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Role of tumour necrosis factor and reactive oxygen intermediates
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SUMMARY

The purpose of this study was to characterize the role of tumour necrosis factor (TNF) and
neutrophils (PMN) in the pathogenesis of pulmonary oedema induced by endotoxin (lipopolysac-
charide (LPS)). Intraperitoneal administration to BALB/c mice of 0 6-l mg of LPS caused
pulmonary oedema and lethality. This was associated with production of TNF in serum and
bronchoalveolar lavage fluid and with accumulation ofPMN in the lung. In this experimental model,
we could block TNF production by different means: pretreatment 30 min before LPS with 4 mg/kg of
i.p. chlorpromazine (CPZ), 3 mg/kg of i.p. dexamethasone (DEX), I g/kg p.o. of N-acetylcysteine
(NAC, an antioxidant precursor of glutathione), or an anti-TNF MoAb. CPZ, DEX and anti-TNF
completely prevented LPS lethality but not pulmonary oedema or pulmonary PMN infiltration,
indicating that: (i) lung oedema is not the main cause ofdeath after LPS; and (ii) lung oedema induced
by LPS is not mediated by TNF. Pretreatment with NAC not only inhibited TNF production but also
protected against LPS-induced pulmonary oedema, indicating that reactive oxygen intermediates are
implicated. NAC also blocked TNF production in blood and in bronchoalveolar lavage. We also
tested the effect ofPMN depletion induced with cyclophosphamide (CP) or 5-fluorouracil (5-FU).
While no pulmonary PMN infiltrate was observed in PMN-depleted mice, neutropenia did not
prevent LPS lethality or oedema, indicating PMN do not play an important role in the toxic effects of
LPS in this experimental model.
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INTRODUCTION mediating LPS-induced pulmonary damage, including IL-I

Endotoxin (lipopolysaccharide, LPS) causes several pathologi- [10], and the chemotactic cytokine IL-8 [11].
of septic shock, including hypoten- Most of these studies were focused on LPS lethality or its

cal,change chracteristi haemodynamic effects, while there is not clear cut evidence for a

soran fever,disseminatedinavascular c l,2 mu role of TNF in the development of LPS-induced pulmonaryorgan failure, pulmonary oedema and death [1,2].
Several lines of evidence indicate that tumour necrosis factor damage. In fact, LPS increases lung microvascular permeability

(TNF) is a key mediator in the pathogenesis of septic shock. In with an early deterioration of respiratory function and induc-

particular, TNF administration reproduces many of the patho- tion of severe pulmonary oedema associated with neutrophil
* * * (~~~~~~~~~~~PMN)infiltration and lung endothelial injury [12].logical consequences of endotoxic shock and anti-TNF anti- (P ) g i y [11

bodies protect against septic shock in various animal models Different inflammatory mediators have been implicated in

[3,4]. Furthermore, TNF has been measured in patients with LPS-induced pulmonary damage or in ARDS. These include

septic shock or sepsis-associated adult respiratory distress eicosanoids [13], platelet-activating factor (PAF) [14], comple-
syndrome (ARDS) [5], and TNF was found to induce pulmon- ment components [15] and reactive oxygen intermediates (ROI)
ary damage in vivo [6,7]. It was also shown that TNF is induced [16].
during hepatic or intestinal ischaemia/reperfusion, and that in In this respect, a central role for PMN in the pathogenesis of

these experimental models lung injury develops that is protected ARDS has often been pointed out [17] and in isolated perfused
by.., a-.TN a o [9 lung, activated PMN can induce pulmonary oedema [18]. The

Alhoghmot f heatenio hs ocse o TFi studies on the protective effect of PMN depletion on LPS-
should~~~~~~~ ~benoe tha ote cyoie ih hv oei nduced pulmonary oedema are controversial. In particular,

PMN depletion with hydroxyurea was protective in sheep
Correspondence: Pietro Ghezzi, 'Mario Negri' Institute forPharma- infused with bPS [19]. On the other hand, other papers have

cological Research, via Eritrea 62, 20157 Milan, Italy. shown that neutropenia induced with nitrogen mustards in
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rabbits or goats does not prevent LPS-induced pulmonary Procedures involving animals and their care were conducted
damage [20,21]. It was also pointed out that the protective effect in conformity with the institutional guidelines that are in
in hydroxyurea-treated animals might not be related to neutro- compliance with national and international laws and policies
penia but to some non-specific effects of this agent [21]. (EEC Council Directive 86/609, GJ L 358,1, 12 Dec., 1987; NIH
Likewise, the induction of pulmonary oedema by direct admin- Guide for the Care and Use of Laboratory Animals, NIH
istration of TNF has also been shown to be independent of Publication No. 85-23, 1985).
neutrophils [7].

