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Lipopolysaccharide (LPS) down-regulates CD4 expression in primary
human macrophages through induction of endogenous tumour necrosis

factor (TNF) and IL-173
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SUMMARY

The regulation of CD4 expression on macrophages and its role in immune cell interactions remain
obscure. In contrast with primary lymphocytes, primary macrophages express only low amounts
of surface CD4, which is regulated differentially for example by adherence in vitro. We report that
addition of LPS for 1-5 days to human blood monocyte tissue culture-derived macrophages
(TCDM) down-regulates both surface CD4 expression and total cellular CD4 antigen content as
measured by flow cytometry and Western blot analysis. TNF-a and IL-18, proinflammatory
cytokines which are both induced by LPS, also down-regulate surface and total CD4 expression in
TCDM. This down-regulation of CD4 expression by LPS, TNF-a, and IL-18 occurs at the level of
transcription. The decreased macrophage CD4 expression induced by LPS was blocked by MoAbs
directed against human TNF-o and IL-18, demonstrating that LPS acts on CD4 expression
through induction of endogenous TNF-« and IL-13. Conversely, neither LPS nor TNF-« and IL-
13 were able to modulate surface CD4 expression on quiescent or phytohaemagglutinin (PHA)-
activated lymphocytes. Of other cytokines and growth factors tested, Th2 cytokines (IL-4, IL-10,
IL-13), chemokines (MCP-1, MIP-1a, RANTES), and macrophage colony-stimulating factor did
not alter CD4 expression in primary macrophages; granulocyte-monocyte colony-stimulating
factor and the prototypal Thl cytokine interferon-gamma (IFN-7) modulated surface CD4
expression only after prolonged treatment (5 days). Our results show that LPS, TNF-« and IL-
13 selectively down-regulate CD4 expression in primary human macrophages, and that decreased
CD4 expression induced by LPS results from endogenous secretion of TNF-a and IL-13 by the

macrophages.
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INTRODUCTION

The CD4 molecule plays a central role in immune functions and
AIDS pathophysiology. CD4 is a glycoprotein, member of the
immunoglobulin superfamily, which is expressed on thymo-
cytes, T helper lymphocytes, and monocytes/macrophages
[1,2]. The CD4 molecule is involved in T lymphocyte matura-
tion [3] and in mature CD4 " T cell activation [4], but its role in
monocyte/macrophage immune functions is poorly defined.
The extracellular domain of the CD4 molecule interacts with
MHC class II molecules and is the main receptor for HIVon T
lymphocytes and mononuclear phagocytes [5-7].

Modulation of the CD4 molecule is important in regard to
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thymocyte signaling [8] and intercellular adhesion [9]. CD4
modulation pathways have been investigated mainly in
lymphoid cells, in which CD4 down-regulation occurs during
antigenic stimulation [10] and after phorbol myristate acetate
(PMA) treatment. PMA induces CD4 internalization [11] and a
transient decrease in CD4 mRNA levels which is caused by
both reduced transcriptional initiation and destabilization of
mRNA molecules [12,13]. In AIDS, the surface CD4 decrease
observed in HIV-infected lymphocytes has been correlated with
inhibition of CD4 gene expression [14], intracellular sequestra-
tion of CD4-gp120 complexes [15-17], and the action of viral
genes [18,19]. Protein nef can induce internalization of cell
surface CD4 without affecting CD4 transcript or protein
levels [20], and protein vpu causes degradation of CD4 mole-
cules that have been blocked in the endoplasmic reticulum [21].

In contrast to T helper lymphocytes and some monocytoid
cell lines [22], primary human macrophages express low plasma
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membrane CD4 levels [23,24]. Down-regulation of surface CD4
expression by phorbol esters and adherence has been reported
in monocytic cell lines and primary macrophages in the absence
of modulation of CD4 mRNA and total CD4 protein levels
[25,26]. Internalization of CD4 might in part explain the surface
CD4 decrease observed in these cells since p56'°* tyrosine
protein kinase, which forms complexes with CD4 in lympho-
cytic cells and consequently reduces CD4 endocytosis [27,28], is
not present in monocytic cells and primary monocytes/
macrophages. Down-regulation of surface CD4 expression in
peripheral blood monocytes has also been reported in HIV-
infected patients at the terminal stage of the disease, although
its mechanism has not been explained [29].

