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Methods

Additional Information on Human Samples. All NM biopsies were subjected to standard
neuropathological examination of cryosections stained with hematoxylin and eosin, modified
Gomori trichrome, nicotinamide-adenine dinucleotide (NADH) reductase, and myosin
ATPase at pH 4.3 and 9.4.  Fiber-typing was further confirmed and quantified by using
immunohistochemistry of fast and slow myosin heavy chains as described below.

Based on the clinical and pathological information on each patient, samples were
classified into subgroups as defined by European Neuro-Muscular Centre criteria, namely
severe, intermediate, or typical (1) (Table 1).  Twenty-one normal control tissues came from
surgical samples from unaffected individuals (n = 15) and autopsy specimens (n = 6).  All 21
samples were selected and assessed as previously described (2).  All samples were obtained
under institutionally approved protocols, snap frozen, and stored in liquid nitrogen.
Preliminary comparative analysis of 22 NM and normal samples, in relation to biopsies from
patients with inflammatory myopathies, has been recently reported (2).

RNA Target Preparation and Hybridization. Approximately 6-8 mg of RNA was extracted
from each specimen using Trizol (Life Technologies, Rockville, MD) and
chloroform/isoamyl alcohol (49:1), and was used for target preparation.  Each target was
individually hybridized on both U95Av2 (12,626 probe sets) and U95B (12,620 probe sets)
GeneChip oligonucleotide arrays (Affymetrix). Following hybridization, the signal
amplification staining option was chosen on the Affymetrix Fluidics Station 400, and the
GeneChips were scanned by the Affymetrix HP Gene Array Scanner.  The expression level
and a  “present”, “absent”, or “marginal” call was assigned to each probe set by the MAS5.0
Affymetrix software. Affymetrix MAS5.0 software scored 4,537 (18%) probe sets “present”
across all 21 normal samples, 4,165 (16.5%) “present” across all 13 NM samples, and 3,673
(14.5%) probe sets “present” across all 34 samples, indicating that these transcripts were
present at sufficient levels for accurate quantitation. Correlation coefficients (r) between
signals from replicate microarrays were typically about 0.99 when hybridized with the same
targets and about 0.97 when hybridized with independently isolated and labeled RNA
samples.

Quantitative Real-Time Reverse Transcriptase PCR (TaqMan). “Assays-on-Demand”
gene expression kits were obtained for PFKFB1 (Hs00159997 m1), UCP3 (Hs00243297
m1), BCL6 (Hs00153368 m1), FADS1 (Hs00203685 m1), FEZ1 (Hs00192714 m1), and
PHKA (Hs00267497 m1) (Applied Biosystems, Foster City, CA).  RNA (1 mg) from
different NM and normal samples was reverse-transcribed to cDNA using reverse
transcription reagent kits (Roche Molecular Systems, Branchburg, NJ).  The resulting cDNA
was amplified in a real-time quantitative PCR using the TaqMan Universal PCR Master Mix,
the recommended TaqMan protocol and the ABI 7700 Sequence Detection System (Applied
Biosystems).  A standard curve for serial dilutions of 18S rRNA was obtained in a similar
fashion.  The outcome of each amplification run was compared to the standard curve as
described by the Taqman protocol, (Applied Biosystems), enabling the calculation of the
RNA expression level fold changes between NM and normal samples.
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Antibodies. Primary antibodies for IF and immunoblotting (IB) were obtained from
indicated sources and used at the following dilutions: 1:500-IF, 1:400-IB for CDK4 (ab6315)
mouse monoclonal (Abcam, Cambridge, U.K.); 1:600-IF, 1:100-IB for TGFbeta2 (sc-90)
rabbit polyclonal (Santa Cruz Biotechnology, Santa Cruz, CA); 1:500-IF, 1:400-IB for
tubulin TY-06 (ab7792) mouse monoclonal (Abcam, Cambridge, U.K.); 1:100-IF CD56
(anti-NCAM1) (31660D) mouse monoclonal (PharMingen International, San Jose, CA); 10
mg/ml-IB for uncoupling protein 3 (UCP32-A) (Alpha Diagnostic International, San Antonio,
TX); 1:100-IF PAX7 mouse monoclonal (Developmental Studies Hybridoma Bank,
University of Iowa, Iowa City, IA); 1:30 myosin heavy chain-developmental (NCL-MHCd),
1:20 myosin heavy chain-neonatal (NCL-MHCn), 1:200 myosin heavy chain-fast (NCL-
MHCf), and 1:50 myosin heavy chain-slow (NCL-MHCs) (Novocastra Laboratories,
Newcastle upon Tyne, U.K.).  All secondary antibodies for IF were diluted at 1:400:
AlexaFluor 488 goat anti-rabbit IgG (A11008), AlexaFluor 488 (A11001), and 594 (A11005)
goat anti-mouse IgG (Molecular Probes, Eugene, OR).  The secondary antibodies for
immunoblotting were peroxidase-conjugated AffiniPure donkey anti-mouse IgG (715-035-
150) and donkey anti-rabbit IgG (711-035-152) at 1:5,000 dilution (Jackson
ImmunoResearch, West Grove, PA).