As far as the role of TNF in LPS-induced pulmonary Pulmonary oedema and BALF preparation
oedema is concerned, it should be pointed out that LPS has a At the times indicated mice were killed by ether anaesthesia,
direct toxic effect on endothelial cells [22], thus making it blood was collected by cardiac puncture, and lungs were excised
difficult to determine the relative role ofTNF in respect to other and cleared of all extrapulmonary tissue. Total lung wet weight
LPS-induced cytokines. was determined and the specimens were allowed to dry over-

The aim of the present study was to investigate the possible night at 80'C and weighed again to determine the dry weight.
role of TNF in a murine model of LPS-induced pulmonary Pulmonary oedema was expressed as the wet weight-to-dry
damage using different approaches. In particular, we have weight ratio.
characterized LPS-induced TNF production in serum and in For the preparation of BALF, mice were anaesthetized with
bronchoalveolar lavage fluid (BALF), pulmonary oedema, i.p. chloral hydrate (600 mg/kg), the trachea was cannulated and
PMN accumulation in the lung and survival. Using a phamaco- the lungs infused with 0 3 ml of PBS. BALF was recovered
logical approach, we studied the effect of pretreatment with (average fluid recovery was 0 2 ml), clarified by centrifugation at
drugs previously reported to inhibit TNF production and 1000 g for 10 min and used for TNF assay.
protect against LPS toxicity, like dexamethasone (DEX) and
chlorpromazine (CPZ) [23]. The effect of an anti-TNF MoAb TNF assay
previously reported to protect against LPS toxicity (24) was also TNF bioactivity was measured in serum or BALF by a standard
studied in order to have a TNF inhibitor to serve as reference. cytotoxicity assay using L929 cells as target and recombinant

To identify the biochemical mediators involved, with par- TNF as a standard, as previously described [29]. Data are
ticular attention to ROI and arachidonic acid oxygenation expressed as ng/ml. The detection limit of the TNF assay was
products, we also studied the effect of an antioxidant, N- 0-08 ng/ml. More than 95% of the cytotoxic activity of sera or
acetylcysteine (NAC), and of two inhibitors of prostaglandin BALF in this assay was neutralized by anti-mouse TNF
synthesis, ibuprofen and indomethacin. We have tested NAC antibody.
since previous works had shown that this antioxidant attenu-
ated several pathophysiological changes in the LPS model of Lung myeloperoxidase assay
ARDS in sheep [25] and inhibits the production of TNF and Lungs were rinsed with saline and immediately homogenized in
LPS toxicity in mice [26]. The role ofPMN in this experimental five volumes of ice-cold 50 mm phosphate buffer, pH 6-0,
model has been studied by depleting PMN with cyclophospha- containing 0 5% hexadecyltrimethylammonium bromide using
mide (CP) and 5-fluorouracil (5-FU). an Ultra Turrax rotating blade homogenizer. The homogenate

was centrifuged at 40 000 g for 10 min at 4°C and myeloperoxi-
dase (MPO) activity was determined in the supernatants by a
spectrophotometric technique [30]. Briefly, the test sample (0- 1

Animals and treatments ml) was mixed with 2-9 ml of 50 mm phosphate buffer, pH 6-0,
Male BALB/c mice 20-22 g were obtained from Charles River containing 0-167 mg/ml o-dianisidine dihydrochloride, and
Italy (Calco, Italy). LPS (Westphal preparation, from Escheri- 0 005% hydrogen peroxide in a final volume of 3 ml. The optical
chia coli 055: B5; Sigma, St Louis, MO), DEX (DEX phos- density change (A OD) at 460 nm was measured over 2 min in a
phate, from Istituto Farmacologico Milanese, Milan, Italy) and spectrophotometer and data expressed as A OD/g lung tissue.
CPZ (from Farmitalia Carlo Erba, Nerviano, Italy) were
injected intraperitoneally in 0-2 ml of sterile, pyrogen-free Statistical analysis
saline. Appropriate controls received saline alone at the same The data shown are the mean+ s.e.m. (5-8 mice per group).
times. NAC (Zambon, Bresso, Italy) was dissolved in water and TNF levels, MPO and lung wet/dry weight ratio were compared
administered by oral gavage at the dose of 1 g/kg in a final using Fisher's test, Student's t-test or Dunnett's test. Mortality
volume of 0 2 ml, as previously described [26]. When indicated, data were obtained with groups of 10-15 mice. All experiments
mice were rendered neutropenic by pretreatment with 5-FU had been repeated three times, and a typical experiment
(150 mg/kg intravenously I week before the experiment) or CP reported.
(150 and 100 mg/kg intraperitoneally on days -5 and -1,
respectively) as previously described [27,28]. A rat MoAb (Vlq) RESUT
was prepared and administered to mice as previously described ULTS
[24]. Briefly, supernatant from cultures of anti-TNF-producing Effect ofLPS on survival, TNF levels, lung PMN accumulation
hybridoma was concentrated by ammonium sulphate precipi- and pulmonary oedema
tation, dialysed against sterile PBS and administered intraperi- We studied the effect of 1 mg/mouse of LPS on survival. It can
toneally in 0 1 ml 2 h before LPS. Control mice received medium be seen that at this dose of LPS 100% of mice died within 48 h
alone added with ammonium sulphate and dialysed as described (Fig. 1 a). Since with this dose of LPS 50% of the mice died
above. The specificity and activity of this MoAb has been within 24 h, we have used a sublethal dose (0 6 mg/mouse) to
described before [24]. allow determination of the other parameters to be investigated
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Table 1. Effect ofanti-TNF antibody on lipopolysaccharide (LPS)-induced mortality, pulmonary myeloperoxidase
(MPO) and oedema

