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Structural properties of the glycoplasmanylinositol anchor phospholipid
of the complement membrane attack complex inhibitor CD359
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SUMMARY

CD59, the membrane regulator of autologous C5b-9 channel formation, exhibits variable sensitivity
to cleavage by phosphatidylinositol-specific phospholipase C (PI-PLC), an enzyme that releases
glyco-inositolphospholipid (GPI)-anchored proteins from cell surfaces. To determine whether the
GPI-anchor phospholipid of CD59 is similar to that of decay-accelerating factor (DAF) and whether
variation in its structure underlies its variable enzyme susceptibility, the GPI anchors of the two
proteins expressed on erythrocytes, polymorphonuclear and mononuclear leucocytes were compared
in situ and after purification. Flow cytometric analyses of PI-PLC-treated cells showed parallel cell
type specific release of both proteins as a function of enzyme concentration. Non-denaturing PAGE
analyses of alkaline/hydroxylamine-treated proteins (affinity-purified from ['*I]-surface-labelled
cells) provided evidence for (i) comparable proportions of GPI-anchor acylation, and (ii) alkali-
resistant rather than alkali-sensitive lipid substituents in erythrocytes. These findings argue that the
differential C5b-9 sensitivity that distinguishes paroxysmal nocturnal haemoglobinuria II and III
erythrocytes does not derive from expression of CD59 molecules with alternative GPI-anchor

phospholipid structures.
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INTRODUCTION

Recent research [1-9] has identified an ~ 18-20-kD complement
regulatory protein on human blood cell surfaces that restricts
plasma membrane insertion and polymerization of autologous
complement component C9. Similar to the decay-accelerating
factor (DAF), which circumvents deposition of autologous C3b
[10-13], this protein, termed CD59 [14,15], is cleavable from cell
surfaces in situ by incubation with bacterial phosphatidyli-
nositol-specific phospholipase C (PI-PLC), an enzyme that
removes myo-inositol monophosphate from inositol phospholi-
pids contained in glyco-inositolphospholipid (GPI)-anchor
structures [reviewed in 16,17]. Also similar to DAF [13], the
protein when purified is able to re-incorporate in vitro into cell
membranes [1,4,9,18,19]. Additionally, in paroxysmal noctur-
nal haemoglobinuria (PNH) [20], a disorder traced to abnormal
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GPI-anchoring [21-23], CD59, like DAF, is deficient in C5b-9
sensitive erythrocytes [4,5,9,18,24].

Because each of the above findings regarding DAF is
attributable to its GPI-anchor, the similarities with CD59 have
suggested that it is anchored by an equivalent structure. In
different studies, however, it exhibited variable sensitivity to
PI-PLC-mediated cleavage, whether studied in siru[1,2,4,6,9] or
purified [25]. Additionally, in PNH a subset of patients exists
whose erythrocytes (type II) [26,27] exhibit only partially
enhanced (~ 5- as opposed to ~25-fold greater than normal)
sensitivity to autologous complement-mediated injury and lack
DAF [13,28], but not the activity attributed to CD59 [13]. These
observations have prompted questions of whether CD59’s
membrane linkage might differ from that of DAF.

Previous characterizations of DAF’s GPI-anchor have
shown that it exhibits differential inositol acylation [29] and that
this structural variation is regulated in a cell-specific fashion
[29,30]. Moreover, in erythrocytes it is based on 1-alkyl,2-acyl-
glycerol [29]. These structural features contrast with unacylated,
dimyristylphosphatidylinositol, which is uniformly present in
trypanosome membrane form variant surface glycoproteins
(mfVSGs) [16,17], the first protein in which GPI-anchors were
chemically characterized. The differences in DAF’s anchor
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appear to be characteristic of human GPI-anchors in general,
however, because they are also observed in human erythrocyte
acetylcholinesterase (AChE) [31,32] and placental alkaline
phosphatase (PLAP) [33].

In the present study, the membrane-anchoring mechanism
of CD59 was studied both in situ and using purified protein. Its
structural properties were compared in erythrocytes, polymor-
phonuclear leucocytes (PMN), and peripheral blood mono-
nuclear cells (PBMC) and the results correlated with those for
DAF.