LPS, which is derived from the cell wall of Gram-negative
bacteria and plays a major role in pathogenesis of septic shock,
interacts with a number of immune cells, not least macro-
phages. LPS primes macrophages through CDI14 receptors
for plasma LPS-binding protein to produce three groups of
powerful mediators: the proinflammatory cytokines (TNF, IL-
1, IL-6, IL-8), reactive oxygen and nitrogen intermediates, and
a number of arachidonic acid metabolites, all of which are
involved in inflammatory responses and antibacterial host
defence.

Taking into account that CD4 interacts with MHC class II
molecules and that LPS down-regulates surface MHC class II
on macrophages through induction of IL-10 [30], we investi-
gated the modulation of CD4 expression in macrophages by
LPS.

MATERIALS AND METHODS

Isolation and cultivation of primary human macrophages

Human monocytes were isolated from healthy donors as
described [31]; in short, Ficoll-Hypaque (Pharmacia, Uppsala,
Sweden)-isolated peripheral blood mononuclear cells (PBMC)
were incubated for 1 h on 2% gelatin-coated plates. Adher-
ent tissue culture-derived macrophages (TCDM), > 94%
CDI14" by flow cytometry (Becton Dickinson, Mountain
View, CA), were cultivated in serum-free medium (X-Vivo;
Whittaker M.A. Bioproducts, Walkersville, MD) for 48 h
before transfer to 50-mm Petri dishes (Bibby Sterilin Ltd,
Stone, UK) at a density of 2 x 10° cells in 3 ml total volume.

Preparation of resting and phytohaemagglutinin A-activated
Iymphocytes -

Non-adherent cells, > 90% of which were peripheral blood
lymphocytes (PBL), were harvested after Ficoll-Hypaque iso-
lation and adherence as described above. PBL were cultivated
either in serum-free medium alone or supplemented for 48 h
with phytohaemagglutinin A (PHA; 5 pg/ml; Wellcome Diag-
nostic, Beckenham, UK) before addition of human recombi-
nant (hr) IL-2 (50 NIH/BRMP U/ml; Pharmacia).

Cytokine treatment

hrTNF-a (10 ng/ml; Sigma, Poole, UK) and 100 U/ml hIL-13
(Sigma) (endotoxin < 10 EU/ml by Limulus amoebocyte
lysate assay for both cytokines) were added to cultures for 1—
5 days. To inhibit the effects of recombinant and endogenous
TNF-a, 1-3 ug mouse IgG1 anti-human TNF-a MoAb (kindly
providled by Dr M. Feldmann, Kennedy Institute of
Rheumatology, London, UK) was mixed for 30 min at room

temperature with 10 ng/ml hrTNF-a or 100 ng/ml LPS and
then added to 2 x 10° TCDM in 3 ml final volume. To inhibit
the effects of both recombinant and endogenous IL-1, 660 U/ml
rabbit IgG anti-human IL-1 MoAb (Calbiochem, Nottingham,
UK) were mixed as above with 100 U/ml hrIL-18 or 100 ng/ml
LPS and added to TCDM. Heat inactivation of hrTNF-a and
hrIL-13 was performed at 70°C for 30 min. hrIL-4 (10 ng/ml;
Immunex, Seattle, WA), 10 ng/ml hrIL-10 (Dnax, Palo Alto,
CA), 10 ng/ml hrIL-13 (Sanofi, Labége, France), 20 ng/ml hr
interferon-gamma (IFN-v; Boehringer, Mannheim, Germany),
100 U/ml hr macrophage colony-stimulating factor (M-CSF;
Sandoz, Basle, Switzerland), 300 U/ml hr granulocyte-
monocyte colony-stimulating factor (GM-CSF; Sandoz),
100 ng/ml hr monocyte chemoattractant protein-1 (MCP-1;
Genentech Inc, San Francisco, CA), 100 ng/ml hr macrophage
inflammatory protein-1 alpha (MIP-la; Genentech Inc),
100 ng/ml hr RANTES (Genentech Inc) were added for 1-5
days to primary TCDM and quiescent or PHA-activated
PBL.

