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The landmark sequencing of Escherichia coli, Brew-
er’s yeast (Saccharomyces cerevisiae), Arabidopsis, and
human genomes has facilitated the emergence of sys-
tems biology—a science that is currently gaining the
attention of molecular biologists. In addition to sat-
isfying our intellectual desire to have a more detailed
understanding of plant biology, we need to under-
stand how plants work well enough to undertake
truly predictive engineering of morphology and
chemical composition. This would allow us to effi-
ciently produce plants that are more productive
sources of food and fiber as well as novel nutritional
and industrial chemicals. What is currently described
as genetic engineering of plant metabolism is really
tinkering. Very rarely do our genetic manipulations
cause the predicted effects—we usually discover new
rate-limiting steps that prevent accumulation of the
desired compound or induction of diversionary or
catabolic pathways, or we observe undesirable pleio-
tropic effects that limit the usefulness of the
modification.

To enable true engineering of plants will require
major changes in the way we approach science as
well as major technological breakthroughs in analyt-
ical chemistry, bioinformatics, and other areas of
genomics. We must generate robust mathematical
models of metabolic pathways that accurately de-
scribe current experimental observations. These mod-
els can then be used to generate experimentally test-
able hypotheses, the results of which can be used to
refine the model (Fig. 1). The goal is to go through this
process enough times to create a model that begins to
predict the behavior of the plant following perturba-
tions by adding transgenes, making mutations alter-
ing cell fate, or environmental perturbations.

WHAT IS METABOLIC SYSTEMS BIOLOGY?

At its most basic level, the goal of plant metabolic
systems biology is to create a comprehensive multi-
dimensional representation of all of the biosynthetic
reactions in a plant. This sounds like filling in plant-
specific details on the standard wall chart that hangs
in many laboratories or the increasingly powerful
tools found on the Internet (for example, the Kyoto
Encyclopedia of Genes and Genomes metabolic
descriptions; http://www.genome.ad.jp/kegg/
metabolism.html). However, this model must also
indicate metabolic fluxes: the amounts of intermedi-
ates and products that accumulate in a specific tissue
or cell type and in each organelle at a given moment
in time, and the sizes of the “arrows” or the rates at
which the enzymatic and nonenzymatic conversions
take place. This futuristic virtual wall chart must be
dynamic, with a time dimension showing the re-
sponses of each metabolite pool and flux to changes
in environment (light, pathogen, cold, etc.) and de-
velopmental state. Finally, to truly qualify as systems
biology, the descriptions need to exist in a computer
model from which we can make specific testable
hypotheses; for instance, that overexpression of a
newly discovered tree fern cytochrome P-450 in spe-
cific apical cells would increase auxin biosynthesis
in these cells and alter the morphology of an orna-
mental plant in a desirable way.

This level of sophistication demands a complete
description of all pathways in at least one plant, the
most obvious candidate being Arabidopsis. How-
ever, to be comprehensive and useful for the basic
and applied biology communities, we will need to
build upon this virtual metabolic network with in-
formation about pathways that only exist in specific
species. Examples would include pathways of sec-
ondary metabolism, central metabolic processes that
differ across the plant kingdom (C4 versus C3 me-
tabolism, for instance), or storage of carbon in spe-
cialized organs or in chemical forms distinct from our
canonical “virtual plant” (e.g. starch in tubers).

As ambitious as it seems, it will not be enough to
have a complete understanding of the biogenesis of
small molecules in plants and the changes in these
pathways that occur during development and in re-
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sponse to the environment. To create a model that is
predictive, it will be critical to understand the en-
zymes of these pathways: when and where they ac-
cumulate in the cell, how their activity is modulated
by specific covalent modifications, how their turn-
over is regulated, and how their tertiary structures
and higher order interactions modulate their func-
tions. For each of these levels of regulation, we will
need comprehensive information about signal trans-
duction pathways, transcriptional regulation, protein
trafficking, and more. This means that we cannot do
metabolomics in isolation: We need to analyze our
data in concert with other large and complex sets of
information such as proteomic, global mRNA expres-
sion and large-scale structural biological data.