MATERIALS AND METHODS

Proteins, columns, and cells

Murine anti-DAF (MoAb) IA10 [28], murine anti-CD59 MoAb
1FS5 [34], and rat anti-CDS9 MoAb YTHS3.1 [2,35] were
prepared as described. Non-relevant murine IgG RPCS5 was
purchased from Litton Bionetics (Kensington, MD) and rat IgG
from Accurate Chemical & Scientific Co (Westbury, NY).
Bacillus thuringiensis PI-PLC was bought from ICN Biomedi-
cals (Costa Mesa, CA).

Protein A-agarose was obtained from Zymed Labs (San
Francisco, CA). IA10-Sepharose CL-4B (Pharmacia, Uppsala,
Sweden) was prepared as described [36] and YTHS53.1- and
bovine serum albumin (BSA)-Sepharose were made in a parallel
fashion, using 0-8 and 2-9 mg protein per millilitre of swollen gel,
respectively.

Erythrocytes and PBMC were separated from EDTA-anti-
coagulated blood on Ficoll-Paque and PMN from heparinized
blood on a discontinuous Percoll gradient composed of 3 ml
each of 54%, 63% and 72% Percoll [37].

Flow cytometric analyses

Cells were stained primarily using pre-titred saturating concen-
trations (2-S pg/ml) of murine (IA10) anti-DAF [22,28], (IF5)
anti-CD59, or control IgG. Murine IgG stained cells were
stained secondarily with FITC-F(ab’), sheep anti-mouse IgG
(Organon Teknika-Cappel, Durham, NC). Fluorescence was
quantified on a Cytofluorograf 2S (Ortho Diagnostic Systems,
Westwood, MA).

Surface labelling and immunoprecipitations

Cells were labelled with 5 mCi '*I in 5 ml 15x 85 mm tubes
precoated with 300 ug Iodogen [38]. Washed ['*I]-labelled
erythrocytes and PBMC were extracted on ice as described [29],
using 1 ml of phosphate-buffered saline (PBS) containing 1%
Triton X-100 (TX-100) (Packard Instruments, Downers Grove,
IL), 0-5% deoxycholate (DOC) (Sigma Chemical Co, St Louis,
MO), 0:1% SDS, and 1/33 volume of protease inhibitors (1 mg/
ml each of antipain, elastinal, leupeptin, chymostatin (Sigma),
phosphoramidon, pepstatin A (Boehringer Mannheim Bio-
chemicals, Indianapolis, IN), and 10 ug/ml aprotinin (Sigma)).
In the case of PMN, to further control for proteolysis, washed
['*T}-labelled cells were extracted by sonication for 15-30 sec in
0-5 ml 2% SDS [31], 0-02 M Tris-HCI, pH 7-4, 0-05 M benzami-
dine, 0:01 M EDTA, 10 ug/ml aprotinin, 0-001 M phenylmethyl-
sulfonyl fluoride (PMSF), 0-001 M diisopropylfluorophosphate
(DFP), and 1/33 volume of protease inhibitors, and the extract
diluted with 0-05 m Tris-HCI, pH 7-4, containing 0-19 M NaCl,
0-006 M EDTA, 2-5% TX-100, 0-02% sodium azide, and 10 ug/
ml aprotinin to which 0-001 M PMSF, 0-001 M DFP, and 1/33
volume of protease inhibitors had been added. After centrifuga-

tion to remove insolubles, extract supernatants were stored at
—70°C.

Aliquots of the thawed extracts (pre-absorbed with Protein
A agarose) were rotated at 20°C for 30-60 min with 50 ul of
packed 1A10-, YTHS53.1- or BSA-Sepharose, and extensively
washed as described [39]. DAF protein was eluted with 0-5 ml of
0-14 M NaCl, 0-05 M diethylamine, pH 115, containing either
0-2% Nonidet P-40 (NP-40) (Pharmacia) or TX-100 [36], and
CD359 protein was eluted with 0-5 m1 0-1 M sodium acetate, pH 3,
with the same detergent [2]. Supernatants containing eluted
proteins were dialysed at 4°C against 4 / of 0-01 M Tris-HCI,
pH 7-4, containing the respective detergent.