LPS treatment

LPS (phenol extract from Escherichia coli; Sigma) was added to
cell (TCDM or PBL) cultures for 1-5 days. The concentrations
used ranged from 0-01 to 1 ug/ml.

Cell viability after cytokine and LPS treatment was > 95%
as measured with the colorimetric reaction (MTT) based on the
capacity of mitochondrial dehydrogenase of living cells to
reduce 3-(4,5-dimethylthiazol-2yl)-2.5 diphenyl tetrazolium
bromide into formazan. The quantity of formazan produced
and measured at an optical density of 540 nm was correlated
with the number of living cells [32].

Detection of TNF-o. and IL-103 in culture supernatants by ELISA
Supernatants of human macrophage cultures were harvested
and frozen at — 80°C. The levels of TNF-a and IL-13 were
determined by ELISA (Quantikine, R & D Systems, Abingdon,
UK).

Flow cytometry

Cells fixed in 3% paraformaldehyde in PBS were quenched with
10% v/v goat serum in PBS, labelled, and analysed by flow
cytometry. Surface CD4 was detected by using F(ab'),
fragments of mouse anti-human CD4 (MoAb 4120 (IgGl)
from Dr Q. Sattentau provided by the MRC AIDS Directed
Programme, ADP318) followed by FITC-conjugated goat
anti-mouse IgG (Fab-specific) (Sigma). Specific fluorescence
was assessed by comparison with cells stained only with
the FITC-conjugated antibody (control). Intracellular staining
was performed as above, but reagents were supplemented
with 0-1% saponin during washing and with 0-3% saponin
during labelling. Relative antigen density was calculated as
follows:

(geometric mean (cytokine or LPS) — geometric mean (control))

(geometric mean (mock) — geometric mean (control)) x 100

For the detection of surface LFA-1 a mouse IgG1 directed
against CD11a (Sigma) was used. The characterization of the
macrophage population was confirmed by using mouse anti-
huCD68 IgG1 (Dako Ltd, Cambridge, UK) and mouse anti-
huCD14 IgG2 (Sigma) MoAbs.
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Western blot

Adherent macrophage cultures were washed and lysed. Protein
concentrations in cell lysates were determined by the BCA
method (Pierce, Rockford, IL). Cell lysates, prepared in
150 mm NaCl, 10 mm EDTA, 10 mm Tris pH 8, 10 mm
NaNj;, 1 mMm phenylmethylsulphonylfluoride, 5 mm iodo-
acetamide, and 1% v/v Nonidet P40, were electrophoresed in
a 10% SDS—PAGE under non-reducing conditions and then
electroblotted onto nitrocellulose. Before probing, blots were
blocked in PBS with 3% w/v dried milk, and 0-1% v/v Tween
20; anti-CD4 F(ab'), antibody (MoAb Q4120) binding was
detected by chemiluminescence (ECL; Amersham, Aylesbury,
UK).

RNA extraction, reverse transcription and amplification of
c¢DNA by polymerase chain reaction

Total cellular RNA was extracted from 2 x 10° TCDM using
1 ml RNAzol (Cinna/Biotex, Houston, TX) with 20 ug E. coli
rRNA (Boehringer) as carrier. Reverse transcription was per-
formed in a volume of 50 ul containing 800 U of M-MLV
reverse transcriptase (GiBco-BRL, Paisley, UK), 2-5 mm
dNTP, 5 pg oligo dTy,_15, and 31 U RNase inhibitor (all
from Pharmacia) for 1 h at 37°C. Polymerase chain reaction
(PCR) amplification was performed using an MJ Research
programmable thermal controller (Genetic Research Instru-
mentation Ltd, Felsted, UK) operating the following tempera-
ture steps: 60 s at 94°C, then 30 cycles (30 s denaturation at
94°C; 30 s annealing at 60°C; 60 s extension time at 72°C).
MgCl, concentrations used for huCD4 and human S-actin
c¢DNA amplification were 2:0 and 2-5 mM, respectively. The
following primer pairs were used: huCD4 (5 primer,
GCTAGGCATCTTCTTCTGTG; 3 primer, CTGCTA-
CATTCATCTGGTCC,; size of amplified fragment, 223 bp);
human gB-actin (5’ primer, GATGCAGAAGGAGATCACTG;
3' primer, AGTCATAGTCCGCCTAGAAG; size of amplified
fragment, 205 bp), all synthesized by Dr K. Gould (Sir William
Dunn School of Pathology, Oxford, UK). PCR products were
separated by 2% agarose electrophoresis and visualized by
ethidium bromide staining. A 123-bp DNA ladder (GiBco)
was used for molecular weight determination.