Treatment Mortality* TNFt MPOT Lung wet/dry ratio§

Control 0 <0-08 3-3+0 3 4-28+0 04
LPS 60 120+14 6-9±+ 0¶ 453+0005¶
Anti-TNF/LPS 0** 1 + tt 91 +08 4-58+0 02

Mice were pretreated with anti-TNF (0-1 ml; this preparation diluted 1: 12 800 neutralized 256 U of mouse
TNF), 2 h before LPS.

* Per cent mortality. Ten mice per group. Mortality was evaluated 7 days after LPS (1 mg/mouse).
t TNF was measured 1 h after LPS (0-6 mg/mouse) and expressed as ng/ml (mean + s.e.m., 5 mice/group).
$ Lung MPO activity was measured 24 h after LPS (0-6 mg/mouse) and expressed as AOD/min per gram tissue

(mean + s.e.m., 7 mice/group).
§ Wet/dry lung weight ratio was measured 24 h after LPS (0 6 mg/mouse) (mean + s.e.m., 8 mice/group).
¶ P< 0-01 versus control by Student's t-test.
** P<0 01 versus LPS alone by Student's t-test.
tt P<0-01 versus LPS alone by Student's t-test.

Table 2. Effect of cyclophosphamide (CP)-induced neutropenia on lipopolysaccharide (LPS)-induced mortality,
serum TNF, pulmonary myeloperoxidase (MPO) and oedema

Treatment Mortality* TNFt MPO$ Lung wet/dry ratio§

Control 0 <008 1 9+0 1 4-28+0-02
CP 0 <0-08 <0 05 4-61 +0 05¶
LPS 100 47-1 + 17-9 6-2+ 0 4¶ 4-47 + 0 02¶
CP/LPS 100 29 8+22 4 0.8+0-9** 4-59+0-04T

Mice were rendered neutropenic by pretreatment with CP (150 and 100 mg/kg intraperitoneally on days -5 and
-1, respectively).

* Per cent mortality. Ten mice per group. Mortality was evaluated 7 days after LPS (1 mg/mouse).
t TNF was measured 1 h after LPS (0-6 mg/mouse) and expressed as ng/ml (mean + s.e.m., 5 mice/group).
$ Lung MPO activity was measured 24 h after LPS (0-6 mg/mouse) and expressed as AOD/min per gram tissue

(mean + s.e.m., 7 mice/group).
§ Wet/dry lung weight ratio was measured 24 h after LPS (0 6 mg/mouse) (mean + s.e.m., 8 mice/group).
T P <0-01 versus control by Student's t-test.
** P<0-01 versus LPS alone by Student's t-test.

effects of LPS. It should be noted that, unlike 5-FU, CP per se not inhibit LPS-induced lung MPO, it could also be concluded
induced some pulmonary oedema, as previously described [311. that TNF does not mediate the accumulation of PMN in the

lung after i.p. injection of LPS. The fact that some of the toxic

DISCUSSION effects of LPS are still observed when TNF is blocked is not
surprising, since previous studies have shown that LPS can be

In the present study we investigated the role ofTNF in the toxic directly toxic to endothelial cells in vitro, indicating that not all
effects of LPS (lethality and pulmonary oedema) using different of the effects of LPS are necessarily mediated via cytokines.
experimental approaches: inhibition of TNF production by Furthermore, it seems obvious that other cytokines different
CPZ, NAC or DEX and neutralization of TNF with an anti- from TNF might be involved in LPS-induced pulmonary
TNF MoAb. Inhibition of TNF by either drugs or antibodies damage, particularly IL-1 and IL-8.
was always associated with a protective effect against LPS A second aspect of this study is the role of PMN in LPS
toxicity, thus confirming the key role for TNF as a mediator of toxicity and lung oedema. The experiments in which neutrope-
endotoxic shock. nia was induced using two different drugs (CP and 5-FU) clearly