Anaylsis of such complex datasets is a challenging
task that requires the adoption of standardized data
nomenclatures and formats and the application of
sophisticated mathematical and statistical ap-
proaches to mine meaningful information from a sea
of numbers. Daunting as the task is, a proper inte-
gration of transcriptomic, proteomic, and metabolo-
mic datasets will provide the opportunity to analyze
metabolic networks at an unprecedented level of de-
tail and will afford a new system-wide level of un-
derstanding of the regulation of plant metabolism.
Indeed, this approach has already been successful in
providing new information about several areas of
plant metabolism including specific branches of sec-
ondary metabolism (Suzuki et al., 2002), the response
to nitrate (Matt et al., 2001), and the response to
diurnal changes (Masclaux-Daubresse et al., 2002).

ANALYSIS OF THE METABOLOME: METHODS IN
SMALL MOLECULE ANALYSIS

The lofty goal of a predictive model for all of plant
metabolism requires accurate and reproducible mea-
surement of all metabolites in the plant. A major
impediment to this goal is that there is a tradeoff
intrinsic to current analytical technologies: We can
either accurately measure a relatively small number
of molecules in an assay, or qualitatively analyze
larger numbers of compounds. Thus, as a rule, with
increasing metabolite coverage, there is a loss of ac-
curacy in detection and quantification, which is sche-
matically represented in Fig. 2.

In the last few years, plant metabolite analysis has
shifted from specific enzyme assays and non-coupled
chromatographic separations that provide informa-
tion on single compounds or on mixtures of low
complexity toward methods offering both high accu-
racy and sensitivity in highly complex mixtures of
compounds (Fig. 2). The approaches of choice for
large-scale metabolome analysis are predominantly
reliant on coupled mass spectrometric methodolo-
gies. For example, gas chromatography-mass spec-
troscopy (GC-MS) technologies allow the detection,
identification, and robust quantification of a few
hundred metabolites within a single extract (Fiehn et
al., 2000; Roessner et al., 2001). Furthermore, liquid
chromatography-MS (LC-MS)-based methodologies
have recently been established that allow reproduc-
ible determination of several important classes of

Figure 1. Model building and data accumulation are a cyclical
process. A major goal of modeling metabolic responses is to predict
which components exert greatest control over regulation of flux
through the pathway and to hypothesize the results of altering these
constituents. These are then tested experimentally, and the empirical
results drive refinement and simplification of the model. Although
this process of refinement never ends, the model becomes valuable
as soon as it accurately predicts the behavior of the system in
response to perturbation.

Figure 2. Schematic representation of the different approaches to
metabolite measurements. The goal of metabolomics is to accurately
identify and quantify every small molecule in the cell (top right sector
of the graph). Current methodologies allow very accurate and some-
times high-throughput assays for individual molecules or classes of
molecules (top left). Running these assays in parallel (“combined
analytical methods”) can increase the “metabolome-space” that is
covered at the expense of throughput or operating costs. Fingerprint-
ing and profiling approaches such as TOF-MS or FT-MS without prior
separation or subsequent fragmentation and analysis allow large
numbers of often anonymous compounds to be measured. These
methods have relatively poor analytical accuracy, precision, and
sensitivity compared with compound class approaches.
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secondary metabolites including alkaloids, fla-
vonoids, glucosinolates, isoprenes, oxylipins, phenyl-
propanoids, pigments, and saponins (for review, see
Fiehn, 2002; Fernie, 2003). However, no currently
available LC-based method allows the accurate de-
termination of all of these compounds from a single
extract, partly due to differences in solubility and
stability, and the enormous concentration range of
small molecules. LC-MS also suffers from so-called
matrix effects, where the ability of the spectrometer
to detect and accurately quantify any given ion is
influenced by the presence of other ions in the
mixture.

Thus, despite the developments described above,
the fact remains that the vast majority of metabolites
are not measured by approaches currently in use
because the sum total of these methodologies covers
hundreds rather than the thousands of metabolites
estimated to be present in plant cells (De Luca and St
Pierre, 2000). Small-molecule analysis therefore cur-
rently represents the least comprehensive of the var-
ious levels of system analysis, with the current pro-
portional coverage of the profiling technologies
decreasing following the order mRNA � protein �
metabolite. That said, as is the case in the field of
proteomics, progress in analytical chemistry is driv-
ing rapid advances in metabolomics.

Further analytical tools that are currently being
developed for the multiparallel analysis of metabo-
lites include time-of-flight-MS (TOF-MS), Fourier
transformation-MS (FT-MS), FT-infrared spectros-
copy, and NMR spectroscopy, with each technique
having comparative advantages and disadvantages
and selection of a given tool being largely driven by
the biological question at hand (for a detailed de-
scription, see Sumner et al., 2003). Generally speak-
ing, the choice of method must be determined by
evaluating the metabolite coverage it affords with its
relative accuracy of compound identification and
quantification (summarized in Fig. 2).

