Fura-2 AM. Intracellular
free calcium [Ca2+1] was calculated with
software provided by the manufacturer.

Results
ROS Modulates Tyrosine Kinase
and PIP Activities
As ROS are potent inhibitors of PTPs
(13,26), it was necessary to determine the
effect of H202 and H202 plus vanadate
on tyrosine kinase and phosphatase activi-
ties in ECs. As shown in Figure 1, H202
treatment of BPAECs increased tyrosine
kinase activity without altering the PTP
activity. However, 10 pM vanadate inhib-
ited the PTP activity without altering the
tyrosine kinase activity. A combination of
vanadate plus H202 was a potent inhibitor
of PTP (> 80% inhibition) and activator
of tyrosine kinase (3-fold over control).
These data suggest that modulation of
tyrosine kinase and PTP activities in ECs
is dependent on the nature ofROS used.

ROS Increases Tyrosine
Phosphorylation ofProteins in ECs
Modulation of tyrosine kinases/PTPs by
ROS may increase protein tyrosine phos-
phorylation of ECs in a manner similar to
that in other cell types (27). Treatment of
BPAECs with varying concentrations of
H202 resulted in a dose-dependent
increase in tyrosine phosphorylation of sev-
eral proteins, as determined by immuno-
blotting with antiphosphotyrosine
antibody (Figure 2). At lower concentra-
tions of H202, the only prominent tyro-
sine phosphorylated band that was
immunodetected was 1 10 to 130 kDa.
Under similar experimental conditions,
treatment of BPAECs with ATP,
bradykinin (BRK), or TPA showed no sig-
nificant increase in tyrosine phosphoryla-
tion of proteins. Similarly, treatment of
BPAECs with 1 to 5 pM vanadate showed
no increase in tyrosine phosphorylation of
EC proteins. However, vanadate at 10 pM
exhibited a small increase in tyrosine phos-
phorylation of proteins at 20 to 35 kDa
and 110 to 180 kDa (Figure 3). As
reported for neutrophils, a combination of
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Figure 1. Effect of ROS on protein tyrosine phos-
phatase and tyrosine kinase activities in vitro. BPAECs
(5 x 106 cells/flask) were challenged with MEM or
MEM containing 100 pM H202, 10 pM vanadate, or
100 pM H202 plus 10 pM vanadate for 60 min at 37°C.
Cells were washed in ice-cold PBS, scraped into 1 ml
lysis buffer (10 mM HEPES, pH 7.4, 1 mM PMSF; 0.5
pg/mI leupeptin; 5 mM EDTA; 10 mM NaF; 05 pg/mI
pepstrate) and sonicated. Cell lysates were centrifuged
and supernatants were assayed for PTP and tyrosine
kinase activities as described under "Materials and
Methods." Data are mean ± SE of 3 independent deter-
minations.

19-

7-

0= 0 0-=LE =

Figure 2. Stimulation of protein tyrosine phosphoryla-
tion by H202 and agonists. BPAECs (35-mm dishes,
5 x 105 cells/dish) were challenged with varying con-
centrations of H202 for 1 hr or with ATP, TPA, or
bradykinin. Cells were washed in ice-cold PBS contain-
ing 1 mM vanadate and scraped with 200 pi radio-
immunoprecipitation assay (RIPA) buffer Cell lysates
(10 pg protein) were subjected to SDS-PAGE (8% gel)
followed by transfer to PVDF membrane and
immunoblotted with antiphosphotyrosine antibody
(1:200 dilution). Tyrosine phosphorylated proteins were
detected by ECL using anti-lgG horseradish peroxidase.
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vanadate plus H202 in a dose-dependent
manner caused a marked increase in tyrosine
phosphorylation of several proteins in the
molecular weight range of 25 to 180 kDa
(Figure 4). These results clearly suggest a
direct correlation between ROS-mediated
modulation of tyrosine kinase/PTP activi-
ties and protein tyrosine phosphorylation of
EC proteins.