On the other hand it is clear, particularly from the data with indicate that PMN depletion, while completely blocking LPS-
DEX and the anti-TNF antibody, that protection against LPS induced lung PMN infiltration, does not ameliorate LPS
toxicity can be achieved without pulmonary oedema, and lethality or pulmonary oedema. These results are in agreement
therefore it is likely that pulmonary oedema is not the main with other studies indicating that neutrophil depletion is not
cause of mortality in LPS-treated mice. Furthermore, these data protective against LPS-induced pulmonary damage [20,211, and
indicate thatTNF is not an essential mediator for LPS-induced that ARDS can occur in humans in the setting of severe
pulmonary oedema. Likewise, since the anti-TNF antibody did neutropenia [321. This lack of a role of PMN in LPS-induced



460 S. Gatti et al.

Table 3. Effect of 5-fluorouracil (5-FU)-induced neutropenia on lipo-
polysaccharide (LPS)-induced mortality, serum TNF, pulmonary mye-

loperoxidase (MPO) and oedema

Treatment Mortality* TNFt MPOT Lung wet/dry ratio§

Control 0 < 0-08 < 0-05 4-45 +0-01
5-FU 0 <0-08 <0-05 4 49+0-01
LPS 100 6-8+0-9 116+ 14 4-65+0-01
5-FU/LPS 100 5 8+1-3 <0.05 4-71+0-07¶

Mice were rendered neutropenic by pretreatment with 5-FU (150
mg/kg intravenously 1 week before the experiment).

* Per cent mortality. Ten mice per group. Mortality was evaluated 7
days after LPS (1 mg/mouse).

t TNF was measured 1 h after LPS (0-6 mg/mouse) and expressed as
ng/ml (mean + s.e.m., 5 mice/group).

I Lung MPO activity was measured 24 h after LPS (0-6 mg/mouse)
and expressed as AOD/min per gram tissue (mean + s.e.m., 7 mice/
group).

§ Wet/dry lung weight ratio was measured 24 h after LPS (0-6 mg/
mouse) (mean + s.e.m., 8 mice/group).

¶ P<0-01 versus control by Student's 1-test.

pulmonary oedema leaves open the possibility that other
effector cells (e.g. monocytes/macrophages) are involved.

A third aspect that was taken into consideration in the
present study is the role of ROI and eicosanoids in the lethality
of LPS and pulmonary oedema. Our results indicate that, while
NAC was less potent than DEX or CPZ in inhibiting TNF
production and protecting against LPS toxicity, it was the only
drug that protected against LPS-induced pulmonary oedema.
One likely interpretation for these results is that NAC not only
acts by inhibiting TNF production, but also inhibits LPS
actions at different sites, possibly involving an oxidative
damage. In fact, amelioration of LPS toxicity by antioxidants
was reported, indicating that ROI are important second
messengers for LPS toxicity [33].

On the other hand, the results obtained with indomethacin
and ibuprofen suggest that, at least in our experimental model,
eicosanoids do not play a major role in either LPS toxicity or
pulmonary oedema. It may be important to note that non-
steroidal anti-inflammatory drugs potentiate cytokine induc-
tion by LPS in vivo [34], indicating that eicosanoids, and
particularly prostaglandins, rather represent feedback regu-
lators of cytokine synthesis, in addition to protecting against
their toxicity [35], thus complicating the interpretation of their
use as tools in studies on cytokine-mediated pathologies.

This study suggests that PMN and TNF do not have an
essential role in LPS-induced pulmonary oedema. Further
studies will be necessary to clarify whether a direct effect of LPS
is involved or if it is mediated by other LPS-induced cytokines.
For instance, IL-I and interferon-gamma (IFN-y) were both
shown to increase endothelial cell permeability in vitro [36,37],
and their role in vivo is clearly worth being considered.

The data with NAC strongly support the hypothesis that
ROI might play a key role in LPS-induced pulmonary oedema.
It will be important to define whether LPS induces an oxidative
stress directly or through the action of cytokines. While TNF
itself has been shown to be toxic by mechanisms involving ROI,
as demonstrated by the protective effect ofantioxidants on TNF

toxicity in vivo and in vitro [38], other cytokines might induce an
oxidative stress, particularly IFN, which was shown to induce
superoxide-generating xanthine oxidase [39,40]. From this and
other studies it seems likely that LPS-induced pulmonary
oedema does not involve a single mediator but is a rather
complex phenomenon, and its understanding is obviously
necessary for a rational therapeutic approach to ARDS.
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