RESULTS

TCDM were treated with LPS, hrTNF-q, and hrIL-13 for 1-5
days. Surface and total CD4 expression was determined by flow
cytometry and Western blot analysis, using F(ab'), anti-CD4
MoAb, to avoid Fc-dependent interactions. LPS treatment
(100 ng/ml) resulted in significant time-dependent decrease in
specific plasma membrane CD4 expression, with 59% (+ 8%)
and 18% (% 9%) residual expression after 1 and 5 days,
respectively, relative to untreated culture controls (Fig. 1a,b).
LPS-induced surface CD4 down-regulation was dose-depen-
dent; the residual surface CD4 expression on TCDM after 1
day of treatment ranged from 70% to 30% as LPS concentra-
tions were increased from 10 ng/ml to 1 ug/ml (data not
shown). Human rTNF-a (10 ng/ml) treatment of TCDM
resulted in 54% (& 10%) and 20% (& 9%) surface CD4
residual expression after 1 and 5 days of treatment, respectively
(Fig. lc,d). Levels of surface CD4 dropped to 62% (+ 8%) and
32% (& 6%) after hrIL-13 (100 U/ml) treatment for 1 and 5
days, respectively (Fig. le,f). In agreement with surface CD4

down-regulation, LPS (100 ng/ml), hrTNF-a: (10 ng/ml), or
hrIL-18 (100 U/ml) treatment for 1 day reduced total CD4
levels, with residual expression of 46% (£ 9%), 30% (£ 7%),
and 59% (£ 5%), respectively, as shown by flow cytometry of
saponin-permeabilized TCDM (Fig. 2a). Down-regulation of
total CD4 was confirmed by Western blotting of human
TCDM treated for 3 days by LPS, hrTNF-a, and hrIL-13
(Fig. 2b).

To determine if the inhibition of CD4 protein synthesis by
LPS, hrTNF-a, and hrIL-10 occurs at the level of transcription
we performed reverse transcription (RT)-PCR analysis of CD4
message. The CD4 mRNA levels were reduced after treatment
of TCDM for 1 day with LPS (100 ng/ml), hrTNF-o (10 ng/
ml), and hrIL-18 (100 U/ml) (Fig. 3), indicating that inhibition
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Fig. 1. LPS, hrTNF-o, and hrIL-18 down-regulate surface CD4 on
human tissue culture-derived macrophages (TCDM). Three-day-old
TCDM were treated with 100 ng/ml LPS, 10 ng/ml hrTNF-a, or 100 U/
ml hrIL-18 for 1 and 5 days, fixed as described in Materials and
Methods and analysed together by flow cytometry. Fixed TCDM
were first gated on the basis of forward scatter and side scatter; all
gated cells were TCDM as confirmed by anti-CD14 MoAb labelling
(data not shown). Fluorescence profiles (at 1 day) and histograms (at 1
and 5 days) show surface CD4 levels in LPS- (a,b), hr TNF-a- (c,d), and
hrIL-183- (e,f) treated versus control cells cultured for similar periods.
Arrows indicate fluorescence of TCDM incubated with the FITC-
conjugated antibody alone. The data reported in the histograms are
representative of at least three independent experiments.
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Fig. 2. LPS, hrTNF-q, and hrIL-18 down-regulate total CD4 in human
tissue culture-derived macrophages (TCDM). (a) Three-day-old
TCDM were treated with 100ng/ml LPS, 10ng/ml hrTNF-o, or
100 U/ml IL-18 for 1 day and analysed by flow cytometry. Fixed
TCDM were saponin-permeabilized and gated on the basis of forward
scatter and side scatter; all gated cells were TCDM as confirmed by
anti-CD68 MoAb labelling (data not shown). Histogram shows total
CD4 levels in LPS-, hrTNF-a-, and hrIL-13-treated versus control cells
(U). All data are representative of three independent experiments. (b)
Western blot-detected total CD4 in TCDM after 3 days of treatment
with 100ng/ml LPS, 10ng/ml hrTNF-a, 100 U/ml hrIL-13 versus
untreated control cells (U); 20 ug of cellular protein were loaded per
lane.
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Fig. 3. LPS, hrTNF-a, and hrIL-13 down-regulate CD4 mRNA in
human tissue culture-derived macrophages (TCDM). Three-day-old
TCDM were untreated (U) or treated for 24h with 100ng/ml LPS,
10ng/ml hrTNF-a, or 100U/ml IL-13. RNA was extracted from
2 x 10° cells with 20 g Escherichia coli TRNA as carrier, reverse
transcribed, and the cDNA amplified as described in Materials and
Methods. The polymerase chain reaction (PCR) products for human
CD4 (223 bp) and for control B-actin (205 bp) were visualized on a 2%
agarose gel.