ROS En csTyrosine
Phosphorylation ofFAK
and MAP Kinases
We previously demonstrated that ROS
stimulates tyrosine phosphorylation of
caveolin, a 22-kDa marker protein of cav-
eolin in ECs (24). To further examine the
effect of ROS on protein tyrosine phos-
phorylation in ECs, BPAECs were
exposed to varying concentrations of 50
to 200 pM H202 for 30 min. Cell lysates
from control and H202-treated cells were
subjected to immunoprecipitation with
anti-FAK or antipaxillin monoclonal bod-
ies and the immunoprecipitates were sepa-
rated by SDS-PAGE and probed with
A-PY (or anti-FAK) or antipaxillin. As
shown in Figures 5 and 6, H202 signifi-
cantly increased tyrosine phosphorylation
of FAK and paxillin in a dose-dependent
manner compared to cells exposed to
medium alone. Similar activation of tyro-
sine phosphorylation of FAK was
observed when BPAECs were exposed to a
xanthine/xanthine oxidase system that
generates superoxide anion radicals. In
addition to FAK and paxillin, 5 pM DPV
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31-
26 |
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activated ERK-1 and ERK-2, as determined
by immunoprecipitation and immunoblot-
ting with antiphosphotyrosine antibodies
(Figure 7). Furthermore, measurement of
the kinase activity in the ERK-1 and ERK-2
immunocomplexes using myelin basic
protein as a substrate showed enhanced
incorporation of [32p] from [y-32P]ATP
into myelin basic protein. These results
show activation of focal adhesion proteins
and ERK-1 and ERK-2 members of the
MAP kinase family by ROS in ECs.

Role ofCa2+ in ROS-Induced Protein
Tyrosine Phosphorylation
To investigate the role of Ca2+ in Di
induced protein tyrosine phosphorylati
BPAECs were challenged with 1 to 10 1
DPV. As shown in Figure 8, D
increased [Ca2+] j in a dose-depend
manner. The time-course of DPV-indu
[Ca2+]i showed an initial increase
[Ca2+]1 that was followed by a seco
phase of gradual decrease. Having demo
strated that DPV caused an increase
[Ca2%i, we investigated the role of Ca'
DPV-induced protein tyrosine phosphc
lation. Pretreatment of BPAECs w
BAPTA/AM (25 pM), a chelator
[Ca2+]i attenuated DPV-induced prot
tyrosine phosphorylation (Figure 9)
demonstrated by Western blot anal)
and probing with antiphosphotyros
antibody. Chelating the extracellular C
by treating the cells with 1 to 5 n
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EGTA had no effect on DPV-induced
protein tyrosine phosphorylation. These
results suggest that DPV-induced changes
in [Ca2+]i modulate protein tyrosine
phosphorylation in BPAECs.

ROS Activates PTA2, PLC, and PLD
Stimulation of BPAECs with H202 (100
pM) resulted in accumulation of [3H]AA

Hydrogen peroxide,,M
0 50 100 200

IP FAK IB PTyr 120 kDa

IP FAK IB FAK 120 kDa

IB PTyr

Xanthine/xanthine oxidase
_ + _ +

+ _i12~~~10 kDa

Time, min

in Figure 5. ROS-stimulates tyrosine phosphorylation of
in focal adhesion kinase in ECs. Abbreviations: IP, immuno-

precipitation; IB, immunoblotting; PTyr, phosphotyrosine.
ith BPAECs (5x 106 cells/T-75 cm2 flask) were challenged
of with MEM or MEM containing varying concentrations of

H202 or xanthine/xanthine oxidase (100 pM/10 U per
:ein ml). Cells were washed in ice-cold PBS and cell lysates
, as were prepared in 2 ml RIPA buffer (denaturing condi-
ysis tion). About 1 mg protein was subjected to immunopre-
mne cipitation with anti-FAK antibody for 12-18 hr. At the
:a2+ end of the time period, 20 pg protein A/G Sepharose
nM was added and incubations continued for an additional 4

hr. The samples were microcentrifuged and immunopre-
cipitates were washed 3 times in ice-cold RIPA buffer
and reconstituted with sample loading buffer. Equal por-
tions of immunoprecipitates were subjected to
SDS-PAGE, followed by transfer to PVDF membrane,
and immunoblotted with antiphosphotyrosine antibody
and anti-FAK antibody. Tyrosine phosphorylated proteins
were detected by ECL (Amersham).