Because these have been extensively reviewed else-
where (Fiehn, 2002; Fernie, 2003; Sumner et al., 2003),
we will merely discuss major differences in the tech-
nologies. Of these tools, TOF-MS serves a very sim-
ilar purpose to GC-MS with the exception that TOF
mass analyzers are preferred to the quadrupole mass
analyzers of standard GC-MS machines, because they
can provide a combination of high-mass accuracy
and extended range of metabolites detected (Hall et
al., 2002). Of course, GC-MS is only useful for volatile
compounds or molecules that can be rendered vola-
tile by derivitization, whereas LC-MS can be directly
adapted to a wider array of molecules. Nevertheless,
GC-MS still has major advantages over LC-MS meth-
ods. First, it is easier to achieve complete ionization
of molecules in a complex mixture from samples
coming off of a gas chromatograph, minimizing in-
terference between molecules in the MS detector.
Second, compound identification is greatly facilitated

by availability of extensive databases of fragmenta-
tion patterns. Finally, tools exist for high-throughput
capture of GC-MS data with less time-consuming
human intervention than is needed for LC-based
methods.

A further MS technology warranting discussion is
Fourier Transform Ion Cyclotron Mass Spectrometry
(FT-IC-MS), wherein extracts are directly infused into
MS instruments using soft ionization techniques to
gain fingerprints of the molecular ions presents. This
technique is wholly reliant on the presence of a mass
analyzer of sufficient accuracy to allow the definitive
empirical formulae for several hundred ions. As with
all technologies, disadvantages exist in the use of
FT-MS; the most problematic of these is the fact that
the lack of chromatography renders the technique
unable to differentiate between isomers because of
their identical molecular masses. Therefore, metabo-
lites with biologically distinct functions such as Glc
and Fru cannot be distinguished from one another.
Furthermore, given the limited amount of published
data (Aharoni et al., 2002) and the lack of documen-
tation of vigorous method validation, it is unclear
how useful this method will be when used in isola-
tion. However the coupling of this or any of the other
technologies mentioned above with further fragmen-
tation gives far greater accuracy of identification, but
it comes with a heavy cost attached in terms of sam-
ple throughput.

The use of FT-infrared spectroscopy and NMR has
promise but thus far has not been applied to the
quantification of large numbers of compounds in a
complex mixture. These methods are well known for
identification and quantitation of known molecules,
especially when pure or in relatively simple mix-
tures. They are more recently being tested for meta-
bolic fingerprinting in which the presence and inten-
sity of specific spectroscopic signatures are
correlated with molecules of interest in the hope of
identifying major changes in metabolite levels or in
accurate determination of certain chemicals. NMR
has the further advantage that it can be used nonin-
vasively and can yield (albeit limited) spatial resolu-
tion of solute concentrations.

Even the parallel use of the existing techniques will
only manage to capture a proportion of the metabo-
lome. However, the speed of recent advances in sep-
aration sciences and analytical instrumentation is un-
precedented. This combined with the opportunity to
couple various separation and analytical machines
together make it likely that quantum leaps will soon
be made toward the goal of accurate measurement of
thousands of molecules from complex biological
samples.

RESOLUTION: CELLULAR AND SUBCELLULAR

Because nearly all plant tissues are composed of
many cell types, the development and refinement of
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techniques allowing metabolite analysis of the con-
tents of single cells or subcellular compartments are
of great importance. Single-cell sampling techniques
now combine cell biological methodologies with
physical sampling techniques, and the recent devel-
opment of high-precision laser capture and catapult-
ing methodologies (Eltoum et al., 2002) will most
likely produce rapid advances in this area. In addi-
tion to these methods, metabolite-linked biolumines-
cence assays have been established for visualizing
metabolite contents in tissue slices, albeit for a lim-
ited number of metabolites at low sensitivity
(Borisjuk et al., 1998). Thus, at the single-cell level,
resolution of metabolite levels is approaching that at
the protein and RNA levels.

Obtaining metabolite information at subcellular
levels remains particularly problematic. Unlike pro-
teins with their targeting sequences, the location of a
metabolite cannot be inferred from their structures.
Furthermore, most metabolic intermediates turn over
too rapidly to allow measurement after the fraction-
ation procedures regularly used in protein analysis.