Structural analyses

Concentrated dialysates were incubated at 4°C for 18 h with
hydroxylamine or buffer, and, after dialysis and re-concentra-
tion, aliquots of each were incubated at 37°C for 2 h with PBS
alone or containing PI-PLC at a final concentration of 90 or
180 mU/ml as described [29]. SDS-PAGE analyses were per-
formed on slab gels under reducing conditions as described [40].
Audioradiographs were prepared at —70°C on X-OMAT
XAR-5 film (Eastman Kodak, Rochester, NY).

Non-denaturing PAGE analyses were performed [29,41,42]
using 7-5% gels containing 0-5% TX-100 (or NP-40) and
subjected for 3-5 h to 10 V/cm on a water-cooled, horizontal
Multiphor II Electrophoresis Unit (Pharmacia) [29]. Autoradio-
grams of the fixed, dried gels were prepared, then analysed by
densitometry on an LKB 2400 Ultroscan SL Laser Densit-
ometer (Pharmacia) interfaced with the GelScan XL version
1.20 utility, run on a Tandon Targa computer.

In densitometric analyses, the sum of the area under the
signals for detergent-associated and detergent-unassociated
radioactivity was defined as 100%. The percentage of unsubsti-
tuted inositol was taken from the percentage of detergent-
unassociated radioactivity in lane 2. The percentage of substi-
tuted inositol was derived by subtracting the percentage of
detergent-associated radioactivity in lane 2 from that in lane 4.
The percentage of base-resistant-phospholipid was taken as the
percentage of detergent-associated radioactivity in lane 3.

In some experiments, some radioactivity remained in the
wells and failed to enter the non-denaturing PAGE gels,
presumably as a consequence of concentrating samples before
loading. In computations, signals corresponding to these bands
were excluded based on the assumption that different GPI-
anchor structures were not selectively retained.

RESULTS

Cell-dependent differences in susceptibility of CD59 to PI-PLC
cleavage

To determine if the efficiency of PI-PLC-mediated release of
CD59 from cell surfaces varies in different blood cell types
similarly to that of DAF, erythrocytes, PMN and PBMC were
incubated at 37°C for 1 h with graded concentrations of the
enzyme or with buffer control. Aliquots of the treated cells
stained with IA10 anti-DAF or 1F5 murine anti-CDS9 MoAbs
(to allow use of the same FITC-labelled anti-immunoglobulin)
were analysed by flow cytometry. As shown in Fig. la (assuming
that IA10 and 1F5 bind singly with high affinity to their
respective antigens and that their binding is not differentially
influenced by steric factors) the relative expression levels of
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Fig. 1. (a) Erythrocytes, polymorphonuclear leukocytes (PMN) and peripheral blood mononuclear cells (PBMC) were stained with
anti-DAF (IA10), anti-CD59 (1F5), or irrelevant RPC5 MoAb and FITC sheep anti-mouse IgG secondarily-stained cells analysed by
flow cytometry at constant fluorescent gain (so as to allow comparisons between DAF and CD59 surface densities). (b) The three cell
types were incubated at 37°C for 1 h with buffer alone or with increasing concentrations of PI-PLC and the treated cells analysed as
above. Per cent release of delay-accelerating factor (DAF) and CDS59 protein from the cells is shown as a function of the initial (that is,

x 2 concentrated) PI-PLC concentration. NS, Not significant.

CD359 in erythrocytes PMN and PBMC appear higher than
those of DAF. Moreover, expression of CD59 in PBMC is
homogeneous in contrast to that of DAF which is heteroge-
neous among lymphocyte subpopulations and overlaps with the
negative control [28, 43-46]. In Fig. 1b it can be seen that,
whereas no more than ~20-25% of CD59 was removable from
erythrocytes regardless of enzyme concentration, ~70-85%
was removable from PMN and PBMC. This pattern of release
conformed closely to that of DAF.