IP A-paxillin
H202, 1 mM

IB A-PTyr

IB A-paxillin

Time, min 0 0.5 2 5 10 15 30 60

Figure 3. Effect of vanadate on EC protein tyrosine
phosphorylation. BPAECs (35-mm dishes, 5x 105
cells/dish) were challenged with varying concentra-
tions of vanadate for 60 min. Cells were washed in ice-
cold PBS and cell lysates were prepared in 200 pi RIPA
buffer. Cell lysates (10 pg protein) were subjected to
SDS-PAGE and tyrosine phosphorylated proteins were
detected as indicated in Figure 2.

jiM 0 5 10 25 50 100 1000

Figure 4. Dose-dependent stimulation of proteins tyro-
sine phosphorylation by DPV in BPAECs. BPAECs (35
mm dish, 5 x 105 cells/dish) were challenged with vary-

ing concentrations of DPV for 30 min and cell lysates
were prepared as described in Figure 2. Cell lysates (5
pg protein) were subjected to SDS-PAGE and tyrosine
phosphorylated proteins were immunodetected as
described under "Materials and Methods."

Figure 6. ROS stimulates tyrosine phosphorylation of
paxillin in ECs. BPAECs (5x 106 cells/T-75 cm2 flask)
were challenged with MEM or MEM containing 1 mM
H202 for varying time periods. Cell lysates (1 mg pro-
tein) were subjected to immunoprecipitation with
antipaxillin antibody and SDS-PAGE as described in
Figure 5. Immunoblots were probed with antiphospho-
tyrosine (A-PTyr) or antipaxillin antibodies using ECL
(Amersham).
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metabolites in the medium, characterized
as 6-keto PGFia, a stable derivative of
prostacyclin (Table 1). To further confirm
that ROS-mediated increases in [3H]AA
metabolites involve PLA2 activation,
[3H]AA-labeled BPAECs were treated with
mepacrine, a PLA2 inhibitor, before chal-
lenging with ROS. As shown in Table 2,
mepacrine attenuated the ROS and
ionomycin-induced release of [3H]AA and
accumulation of [3H]AA metabolites.
These data also suggest that activation of
PLA2 by ROS is an essential step in the
release of [3H]AA and its conversion to
[3H]AA metabolites. Also, treatment of
BPAECs with H202 (100 pM) caused an
accumulation of [3H]1IP3 and [32P]PBt,
indicating activation of PLC and PLD
pathways. Interestingly, vanadate (10 pM)
induced a slight increase in the generation
of IP3without affecting the generation of
[3H]AA metabolites or [32P]PBt (Table 1).
Under similar experimental conditions,
H202 (100 PM) caused activation of tyro-
sine kinases, as evidenced by increased pro-
tein tyrosine phosphorylation (Western
blot analysis). In addition to 1P3, an accu-
mulation ofDAG was observed with H202
(100 pM) (2- to 5-fold over control) and
H202 (100 pM) plus vanadate (10 pM)
(7-fold over control). However, vanadate
(10-100 pM) failed to enhance DAG lev-
els. These results suggest that ROS activate
PLA2, PLC, and PLD pathways that may
involve stimulation of tyrosine kinases.

As protein tyrosine phosphorylation is
a balance between tyrosine kinases and
PTPs, inhibition of phosphatases should

All samples treated with DPV, 5 iM
IP= anti-ERK-1/2/ IB= anti-PY

ERK-1/2

ERK-1/2 in vitro kinase assay
MBP _

Time, min 0 5 15 30

Figure 7. Time course of DPV-induced tyrosine phos-
phorylation of ERK-1 and ERK-2. BPAECs. (5x 106
cells/T-75 cm2 flask) were challenged with MEM or
MEM containing 5 pM DPV for different time periods
as indicated. Cell lysates were subjected to immuno-
precipitates with anti-ERK-1 plus anti-ERK-2 polyclonal
antibodies (1 pg/mg protein), followed by immunoblot-
ting of equal amounts of immunoprecipitates with
antiphosphotyrosine antibody as described under
"Materials and Methods." An aliquot of ERK-1 plus
2 immunophosphate was also assayed for MAP kinase
activity using 5 pg myelin basic protein and (y-32P-ATP).
Tyrosine phosphorylated proteins were detected by
ECL and 32P-labeled myelin basic protein was detected
on X-ray film after SDS-PAGE (5% gel).