Despite these problems, several methods have been
developed to obtain subcellular information on me-
tabolite levels in intact plants—two of which appear
particularly promising. The first of these, nonaque-
ous fractionation of lyophilized material, involves
the separation of cellular compartments on an or-
ganic density gradient and then uses simultaneous
equations to estimate metabolite concentrations with
respect to marker enzymes of various organelles in
the cell (Gerhardt et al., 1983). This approach allows
the discrimination of the vacuole, plastid, and cytosol
and has been used for a wide variety of plant tissues
(see Farre et al., 2001, and refs. therein). However, the
inability to distinguish the mitochondrion from the
cytosol and the apoplast from the vacuole and the
fact that this technique requires in excess of 3 g of
tissue limit its utility. The second promising method
relies on the generation of specific chimeric proteins
created by the fusion of periplasmic binding proteins
to green fluorescent proteins that are differentially
fluorescent after binding of a given metabolite (Fehr
et al., 2002). Although when taken together, these
methods offer great potential, it will be challenging
to modify these methods for high-throughput
analyses.

THE DYNAMICS OF PLANT METABOLISM:
MEASURING FLUXES

Although measurements of steady-state levels of
metabolites give a useful snapshot of the metabolic
network at a given moment in time, the true behavior
of plant metabolism can only be gained by direct
measurement of metabolic fluxes. Ideally, we need to
be able to observe the dynamics of metabolism as it
happens. Despite the fundamental importance of
metabolic flux, measurement of flux remains a poor

cousin to the ‘omic relations of transcripts, proteins,
and even metabolites. The basic approach of follow-
ing the distribution of a labeled precursor through
metabolism has been used for many years to estimate
fluxes through the major pathways of primary me-
tabolism (for a recent example, see Lytovchenko et
al., 2002), but relatively crude methods of determin-
ing label distribution have severely limited the num-
ber of fluxes that can be measured.

The recent emergence of more sophisticated ap-
proaches, based on a combination of steady-state
stable-isotope labeling and NMR or MS-based detec-
tion systems, may revolutionize our ability to mea-
sure flux. This approach allows the determination of
positional labeling of a range of metabolites. The
position of labeling within the carbon skeleton of end
products can allow retrospective evaluation of the
metabolic route by which they were formed This
technique has already been successfully used to in-
vestigate the metabolism of lipids and proteins (Sch-
wender and Ohlrogge, 2002) and has the potential to
measure a much greater range of specific fluxes, in-
cluding those for pathways that operate in parallel in
different subcellular compartments. Nevertheless,
the interpretation of stable-isotope-labeling experi-
ments is not a trivial task, and mathematical frame-
works must be established that allow the calculation
of pathway fluxes from fractional enrichments of
isotopic label in each intermediate. In this respect, the
plant community is still some way off from the com-
prehensive flux frameworks that have been devel-
oped for microbial organisms; in part, this can be put
down to the increased complexity of the plant meta-
bolic network conferred by multiple cell types and
extensive subcellular compartmentation.

FROM NUMBERS TO EQUATIONS: MODELING
PLANT METABOLISM

Science in its purest form is the reduction of the
behavior of a system to a set of mathematical rules
that define it. Ideally, such rules should be suffi-
ciently simple that they themselves provide new in-
sight into system behavior. Constructing models of
metabolism has the potential to achieve this insight
and is also an excellent way of succinctly represent-
ing large data sets. As such, models can be viewed as
the mathematical engine of the virtual wall chart. In
addition, models also allow the characteristics of the
system to be systematically tested in a way that is too
time consuming to achieve experimentally and are
thus an important source of new hypotheses. Models
are also extremely useful in pinpointing those param-
eters that are the most important in determining a
particular function, parameters that need to be the
focus of greater experimental precision.

Historically, metabolic models have concentrated
on pathway flux due to the availability of theoretical
approaches that can be used to derive flux control
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structures. Most of the models of plant metabolism
to-date are based around the theorems of metabolic
control analysis and derive the control-distribution
of pathway flux from the kinetic constants of the
enzymes involved (Pettersson and Ryde-Pettersson,
1988; Thomas et al., 1997). Although these kinetic
models have been of some use in understanding the
control of plant metabolic pathways, particularly the
photosynthetic Calvin cycle, their reliance on
difficult-to-acquire experimental information means
that they have not been used more widely in metab-
olism and remain somewhat limited in scope. Stoi-
chiometric analysis (Schuster et al., 2000) is an inter-
esting alternative approach that has gained much
attention recently (Cornish-Bowden and Cardenas,
2002). The basis of this approach is to define elemen-
tary flux modes—non-decomposable subnetworks
that account for every possible flux within the net-
work. This allows one to mathematically define and
describe all metabolic routes that are both stoichio-
metrically and thermodynamically feasible and is an
extremely useful tool for the definition of network
structure (Schuster et al., 2000).