of CD4 expression occurred at transcription. Approximately
three-fold inhibition of the CD4 mRNA in LPS-treated TCDM
versus untreated control cells was demonstrated by serial
cDNA titration (data not shown). Inhibition of CD4 gene
expression in TCDM was more efficient after hrTNF-a or
hrIL-13 treatment than after LPS. We performed control
experiments (Fig. 4a,b) showing that both hrTNF-a and
hrIL-10 preparations used were heat-labile and did not contain
endotoxin, which is heat-resistant. Neutralizing MoAbs against
either TNF-a or IL-15 blocked the activity of these cytokines in
regard to CD4 modulation in TCDM. The addition of MoAb
directed against TNF-« or IL-18 to the TCDM resulted in
surface CD4 expression levels higher than those observed in
untreated TCDM, suggesting endogenous secretion of TNF-a
and IL-13 in untreated TCDM. The expression of plasma
membrane LFA-1 on TCDM was not affected by LPS
(100 ng/ml), hrTNF-a (10 ng/ml), and hrIL-18 (100 U/ml)
(data not shown).
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Fig. 4. H'TNF-o and hrIL-18 down-regulate surface CD4 expression in
human tissue culture-derived macrophages (TCDM). Three-day-old
TCDM were treated for 1 day with: (a) 10ng/ml hrTNF-q, 10 ng/ml
hrTNF-a mixed with 1-3 ug/ml anti-TNF-a MoAb, 1-3 ug/ml anti-
TNF-a MoAb, or 10ng/ml heat-inactivated hrTNF-o; (b) 100 U/ml
hrIL-13, 100 U/ml hrIL-13 mixed with 660 U/ml anti-IL-1 MoAb,
660 U/ml anti-IL-1 MoAb, or 100 U/ml heat-inactivated hrIL-13. Sur-
face CD4 expression was analysed by flow cytometry in treated versus
untreated TCDM (U). All data re representative of two independent
experiments.

© 1995 Blackwell Science Ltd, Clinical and Experimental Immunology, 102:430—437



434 G. Herbein et al.

LPS (100 ng/ml), hrTNF-a (10 ng/ml), or hrIL-183 (100 U/
ml) treatment for 1-5 days did not change surface CD4
expression on quiescent or PHA-activated lymphocytes (data
not shown), indicating that CD4 down-regulation by LPS,
hrTNF-a, and hrIL-13 was selective for macrophages. Other
cytokines tested (IL-4, IL-10, IL-13, IFN-vy, M-CSF, GM-CSF,
MCP-1, MIP-1a, RANTES) also did not modulate surface
CD4 expression on quiescent or PHA-activated lymphocytes
(data not shown).