upregulate tyrosine kinase-mediated
activation of phospholipases and protein
tyrosine phosphorylation. To investigate
whether PTP inhibitors modulate H202-
induced stimulation of phospholipases and
protein tyrosine phosphorylation, BPAECs
were challenged with MEM, MEM con-
taining H202, or H202 plus vanadate. As
shown in Table 3, vanadate potentiated
H202-induced accumulation of [3H]6-
keto PGFia, [3H]1IP3, and [32P]PBt as well
as protein tyrosine phosphorylation. A sim-
ilar modulation of the phospholipases and
protein tyrosine phosphorylation was
observed with other phosphatase inhibitors
such as phenylarsineoxide or diamide (data
not shown). To further confirm that
H202-induced activation of phospholi-
pases and protein tyrosine phosphorylation
was tyrosine kinase dependent, the effect of
tyrosine kinase inhibitor, genistein, was
investigated. Genistein, at a concentration
of 100 pM, attenuated the H202-induced
release of [3H]AA metabolite, and [32P]PBt
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Figure 8. Changes in [Ca2+li by DPV. BPAECs were
loaded with Fura-2 and treated with 1-10 pM DPV.
Changes in [Ca2+li were monitored using an SLM-
AMINCO fluorospectrometer as described under
"Materials and Methods." Results are expressed as
ratio of 340/380 nm and the tracing is representative
of three independent experiments.

accumulation as well as protein tyrosine
phosphorylation (Table 4). These results
suggest a role for tyrosine kinase/PTP in
ROS-mediated activation of signal
transduction pathways in ECs.

Role ofGrowth Factor Receptors in
ROS-Mediated PLD Acdvation
Because H202 or H202 plus vanadate
mimics the action of insulin and growth
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Figure 9. Effect of BAPTA on DPV-induced protein
tyrosine phosphorylation. BPAECs were pretreated
with medium alone or medium containing 25 pM
BAPTA for 30 min. Cells were washed and challenged
with medium or medium containing 5 pM DPV for 15
min. Cell lysates were prepared as described under
"Materials and Methods." Cell lysates from each of
the treatments (10 pg protein) were subjected to
SOS-PAGE, transferred onto PVDF membrane and
immunoblotted with antiphosphotyrosine antibody
4610. Tyrosine phosphoryated proteins were detected
using ECL.

Table 1. Effect of ROS on phospholipases A2, C, and D activities and protein tyrosine phosphorylation.

Activity,% control Protein tyrosine phosphorylation,
Treatment PLA2a PLC PLDC % control

Vehicle 100 100 100 100
H202, 100 pM 160 220 325 205
Vanadate, 10 pM 110 140 126 104

BPAECs (5x 105 cells/dish) was prelabeled with [3HIAA (0.5 pCi/dish) or [32P]orthophosphate (5 pCi/dish) in phos-
phate-free DMEM for 24 hr. For PLC assay, cells (5 x 106 cells/T-75 cm2 flask) were prelabeled with [3H]myoinositol
(5 pCi/flask) for 48 hr. Cells were washed in MEM and challenged with MEM or MEM containing 100 pM H202 or
10 pM vanadate for 30 min at 37°C. Release of [3H]AA metabolites, generation of 1P3, or accumulation of [32P]PBt
was measured as described in "Materials and Methods." For determination of protein tyrosine phosphorylation,
unlabeled cells were treated as above and cell lysates were subjected to SDS-PAGE and Western blot analysis
with antiphosphotyrosine antibody. Following ECL, the relative intensities were quantified by a gel scanner. Shown
is the average of data obtained in 3 independent experiments. aPLA2 activity represents [3H]AA metabolites includ-
ing 6-keto PGFla. bPLC activity represents [3H]IP3 released. CPLD activity represents [32P1PBt generated. dProtein
tyrosine phosphorylation was determined by Western blot analysis with antiphosphotyrosine antibody.
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Table 2. Effect of mepacrine on ROS- and ionomycin-mediated [3H]AA and metabolites.