BRINGING IT ALL TOGETHER

Although flux models provide a description of
metabolic dynamics, for these models to enable pre-
dictive metabolic engineering, they must also incor-
porate experimental information about the changes
in gene expression and protein abundances that un-
derlie these fluxes (Fig. 1). Ultimately, one would
wish to be able to predict exactly which genes should
be altered in expression to generate specific changes
in particular fluxes. However, bringing together such
disparate data sets presents a considerable challenge.
A particular problem is the issue of ontology. Put
simply, there are too many different ways of naming,
describing, and conceptualizing biological elements,
leading to description of the same element in several
different ways. Efforts are being made to establish a
standard vocabulary that can be applied across all
levels of the system hierarchy within an organism
and between different organisms (Ashburner et al.,
2000). Such ontologies not only furnish standardized
descriptors for genes and proteins, but also provide
an interactive hierarchical map of the entire system
from the level of cellular component, to molecular
function, to biological process.

An additional problem when integrating different
types of data is that the data set becomes multidi-
mensional. Development of new mathematical ap-
proaches that can cope with increased dimensionality
will be crucial if data are to be interpreted at a
systems level. Machine learning (Kell et al., 2001)
provides a promising approach to this problem. This
method uses a variety of different algorithms to pro-
vide simple rules that map back onto the measured
variables and thereby provide explanations about the

behavior of the system (Weiss and Kulikowski, 1991;
Back et al., 1997). An alternative approach is to es-
tablish relevance networks in which mutual informa-
tion is used to link data points that follow the same
pattern of change (Butte and Kohane, 2000).

Although such methods are extremely powerful,
they are not readily approachable by those without
specialist knowledge. If such techniques are to be-
come a routine part of the analysis of genomic data
sets, then software interfaces will be required that
allow the user to input and define their data while
the algorithms are applied automatically and the re-
sults displayed in a readily interpretable format. The
display of multidimensional data brings its own chal-
lenges, and there are a number of emerging solutions
to this problem, examples of which include data tour-
ing (http://www.ggobi.org) and the use of glyphs—
visual objects onto which many different data at-
tributes are mapped using different visual attributes
such as size and color (Pastizzo et al., 2002).

Despite these difficulties in attempting to integrate
global data sets, the rewards for successfully doing
do so are clear, and several recent papers focusing on
subsets of plant metabolic pathways have provided
data sets comprising transcripts, enzyme activities,
and metabolites. These include studies of various
aspects of carbon metabolism including the re-
sponses to nitrate (Matt et al., 2001) and to diurnal
changes (Masclaux-Daubresse et al., 2002) and stud-
ies of individual branches of secondary metabolism
such as triterpene saponin biosynthesis (Suzuki et al.,
2002). Even though these studies are restricted in
their coverage of metabolic space, they nicely dem-
onstrate the power that combining genomic tech-
niques brings to network understanding and path-
way elucidation. Expansion of such approaches, even
using the tools already at hand, has vast potential in
aiding the understanding of complex change under-
lying diverse biological patterns such as develop-
mental processes or circadian rhythms.

CONCLUSIONS

The ultimate aim of metabolic systems biology is to
use the comprehensive experimental data sets de-
scribing changes in transcripts, proteins, metabolites,
and flux to generate a complete mathematical de-
scription of the metabolism of a model plant species
such as Arabidopsis. It is envisaged that such a
model would allow a truly predictive engineering of
plant metabolism. This is an ambitious aim that will
require a sustained commitment of resources and
unprecedented technological developments to be
achieved. Perhaps most important of all, integration
of approaches and data sets will be needed at a
variety of levels from sociological to computational.
As one example of many, we must bring together
scientists working in traditionally disparate disci-
plines such as developmental genetics and biochem-
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istry to understand how cell type-specific biochemi-
cal pathways are regulated, and use this information
to engineer the high-level synthesis of medicinal,
food, and industrial products. To take full advantage
of the increasing numbers of high-quality metabolite,
proteomic, and mRNA data sets will require a com-
pletely new way of thinking about and performing
biological research. The ability to grow food more
efficiently and to put crop plants to brand new uses
should be incentive enough for us to rapidly embrace
systems biology.
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