Western Blotting. Protein extracts of NM and normal tissue samples for immunoblotting
were prepared in lysis buffer (100 mM Tris, pH 6.8, 4% SDS, 20% glycerol, 282  mM beta-
mercaptoethanol) and boiled for 10 min.  Proteins were quantitated by spectrophotometry
using a Bio-Rad DC Protein Assay (reagents A,B,S) (Bio-Rad Laboratories, Hercules, CA).
Total protein (100ng) was separated by electrophoresis on a SDS/15% polyacrylamide gel
and transferred to nitrocellulose membranes by electroblotting.  The primary and secondary
antibodies used (as listed above) against selected proteins were visualized by enhanced
chemiluminescence ECL (Amersham Pharmacia Biotech, Buckinghamshire, UK).
Equivalent loading of lanes was determined by Ponceau S staining.

Data Analysis. The data are first normalized (3-5), wherein the vector of signals in each
array is linearly transformed so that their scatter plots have a linear regression of slope 1
through the origin against a reference data set. Reference data sets were composed of the
average probe-by-probe signals from a normal (T146) and an NM (T80) experiment which
had maximal average correlation coefficients against all other chip experiments within their
respective disease classes. This normalization corrects any uniform linear aberrations of the
reported signals between any two replicate measurement which may arise from
idiosyncrasies in the hybridization or scanning protocol. In this context, we say that
microarrays A1 and A2 are replicate measurements when both microarrays assay labeled
total RNA which originated from patients (not necessarily the same patient) within a
common disease class. (Note that the data are heterogeneous in the sense that each disease
category consists of at least four prominent overlapping patient non-disease-related
subcategories: Adult, Pediatric, Autopsy, and Surgery.) Our expectation is that the reported
signals from A1 and A2 ought to be "close" to one another on average, i.e., at most an
insignificant percentage of genes out of the 12,625 will have markedly different reported
expression levels, and these are due largely to individual biological variation. Graphically,
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this translates into the scatter plot of A1 versus A2 having data points mostly along the x = y
line and with minimal scatter.

Two statistical methods were applied to determine differential gene expression between the
two disease classes:

(A) an unequal variance, two-tailed t test which looks for genes whose signal
differences are significant between normal (NO) and NM; and

(B) a method in ref. 5 which assesses the differentiability of a gene by its signal fold
change in the NM with respect to the NO class.

Both techniques assess changes in signal difference or fold across the two classes against
changes in difference or fold within the classes, i.e., among duplicates. Unless otherwise
noted, the terms data or signal will denote the normalized data or signal.

(A) Difference.
We applied the two-tail unequal variance t test following ref. 6 and selected genes whose
signals had a P < 0.001 of a significant difference between NO and NM.  72 and 56 genes
(U95Av2 and U95B, respectively) were found to be thus up-regulated, whereas 152 and 126
(U95Av2 and U95B, respectively) were down-regulated from NO to NM.

(B) Fold change.
We briefly describe this method (5): Let a1, a2, · · · , aM , and b1, b2, · · · , bM, be M replicate
signals for an arbitrary gene in the NO and NM class respectively. We calculate the
logarithmic geometric mean (µ) and variance (s2) of the fold change of the gene between the
two classes as follows:

[1]

Due to non-disease-related phenotype heterogeneity and unequal number of samples in each
disease class, the folds were formed from aj and bk that have been phenotypically matched,
i.e.,  aj and bk are not signals from individual arrays but are the average signals over
respective subcategories. M = 4 is the number of distinct phenotypic subcategories arising
from the combination of Adult, Pediatric, Autopsy, and Surgery class labels.
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Next, rearrange aj and bj  so that a1 £ a2 £ · · · £  aM , and b1 £ b2 £ · · · £ bM. For the same gene,
we also calculate the geometric average fold changes arising within each disease class
denoted µNO, µNM which is attributable to measurement variability. Let m be the largest
integer that is less than M/2. By design, µNO and µNM are nonnegative.

[2]

[3]

We say that the gene is significantly up-regulated when

[4]

and down-regulated when

[5]

The choice of 0.24 is arbitrary. The false discovery rate (7) of the method with these
parameters is found to be 0.33 following a permutation test whereby the disease class labels
of the microarrays are randomly shuffled, the resulting data configuration is re-analyzed, and
the procedure is repeated 10,000 times. 297 and 157 genes (U95Av2 and U95B, respectively)
were found to be up-regulated, whereas 159 and 153 (U95Av2 and U95B, respectively) were
down-regulated in the NM with respect to the NO class.

Hierarchical Clustering, Relevance Network, and Nearest-Neighbor Analyses.
Hierarchical clustering was performed as described by Greenberg et al (2), using the Cluster
and TreeView Software (8) with centered linear correlation as a measure of similarity using
average linkage.  Relevance networks, a nonhierarchical clustering method that computes
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Pearson correlation coefficients between all genes and/or quantitative phenotypes (i.e.,
“factors”) in microarray expression datasets, were computed as described (9).  Correlation
coefficient cutoffs were selected to allow the display of only those links between factors with
similar expression patterns, allowing for identification of three-dimensional expression
relationships between groups of factors.

To determine which genes had the most similar expression to each member of the set
of “reliably changed” transcripts, we performed nearest-neighbor analyses (10) using the
Pearson correlation coefficient as a distance measure (web supplement Nearest Neighbors
available at http://www.tch-genomics.org/beggslab/). For each selected gene, neighbors that
were at a distance of 0.6 or closer were chosen. This distance was selected based on a
permutation analysis (9), to determine how often such correlations occurred by chance.  If
there were several such neighbors, then only the closest 50 were selected.
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