Comparative analyses of CD59’s G Pl-anchor structure in differ-
ent blood cell types
To establish whether the cell type variations in PI-PLC release
of CD359 in situ reside in CD59’s GPI-anchor structure rather
than other cell factors, isolated erythrocytes, PMN and PBMC
were ['%I]-surface-labelled, and the labelled CD59 and DAF
proteins were affinity purified from cell extracts. SDS-PAGE
analyses established that the isolated products, shown in Fig. 2,
were free of contaminants and structurally intact, appropriate
for comparative analyses of their anchor structures. The diffuse
CD59 bands on SDS-PAGE reflect CD59’s extensive glycosyla-
tion [6,47). Portions of each protein were treated alternatively
with buffer, PI-PLC, hydroxylamine, or hydroxylamine and PI-
PLC as described in Materials and Methods [29]. SDS-PAGE
analyses (under reducing conditions) (Fig. 2) showed that,
although PI-PLC treatment of CD59 induced a slight decrease
in mobility, the chemical and enzymatic exposures did not
otherwise alter CD59 protein structure. The decrease in mobility
noted for CD59 contrasted with an increase in that of DAF
[36,48].

The results of non-denaturing PAGE analyses of the
variously treated CDS59 proteins are shown in Fig. 3, with

densitometric comparisons to DAF given in Table 1. In the case
of erythrocytes, >95% of the CD59 protein treated with PI-
PLC alone exhibited slow migration (similar to that in the
buffer-treated control) indicative of detergent micellar associ-
ation. Less than 5% exhibited more rapid migration, character-
istic of a detergent-free hydrophilic species. This compared with
<5-15% of DAF (Table 1). In contrast, 88-90% of the protein
pre-treated with hydroxylamine (which cleaves ester bonds) and
then PI-PLC, was released as a hydrophilic species. This again
paralleled DAF (76-90% release).

Differently from findings with erythrocytes, PI-PLC alone
cleaved large percentages of CD59 and DAF proteins derived
from the surfaces of leukocytes. In the cases of PMN and
PBMC, 60-95% and 71-86% of PI-PLC-treated CD59 protein
migrated as hydrophilic species. This compared with 75-90%
and 71-83% of DAF (Table 1). In both of these cell types, up to
95% of the hydroxylamine- and then PI-PLC-treated CD59
protein, respectively, ran as hydrophilic species indicating that
the residual PI-PLC-resistant molecules in both cases were
rendered enzyme sensitive by the hydroxylamine deacylation.
These results conform to those of DAF (Table 1), in which up to
95% was released from PMN and PBMC [29].

Only 5-18% of erythrocyte-associated CD59 was released
from detergent following treatment with hydroxylamine alone,
consistent with an alkylacylglycerol-based GPI-structure,
whereas somewhat more was released from PMN and PBMC.
Similar results were found for DAF [29].

DISCUSSION

The experiments in this study provide evidence that the
membrane-anchoring mechanism of CD59 (i) exhibits dose-
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Fig. 2. ['®I]-labelled CDS9 and delay-accelerating factor (DAF)
proteins, affinity-purified from extracts of surface-labelled erythrocytes
(a), polymorphonuclear leucocytes (PMN) (b), and peripheral blood
mononuclear cells (PBMC) (c) were incubated with hydroxylamine or
buffer control. Dialysed and concentrated samples were incubated at
37°C for 2 h with buffer or 1/50 to 1/100 PI-PLC and analysed on 12:5%
SDS-PAGE gels. Lane 1, buffer alone; lane 2, buffer then PI-PLC; lane
3, hydroxylamine then buffer; lane 4, hydroxylamine then PI-PLC. For
each cell type, DAF and CDS59 protein preparations were loaded onto
the same gel, but the autoradiographs were exposed for different times.

dependent enzyme and mild alkaline cleavage susceptibility
characteristic of a GPI moiety, (ii) shows cell-specific variations
in inositol acylation, and (iii) contains a phospholipid which
resists alkaline hydroxylamine cleavage. These structural fea-
tures parallel those of DAF and other GPI-anchored proteins
that have been analysed to date in human cells, i.e. erythrocyte
AChE [31,32] and PLAP [33].