[3H]dpm, [3H]dpm,
Pretreatment Treatment AA AA metabolites

Vehicle Vehicle 1020± 82 1920±244
Vehicle H202, 100PM 2332±102 3576± 94
Vehicle lonomycin, 1 pM 3736±146 18400±356
Mepacrine, 100 pM Vehicle 1428±134 1748± 80
Mepacrine,100lpM H202, 100pM 1688±104 2140± 76
Mepacrine, 100 pM lonomycin, 1 pM 1802 ± 78 4915±106

BPAECs (35-mm dishes; 5 x 105 cells/dish) were labeled with [3H]AA (0.5 pCi/dish) for 24 hr. At the end of labeling,
cells were washed and pretreated with MEM or MEM containing 100 pM mepacrine for 60 min. Cells were rinsed
in MEM and challenged with MEM or MEM containing 100 pM H202 or 1 pM ionomycin for 30 min. Lipids were
extracted under acidic condition and [3H]AA or [3HIAA metabolites were quantified as described under "Materials
and Methods." Values are mean ± SD of triplicate determination.

Table 3. Effect of vanadate on H202-induced PLA2, PLC, PLD activities, and protein tyrosine phosphorylation.

% over H202-induced activation
Addition PLA2a PLCb PLDC Protein tyrosine phosphorylation

None 100 100 100 100
Vanadate, 10 pM 120 135 320 220
Vanadate, 50 pM 160 180 460 640
Vanadate, 100 pM 225 210 580 920

Experimental conditions are described in Table 1. Cells were challenged with MEM or MEM containing H202
(100 pM) plus varying concentrations of vanadate. 8PLA2 activity-[3H]AA metabolite formed: vehicle, 1460 dpm;
H202, 3200 dpm. bPLC activity-[3H]1P3 formed: vehicle, 640 dpm; H202, 1600 dpm. CPLD activity-[32P]PBt formed:
vehicle, 306 dpm; H202, 826 dpm.

Table 4. Effect of genistein on PLA2 and PLD activities and protein tyrosine phosphorylation.

% over H202 -induced activation
Addition PLA2a PLDb Protein tyrosine phosphorylation

None 100 100 100
Genistein, 100 pM 65 52 58

BPAECs (5 x 105 cells/dish) were prelabeled with [3H-AA (0.5 pCi/dish) or [32Plorthophosphate (5 pCi/dish) for 24 hr.
Cells were washed in MEM and preincubated with 100 pM genistein for 60 min. Cells were rinsed again and chal-
lenged with 100 pM H202 for 30 min at 37°C. PLA2 and PLD activities were measured as described in "Materials
and Methods." For protein tyrosine phosphorylation, unlabeled cells were preincubated with genistein (100 PM)
for 30 min. Cell lysates were subjected to SDS-PAGE and Western blot analysis with antiphosphotyrosine anti-
body as described in "Materials and Methods." a[3H]AA metabolite formed: vehicle, 1600 dpm; H202, 3426 dpm.
b[32p]PBt formed: vehicle, 346 dpm; H202, 768 dpm.

Table 5. Effect of suramin on ROS- and TPA-mediated PLD activation.