LPS down-regulation of surface CD4 was inhibited by
MoAbs directed against TNF-a and IL-13 (Fig. 5). When
added separately, anti-TNF-« and anti-IL-1 MoAbs inhibited
the down-regulation of CD4 expression on TCDM induced by
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Fig. 5. Neutralization of endogenous TNF-« and IL-13 blocks down-
regulation of CD4 by LPS. Three-day-old tissue culture-derived macro-
phages (TCDM) were untreated or treated for 1 day with 100 ng/ml
LPS alone (a), LPS mixed with 1-3 ug/ml anti-TNF-a MoAb (b), LPS
mixed with 660 U/ml anti-IL-1 MoAb (c), LPS mixed with both 1-3 ug/
ml anti-TNF-a MoAb and 660 U/ml anti-IL-1 MoAb (d). Flow
cytometry analysis was performed; fluorescence profiles (a—d) and
histogram (e) show surface CD4 levels. Arrows indicate fluorescence
of TCDM incubated with the FITC-conjugated antibody alone. The
histogram summarizes results from three independent experiments.
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100 ng/ml LPS. Moreover, the combination of both MoAbs
in the presence of LPS resulted in enhanced surface CD4
expression to 130% (% 2%) of control levels, suggesting an
endogenous secretion of TNF-a and IL-18 by macrophages in
culture. In agreement with these data, treatment with 100 ng/
ml LPS for 24 h induced the synthesis of endogenous TNF-«
and IL-18 by TCDM cultivated in serum-free medium (data
not shown).

To determine if the surface CD4 down-regulation by
hrTNF-a and hrIL-18 was restricted to proinflammatory
cytokines, we tested the effect of a panel of Th1, Th2 cytokines,
growth factors, and chemokines on modulation of surface CD4
in TCDM (Fig. 6). Although LPS has been reported to induce
IL-10 synthesis in human monocytes/macrophages, treatment
with hrIL-10 (10 ng/ml) for 1 or 5 days did not alter surface
CD4 expression on primary human TCDM. The other Th2
cytokines tested, hrIL-4 (10 ng/ml) and hrIL-13 (10 ng/ml), did
not modulate surface CD4 expression on human primary
TCDM after 1 and S days of treatment. The Thl cytokine
hrIFN-v (20 ng/ml) and the growth factors hrGM-CSF (300
U/ml) and hrM-CSF (100 U/ml) also did not modulate surface
CD4 expression after 1 day of treatment (data not shown).
However, after 5 days of treatment, hrIFN-v and hrGM-CSF,
respectively, down-regulated (40%) and up-regulated (165%)
surface CD4 in TCDM. Human rM-CSF (100 U/ml) and the
chemokines hrMCP-1 (100 ng/ml), hrMIP-1« (100 ng/ml), and
hrRANTES (100 ng/ml) did not modulate surface CD4
expression on human primary TCDM after 5 days of treatment.

DISCUSSION

Both function and modulation of MHC class II molecule by
cytokines have been studied extensively in primary macro-
phages. In contrast, the role of CD4 molecule which is the
physiological ligand of MHC class II, and its modulation by
cytokines in macrophages are largely unexplored. In this study
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Fig. 6. Effects of proinflammatory, Thl, Th2 cytokines, growth factors,
and chemokines on surface CD4 modulation in tissue culture-derived
macrophages (TCDM). Three-day-old TCDM were untreated (U) or
treated for 5 days with hrTNF-¢ (10 ng/ml), hrIL-18 (100 U/ml), hrIL-
4 (10ng/ml), hrIL-10 (10 ng/ml), hrIL-13 (10ng/ml), hrIFN-y (20 ng/
ml), hr granulocyte-macrophage colony-stimulating factor (GM-CSF;
300 U/ml), hrM-CSF (100 U/ml), hr monocyte chemoattractant pro-
tein-1 (MCP-1; 100ng/ml), hr macrophage inflammatory protein-1
alpha (MIP-lo; 100ng/ml), and RANTES (100ng/ml), fixed as
described in Materials and Methods, and analysed by flow cytometry
for surface CD4 expression. Results were reproduced in duplicate
experiments.
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we tested the effect of LPS and a panel of recombinant human
cytokines on CD4 expression in human primary macrophages.
We show that LPS and the proinflammatory cytokines, TNF-a
and IL-18, down-regulate both surface and total CD4
expression in primary human macrophages at the level of
transcription. The CD4 down-regulation induced by LPS is
mediated through the synthesis of endogenous TNF-a and IL-
13, but not through IL-10, which is also produced by LPS-
activated macrophages, and is known to down-regulate MHC
class II expression in LPS-treated human primary monocytes
[30]. In contrast to GM-CSF and IFN-vy which, respectively,
up-regulate and down-regulate CD4 in macrophages [33,34],
modulation by Th2 cytokines (IL-4, IL-10, IL-13), chemokines
(MCP-1, MIP-1a, RANTES) and M-CSF was not evident.