CD59 was identified as a GPI-anchored membrane comple-
ment regulatory protein independently by several laboratories.
Using antibodies raised after purification of its functional
activity, Sugita et al. [1,47] reported that only small amounts of
the factor (which they termed membrane attack complex
inhibitory factor) were detectable in the supernatant of erythro-
cytes incubated with PI-PLC. With antisera prepared following
a different functional purification protocol, Holguin et al. [4,25]
found that 10% of the protein (which they termed membrane
inhibitor of reactive lysis (MIRL)) was released from erythro-
cytes by PI-PLC, whereas 44% was released from K562
erythroleukaemic cells. Stefanova et al. [6] purified the protein
independently of its functional activity by affinity chromato-
graphy, exploiting a murine MoAb initially designated MEM-
43 and subsequently named CD59 [14,15]. In flow cytometric
assays of MEM-43-stained human PBMC, PI-PLC treatment
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Fig. 3. The variously treated CD59 samples from erythrocytes, polymor-
phonuclear leucocytes (PMN), and peripheral blood mononuclear cells
(PBMC) described in the legend for Fig. 2 were subjected for 3-5t0 7-5%
non-denaturing PAGE in the presence of 0-5% NP-40 or TX-100. The
resulting autoradiographs are shown in (a), (b) and (c). Lane designa-
tions are the same as in Fig. 2. O, Origin; B, detergent-bound; F, free. In
(c), the faint band visible between the origin (O) and the major bound
moiety (B) (lanes 1 and 2) has been excluded from the densitometric
analysis in Table 1. Delay-accelerating factor (DAF) and CD59 protein
preparations were loaded as in Fig. 2.

caused a substantial decrease of cell-associated antigen. On
Western blots, no residual antigen was detectable in extracts of
enzyme-treated HPB-ALL cells. Whitlow et al. [9] used a similar
approach relying on another murine MoAb, H19 [3]. In flow
cytometric assays of H19-stained PBMC, PI-PLC treatment
released 80% of the protein. Using a rat anti-lymphocyte
MoAb, YTHS53.1 [35], Davies et al. [2] identified the mRNA
encoding the protein by flow cytometric assays of COS cells
transfected with a cDNA library. Almost all of the expressed
protein (which they equated to CD59 antigen) was PI-PLC
sensitive. N. Okada et al. [5,18,34] isolated the protein by
affinity chromatography with yet another murine MoAb, 1F5.
In flow cytometric assays of 1F5-stained human T cell lympho-
tropic virus ((HTLV)-I infected) MT2 cells and nylon wool
purified T cells, PI-PLC completely removed the protein (which
they called HRF20) [49]. It was subsequently reported [45] that
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Table 1. ND-PAGE comparisons of CD59 and DAF GPI anchor structures

Unsubstituted inositol,

lane 2, % free

Alkali-resistant
phospholipid
lane 3, % bound

Substituted inositol,
lane 4, % free minus
lane 2, % free

Cell type Donor CD59 DAF CD59 DAF CD59 DAF
Erythrocytes Al <5 11 88 66 >95 88
A2 <5 <5 90 78 >95 >95
A3 5 15 84 75 82 86
PMN A 60 75 9 18 >95 >95
B 95 90 3 11 66 82
PBMC C 86 83 14 7 55 68
D 71 71 29 29 55 76

PMN, Polymorphonuclear leucocytes; PBMC, peripheral blood mononuclear cells.

80%, 54%, and 55% of the 1FS5 antigen was PI-PLC releasable
from blood lymphocytes, monocytes, and PMN while the
parallel release of DAF from these cell types was 75, 48, and
32%, respectively.