[32P]PBt formed, Activity,
Pretreatment Treatment dpm/dish % control

Vehicle Vehicle 356± 79 100
Vehicle DPV, 2 pM 2953 ±379 829
Vehicle TPA,100 pM 3146±242 884
Suramin, 100 pM Vehicle 520± 105 146
Suramin, 100 pM DPV, 2 pM 1462±260 410
Suramin, 100 pM TPA, 100pM 3266±175 917

BPAECs (5x 105 cells/dish) were prelabeled with [32P]orthophosphate 15 pCi/dish) in phosphate-free DMEM con-
taining 2% fetal calf serum for 24 hr. Cells were washed in MEM and then were incubated at 37°C with MEM or
MEM containing 100 pM suramin After 60 min, the cells were washed again in MEM and challenged with 2 pM
DPV or 100 nM TPA in the presence of 0.05% butanol for 30 min at 37°C. Lipids were extracted under acidic condi-
tion as described in "Materials and Methods." [32P]PBt was separated by TLC. Values are mean ± SD of triplicate
determination.

factors, we explored the role of growth
factor receptors in ROS-mediated activation
of PLD. Suramin blocks agonist-growth
factor receptor interactions and therefore
inhibits PLD activation by ROS when
growth factor receptors are involved. As
shown in Table 5, suramin pretreatment of
BPAECs blocked DPV-induced [32P]PBt
formation. The effect of suramin was spe-
cific for DPV-induced PLD activation, as
it had no effect on TPA-mediated [32P]PBt
formation (Table 5). Also, suramin by
itself had minimal stimulatory effect on the
basal [32P]PBt formation. The attenuating
effect of suramin on DPV-induced
[32P]PBt formation was dose dependent,
with 50% inhibition at 100 pM suramin
(Table 6). These results suggest that
growth factor receptors may be involved in
ROS-mediation PLD activation.

Effct ofAntioxidants on
ROS-Mediated PLD Activation
As proteins and lipids are likely targets
through which ROS can modulate cell
signaling, we investigated the effect of
antioxidants on DPV-induced PLD activa-
tion. Enhancing the EC redox state by pre-
treatment with N-acetylcysteine abolished
the ability of DPV to activate PLD activity
(Table 7). These results suggest that modu-
lation of sulfhydryl reactivity by DPV is
blocked by N-acetylcysteine.

Discussion
In this study, the effects of ROS on
activation of PLA2, PLC, and PLD and
protein tyrosine phosphorylation in ECs
were examined. Our results show that
H202-stimulated the generation of
[3H]AA metabolites, [3H]IP3 and
[32p]PBt, suggesting activation of PLA2,
PLC, and PLD pathways, respectively. It
was also observed that pretreatment of
ECs with vanadate potentiated the H202-
induced activation of PLA2 and PLD.
Vanadate, a known inhibitor of phos-
phatases, also interacts with H202 to gen-
erate peroxovanadium compounds
(11,12). A major product generated by
mixing equimolar amounts of H202 and
vanadate under neutral pH condition was
identified as DPV (18). Our data also
indicate that ROS-induced stimulation of
PLA2 and PLD was attenuated by genis-
tein, an inhibitor of tyrosine kinases.
These results suggest that ROS-induced
activation of phospholipases involves pro-
tein tyrosine phosphorylation. This finding
further supports the earlier observation that
H202 plus vanadate mimics insulin (12),
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Table 6. Suramin inhibits ROS-induced activation of PLD.

[32P]PBt formed,
% over DPV-induced

Treatment activation

2 pM DPV 100
50 pM suramin ±2 pM DPV 71
100 pM suramin ±2 pM DPV 50
250 pM suramin ± 2 pM DPV 30

BPAECs (5x 105 cells/dish) were prelabeled with [32p]
orthophosphate (5 pCi/dish) in phosphate-free DMEM
containing 2% fetal calf serum for 24 hr. Cells were
washed in MEM and then were incubated at 37°C with
MEM or MEM containing varying concentrations of
suramin. After 60 min, the cells were washed again in
MEM and challenged with 2 pM DPV containing 0.05%
butanol for 30 min at 37°C. Lipids were extracted
under acidic condition and [32P]PBT was quantified
after TLC as described in "Materials and Methods."
Radioactivity associated with PBt after DPV treatment
was 2746±172 dpm/dish. Values are the average of 3
independent experiments in triplicate.

stimulates P13 kinase (28), and enhances
protein tyrosine phosphorylation (29).