LPS down-regulated both surface and total CD4 protein in
primary macrophages at the level of transcription. The down-
regulation of CD4 protein in LPS-treated macrophages
occurred through the action of endogenous TNF-o and/or
IL-13 production, as demonstrated by the abolition of CD4
down-regulation in LPS-treated macrophages by MoAbs direc-
ted against TNF-a and IL-15. The observation that down-
regulation of both CD4 protein and message was less efficient
after LPS treatment than after TNF-a treatment might be
explained by rapid internalization of TNF receptors by macro-
phages in response to LPS [35]. In macrophages treated with
LPS, TNF-a, or IL-13, the CD4 mRNA levels could be
decreased as a result of either inhibition of gene expression or
the lack of CD4 mRNA stability, although we did not attempt
to distinguish between these possibilities. Inhibition of CD4
gene expression by LPS or proinflammatory cytokines might
result from an inhibition of the enhancer or promoter of the
CD4 gene [36,37] or activation of its silencer [38,39], all of
which have been described so far in lymphocytes, but not in
macrophages. Although our results account for a trans-
criptional CD4 regulation in macrophages by LPS, TNF-q,
and IL-18, we cannot exclude additional actions at post-
transcriptional levels. For example, phorbol ester has been
reported to diminish surface CD4 expression in monocytic
cell lines through an endocytosis-mediated pathway [25].
Similarly, adherence of monocytes to tissue culture plastic
diminishes surface CD4 levels as early as 1 h after their isolation
from peripheral blood by a post-transcriptional mechanism;
neither total CD4 expression nor CD4 mRNA levels are
modified by adherence [26]. IFN-v, which enhances the secre-
tion of TNF-a and IL-13 by the macrophages, down-regulated
surface CD4 expression on primary macrophages only after the
addition of the cytokine for 5 days [33]; this action could be
mediated through the induction of endogenous TNF-a and IL-
13 secretion. IL-10 was not able to down-regulate surface CD4
expression on macrophages, as reported previously [40]. This
suggests that, in contrast to MHC class II DR expression which
is down-regulated by IL-10 in LPS-treated human monocytes
[30], CD4 decrease by LPS is not mediated through IL-10
but through proinflammatory cytokines. The CD4 down-
regulation by LPS, TNF-a, and IL-18 has been observed in
primary human macrophages, but never in quiescent or PHA-
activated primary human lymphocytes, suggesting that the
mechanism of CD4 modulation by both proinflammatory
cytokines and LPS is restricted to macrophages.

CD4 modulation in primary human macrophages might
have significance in both immunological mechanisms and HIV

pathophysiology. Macrophage CD4 modulation could play a
role in inflammatory and infectious processes. The Gram-
negative and some Gram-positive bacteria induce the synthesis
of TNF-a and IL-18 by the macrophages. On the one hand
TNF-o and IL-183 increase the amount of MHC class II
molecules present on the macrophage surface [41] and might
favour antigen presentation to CD4* T cells that themselves
exhibit stable surface CD4 levels. On the other hand, the drop
of surface CD4 on the macrophages might diminish CD4-
MHC class II interactions [42] occurring between adjacent
macrophages. Thus the secretion of proinflammatory cytokines
TNF-a and IL-13 might diminish macrophage—macrophage
interactions and favour antigen presentation to T helper cells.
These phenomena could occur concomitantly with the stimula-
tion of inducible microbicidal mechanisms by the macrophage
(NO secretion and respiratory burst) and might optimize the
efficiency of both non-specific and specific immune defences.