Our observation that CD59’s GPI-anchor exhibits non-
denaturing PAGE properties of cell-specific inositol acylation
accounts for the previously reported variability in CD59’s PI-
PLC sensitivity. Our finding that 84-90% of CD59 molecules in
erythrocytes contain GPI-anchors that exhibit acylation can
additionally explain observations by Holguin et al. [25] that PI-
PLC treatment of purified erythrocyte MIRL did not prevent its
incorporation into PNH erythrocytes or alter its ability to
inhibit C9 polymerization in the reconstituted PNH cells. The
reason in their studies for the apparent discrepancy between the
PI-PLC-sensitivities of in situ and purified CDS59 protein is
unclear, but selective loss of unacylated molecules during
purification could lead to a higher proportion of molecules with
acylated GPI-anchors in the latter case. Our observation that
PI-PLC-cleaved CD59 molecules exhibit decreased SDS-PAGE
mobility can also account for previous observations [25] that (i)
MIRL released from erythrocytes by the enzyme displayed a
slightly greater apparent Mr than MIRL immunoprecipitated
from intact cells, whereas (ii) when isolated, PI-PLC-treated
MIRL showed the same apparent Mr as untreated MIRL.
Previous findings that GPI-anchor removal from VSGs, Thy-1
antigen, and AChE is not associated with a change in SDS-
PAGE mobility [16], while that from erythrocyte DAF is
associated with an increase [36,48] and that from LFA-3 with a
decrease [50], indicate that charge and/or conformational
factors may operate in this context in a protein-specific manner.
The apparent Mr variation due to these factors should be
distinguished from the finding that PMN-derived DAF [28],
displays greater apparent Mr than erythrocyte associated DAF
protein, an Mr difference in this case arising from variations in
post-translational glycosylation.

The failure of mild alkali treatment to release erythrocyte-
derived CD59 from detergent argues that the inositol phospho-
lipid in CD59’s GPI-anchor, like those in erythrocyte-derived
AChE’s and DAF’s GPl-anchors [29,31,32], is based on
alkylacyl- rather than diacyl-glycerol as present in mfVSGs of
Trypanosoma brucei [16,17]. Gas chromatographic analyses of

the GPI-anchors in the latter two human proteins have shown
that their alkyl side chains consist principally of C18:0 and
C18:1 alkylglycerols and that their acyl substituents include
both saturated, e.g. C16:0 and C18:0, and unsaturated hydro-
carbons, e.g. C22:4 and C22:5. The composition of CD59’s
GPI-anchor remains to be determined but the close parallel that
has been noted between the anchor compositions of DAF and
AChE in erythrocytes suggests it will be similar. Whether the
greater alkali susceptibility of leucocyte-derived CD59 reflects
diacylglycerol will require further study. The reason why some
CD59 protein resisted PI-PLC cleavage after pre-incubation
with hydroxylamine (lane 4, bound) is unclear. Possible expla-
nations include (i) incomplete enzymatic cleavage; (ii) incom-
plete deacylation by hydroxylamine; or (iii) an alternatively
anchored CDS9 form.

The biological relevance of GPI-anchor structural variabi-
lity among different blood cell types remains incompletely
understood. The additional acylation present in erythrocyte
associated anchors renders these structures resistant to cleavage
by PI-PLC and less sensitive to PI-PLD cleavage when purified
[29,51]. This enzyme resistance may enhance the membrane
stability of these proteins over time consistent with the longer
(120 day) life span in the circulation of erythrocytes as compared
with leucocytes.

The molecular basis for the differential resistance of PNH II
erythrocytes to C5b-9 mediated injury [27] is unknown. If the
GPI-anchor structure of CD59 on PNH Il erythrocytes does not
differ from that of CD59 (and DAF) on normal erythrocytes, a
defect in a GPI-anchor assembly or attachment enzyme should
affect expression of both proteins in an equivalent manner.
Findings that LFA-3 and FcyRIII exist in both GPI- and
conventionally-anchored forms [50,52-57], and that in both
cases only the conventionally anchored PI-PLC-resistant spe-
cies is detectable in affected erythrocytes [58-60] provide
precedents for the possibility that an alternative, perhaps
conventionally anchored form of CD59 may exist. Alterna-
tively, CD59 expression may be diminished similarly to DAF
expression [24] but sufficient function retained at lower levels, or
another protein, e.g. homologous restriction factor/C8-binding
protein [61-63], with parallel functional activity may be differ-
entially expressed in PNH II cells.
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