Roles of Lead-Binding Proteins
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The intracellular bioavailability of lead (Pb) at low dosage levels in major target organs such as the
kidney and brain appears to be largely determined by complexation with a group of low molecular
weight proteins. These proteins are rich in aspartic and glutamic dicarboxyl amino acids. The
proteins are chemically similar but not identical across all species examined to date and the brain
protein appears to be different from that found in the kidney. These proteins possess dissociation
constant values for Pb on the order of 108 M and appear to normally bind zinc. In rats, these
proteins attenuate the Pb inhibition of the heme pathway enzyme d-aminolevulinic acid
dehydratase by a mechanism involving both Pb chelation and zinc donation to this highly Pb-
sensitive zinc-dependent enzyme. Other studies in rats have shown that the kidney protein
facilitates the intranuclear movement of Pb in vitro followed by chromatin binding, suggesting
that this protein may be involved in alterations of the pathognomonic Pb intranuclear inclusion
bodies in renal gene expression associated with the mitogenic effects of Pb in the kidney.
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All models for predicting blood lead values
from soil or dust exposures require the
movement of lead (Pb) in a soluble form
between the gastrointestinal tract, lungs,
blood, major organs, and urinary or fecal
routes of excretion. The models also
assume that blood Pb values are useful pre-
dictors of Pb toxicity for all segments of
the population. The movement of Pb in
blood and its transport into hard and soft
tissues implies binding to soluble carriers
such as metal-binding proteins. It has been
known for some time that other metals
such as iron are transported in blood via
proteins such as transferrin and that
cadmium and zinc are transported bound
to metallothionein. Soluble Pb-binding
proteins (PbBPs) in blood (7,2) and target
tissues (3-8) appear to be involved in
mediating both the bioavailability and the
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toxic potential of Pb. Protein-mediated
mechanisms of toxicity for metals such as
calmodulin and calcium have been studied
extensively (9,10), and research from this
laboratory has shown that PbBPs from the
rat are capable of both attenuating the
effects of Pb on 8-aminolevulinic acid
dehydratase (8-ALAD) (11-13) and medi-
ating the intranuclear movement and chro-
matin binding (14,15) of Pb in target cell
nuclei from the kidney. These latter effects
appear to be quite important in regulating
alterations in renal gene expression patterns
(16,17) and possibly Pb-induced renal
cancer (18). PbBPs may also be involved in
the formation of Pb-containing intranuclear
inclusion bodies in target tissues (19-23), as
they appear to undergo aggregation after
addition of Pb in vitro (24).

The following discussion reviews the
literature on these molecules and exam-
ines how they influence individual suscep-
tibility to Pb toxicity in humans and other
species.

Lead-Binding Proteins
Rats

Kidney. Studies by Oskarsson et al. (4)
demonstrated that the rat kidney possessed
several low molecular weight protein peaks
from rat kidney cytosol. One of these
proteins had an estimated molecular mass

of 63,000 daltons, which may be a tetramer
of the lower molecular weight peak, and
showed stable binding of 2°3Pb on sodium
dodecyl sulfate (SDS) gels, indicating a
high degree of stability. Subsequent
studies (/7/-13) demonstrated that both
molecular forms were capable of attenuat-
ing the inhibitory effects of Pb?* on &-
ALAD activity by a mechanism involving
both Pb chelation and donation of zinc to
this zinc-activated enzyme. Pb- binding
studies demonstrated that the low molecular
weight protein had an apparent dissociation
constant (Kj) for Pb of 10-8 M, with
extremely stable binding. Cell-free nuclear
translocation studies (/4,15) demonstrated
time- and temperature-dependent nuclear
uptake of 203Pb-labeled PbBP with subse-
quent chromatin binding. /7 vitro metal
competition studies (/5) demonstrated
that cadmium and zinc were the most
effective competitors for inhibiting Pb
binding to the PbBP. These data are of
interest, as they are consistent with the
results of an in vivo lead X cadmium X
arsenic feeding study (25) that demon-
strated that concomitant exposure to
cadmium abolished formation of Pb
intranuclear inclusion bodies. Biochemical
characterization studies (5) identified the
rat renal PbBP as aty,-globulin, which is a
member of the retinol-binding protein
supergene family. These studies also con-
firmed the apparent K value of 108 M Pb
for binding to the purified protein. Other
studies (24) also showed that addition of
Pb to the purified protein in vitro also
resulted in an apparent aggregation phe-
nomenon, indicated by the appearance of
higher molecular weight bands on SDS
gels as a function of metal and incubation
time. These findings suggest the soluble
PbBP in rat kidney cytosol may be
involved in the formation of patho-
gnomonic Pb intranuclear inclusion bodies
(18-23). These inclusions (20,22-23)
contain acidic proteins with estimated mol-
ecular masses of 30,000 daltons.