We have found that TNF-o down-regulates total CD4
expression in the U937 monocytic cell line (data not shown).
Phorbol ester-induced differentiation of this cell line to a
more macrophage-like phenotype is correlated with decreased
CD4 expression [25]. Our results suggest that reduced CD4
expression and differentiation are unlikely to be linked
phenomena, in that the growth factors GM-CSF and M-CSF
which stimulate maturation of monocytes/macrophages did not
down-regulate surface CD4; GM-CSF even increasing surface
CD4 expression after 5 days of treatment, as reported
previously [34].

TNF-a, IL-13, IFN-y, and LPS activate the macrophages
in parallel with down-regulation of CD4. In contrast the Th2
cytokines which either deactivate the macrophages (IL-4, IL-
10) or alter their activation state (IL-13) [43] did not modulate
surface CD4 in primary TCDM. The chemokines (MCP-1,
MIP-1a, RANTES) do not directly modulate macrophage
CD4 in the inflammatory focus, but through increasing
macrophage recruitment could allow macrophage CD4 down-
regulation by the proinflammatory cytokines. All these data
taken together suggest that the down-regulation of CD4
expression in primary macrophages in an inflammatory focus
is strongly related to the effect of proinflammatory cytokines
rather than to the state of maturation or activation of the
macrophages.

CD4 is the main receptor for HIV on human primary
macrophages [6]. Its modulation might interfere with CD4-
envelope glycoprotein interactions and possibly modulate both
syncytia formation and virus entry. TNF-q, IL-13, and LPS
down-regulate CD4 in macrophages, while their action on
HIV-1 replication is opposite. Both TNF-a and IL-13 stimu-
late HIV-1 replication in macrophages through the activation
of the NF-xB [44], while LPS inhibits replication by blocking
the viral transcription [45]. The Th2 cytokines (IL-10, IL-13)
inhibit HIV-1 replication in primary macrophages [40,46]
without modulating surface CD4 expression. Both growth
factors GM-CSF and M-CSF stimulate HIV-1 replication in
primary macrophages [47], while their action on surface CD4 is
different. These data suggest that there is no direct correl-
ation between surface CD4 levels on macrophages and HIV
replication.

TNF-a which is known to stimulate HIV-1 replication in
primary macrophages induces the formation of a higher
number of syncytia than in untreated infected control macro-
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phages. Moreover, the addition of anti-TNF-a MoAb to TNF-
o-stimulated HIV-infected macrophage culture, while involv-
ing decreased HIV growth, induces the formation of a higher
number of syncytia than that observed in TNF-a-treated
cultures (data not shown). All these data taken together suggest
that the down-regulation of surface CD4 by TNF-qa, IL-13, and
LPS does not directly influence HIV-1 replication in primary
macrophages; rather, the down-regulation of surface CD4
could modulate the course of infection indirectly via its effects
on syncytia formation. .

High levels of TNF-a have been detected in plasma from
AIDS patients [48], and an induction of TNF-a and IL-1 in
monocytes isolated from AIDS patients has been observed [49].
A decrease in CD4 surface expression of monocytes isolated
from AIDS patients has also been reported [29]. The CD4
down-regulation in monocytes of HIV-1-infected patients has
been described both in infected and uninfected cells [50],
suggesting that, in contrast to lymphocyte CD4 depletion
which is mediated through viral genes, cytokines produced by
HIV-infected macrophages such as TNF-a and IL-183 [51,52]
may be able to down-regulate CD4 levels in monocytes/
macrophages of AIDS patients.

In conclusion, our study indicates that LPS and the pro-
inflammatory cytokines TNF-a and IL-18 down-regulate CD4
expression in primary human macrophages in vitro. Further
experiments are needed in vivo to specify the implications of the
macrophage CD4 decrease in regard to both inflammatory
processes and AIDS pathophysiology.
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