The mechanism(s) involved in tyrosine
kinase-mediated activation of PLA2, PLC,
and PLD is unclear. There is increasing
evidence for the involvement of protein
tyrosine phosphorylation in growth factor-,
oxidant-, and IgE-mediated PLD activities.
However, the nature of tyrosine phosphor-
ylated proteins involved in PLD activation
has not been identified. Earlier studies by
Vepa et al. (24) indicate that caveolin and
FAK (125 kDa) are targets for H202 in
ECs. In this study, we have identified
ERK-1 and ERK-2 and focal adhesion pro-
teins (FAK and paxillin) as potential targets
for ROS-induced tyrosine phosphorylation.
Exogenous addition of oxidants induced
tyrosine phosphorylation of ERK-1 and
ERK-2, and this activation was mediated in

Table 7. Effect of N-acetylcysteine on ROS- and TPA-induced PLD activation.

[32P]PBt, dpm/dish
Addition (-) DPV (+) DPV (-) TPA (+) TPA

250±26 1246±155 215±12 4886±755
N-acetylcysteine, 10 mM 158±26 486± 47 336±35 4116±475

BPAECs (5x105 cells/dish) were prelabeled with [32P]orthophosphate (5 pCi/dish) in phosphate-free DMEM
containing 2% fetal calf serum for 24 hr. Cells were washed in MEM and then were incubated with 10 mM
N-acetylcysteine for 60 min. At the end of the preincubation, cells were washed in MEM and challenged with
2 pM DPV or 100 nM TPA and 0.05% butanol for 30 min at 37°C. Lipids were extracted under acidic conditions
and [32P1PBT was quantified after TLC as described in "Materials and Methods." Values are mean±SD of
triplicate determination.

Figure 10. Modulation of EC signaling pathways by ROS. Abbreviations: LPA, lysophosphatidic acid; RAF.

part by MEK (30,31). Similarly, exposure
of NIH3T3 cells to H202 differentially
activated ERK-2, JNK, and p38 MAP
kinases (32). Activation of MAP kinases
culminates in phosphorylation of down-
stream targets including enzymes and
nuclear factors (33). Although the data
presented here do not implicate a direct
role for MAP kinases in the activation of
EC phospholipases, recent studies suggest
that p38 MAP kinase and phosphoryla-
tion of heat shock protein HSP27 involve
MAPKAPK-2 (34). Suramin, a known
inhibitor of ligand-receptor interaction,
attenuated ERK-2 activation by epidermal
growth factor (EGF) (32). A similar
inhibitory effect of suramin on DPV-
induced PLD activation was observed,
suggesting a role for growth factor recep-
tors rich in cysteine in ROS-mediated cell
signaling. Indeed, a role for sulfhydryl
groups in ROS-mediated signal transduc-
tion was confirmed by the inhibitory
effect of N-acetylcysteine on DPV-
induced PLD activation (Table 7) and
protein tyrosine phosphorylation (16).
ROS increase [Ca2+]i through 1P3-
dependent release, enhanced Ca2, trans-
port, and through Ca2+-dependent
channels (7). Although there are several
studies to indicate that oxidative stress
induces cell toxicity (2-8), recent evi-
dence, including the results of this study,
suggests that ROS modulate EC function
by altering Ca2+ signaling, generation of
second messengers and protein
kinases/phosphatases. Although the pre-
cise mechanism(s) and regulation of ROS-
mediated activation of phospholipases
remain to be clearly established, this study
provides support for changes in [Ca2%]
and redox status of the cell in ROS-
mediated protein tyrosine phosphorylation
and EC signaling pathways (Figure 10).

Although it is well known that
exposure of mammalian cells including
ECs to elevated levels of ROS induces
toxicity, there is no direct correlation
between ROS-induced alterations in sig-
naling pathways and ROS-mediated toxi-
city. It has been hypothesized that
ROS-mediated signaling alterations pre-
cede toxicity and by blocking changes in
cell signaling by free radical scavengers
and antioxidants, the ROS-mediated toxi-
city can be partially blocked. Further
studies on ROS-mediated cellular signal-
ing and toxicity should provide a better
understanding of the complexities of cell
signaling mechanisms under normal and
pathologic conditions.
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