Brain. The other major target organ in

. the rat also showed two protein peaks with

higher molecular masses than those found in
the kidney (3); Western blot analysis studies
using polyclonal antibodies to the rat renal
PbBP did not cross-react with the brain
PbBP. Preliminary characterization studies
(3) showed that, like the kidney, brain
PbBP was an acidic protein with a high
content of glutamic and aspartic amino
acids and ion exchange chromatographic
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characteristics similar to those of renal
PbBP. The exact identity of this protein is
currently unknown.

Humans
Blood. Ragavan and Gonick (2) reported

earlier the increased presence of low mole-
cular weight PbBPs in blood of PbBP-
exposed workers. Subsequent studies by
Lolin and O’Gorman (1) also showed the
presence of soluble proteins in workers
with moderate Pb exposure. The identity
of these proteins is currently unknown.

Kidney. Recent studies by Smith and
co-workers (7,8) have shown that there are
two PbBPs in human kidney and that these
are identified as diazepam-binding inhib-
itor and thymosin 4. These proteins were
found to exhibit Ky values of approxi-
mately 10~ M, which is similar to that
reported for the rat (15).

Brain. Studies by Quintanilla-Vega
et al. (6) showed that human brain also
contained Pb endogenously bound to thy-
mosin B4. 203Pb-binding studies also
showed an apparent Kj value of 108 M.

Other Species

Preliminary studies in monkeys (26)
showed that this species has kidney and
brain PbBPs proteins with chromato-
graphic characteristics similar to those of
humans. The major bands on the gels were
enriched in glutamic and aspartic amino
acids, but the exact identity of these pro-
teins is currently unknown. Studies on the
PbBP from catfish liver (27) also showed
similar highly anionic characteristics and
the capacity to attenuate the direct inhib-
itory effects of Pb on 8-ALAD (28). The
chemical and functional similarities
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between the PbBPs in different species
appear to be highly conserved, although
the proteins seem to be of different mole-
cular masses. This could suggest that there
are conserved binding regions of these vari-
ous proteins across species that act in a
similar manner.

Relevance of Molecular
Handling of Lead to Kinetic
Modeling of Lead in Vivo

Clearly, intracellular partitioning of Pb in
target organs may be involved in mediating
the low dose effects of Pb. These proteins
are chemically similar but vary between
species and target organs, with Kj values
for Pb on the order of 108 M. In vitro
studies suggest that the binding of Pb to
these proteins is highly stable and that
they represent an important Pb pool in
the cytosolic compartment. Thus, they
appear to be important molecular factors for
regulating the bioavailability of Pb to sensi-
tive molecular processes such as 8-ALAD
activity in kidney and brain, and gene reg-
ulation in the kidney. From the perspec-
tive of kinetic modeling, they probably
represent a highly stable intracellular
compartment that mediates the toxic
potential of Pb to the important processes
noted above. It is hypothesized that dif-
ferences in tissue levels of these proteins
play a major role in determining individ-
ual variation in intracellular Pb bioavail-
abilty and hence susceptibility to toxicity
from this metal. A diagram of this con-
cept is presented in Figure 1, which shows
the hypothesized regulation of Pb move-
ment between the target tissue-specific
Pb-binding proteins, sensitive effector

Absorbed Pb

Blood Pb (red cell and plasma PbBPs)

Bone <—> Target cell —> Excretion
stores uptake  (urine and feces)

N

Binding to Sensitive effector
PbBPs molecules

) !

Cytoplasmic/nuclear Toxicity
inclusion bodies

Figure 1. Diagram of hypothesized roles of target tis-
sue-specific PbBPs in modulating the kinetics of
absorbed Pb between the blood compartments, bone
stores, and molecular target tissue effector molecules.

molecules such as calmodulin, 8-ALAD,
or chromatin-binding sites, and (at higher
dose levels) the Pb intranuclear inclusion
bodies. This last point is central to
improving the predictive value of kinetic
modeling for Pb toxicity. As noted above,
accurate prediction of blood values is only
a surrogate approach for estimating toxic
potential of Pb; individuals vary greatly in
their susceptibilty to Pb toxicity for equal
blood Pb values. It is our hypothesis that
the soluble Pb-binding proteins in major
target tissues such as the brain and kidney
are involved in mediating these individual
differences in susceptibility, particularly at
low-dose exposures. Further research is
needed to test this hypothesis and to delin-
eate how differences in tissue levels of these
molecules influence the kinetics of Pb reten-
tion and bioavailability to other sensitive
molecular processes.
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