## SUPPLEMENTARY FIGURES

## **Supplementary Figure 1**

(A) DNA-sequence of mini-gp130-ELP: normal print: cDNA coding for the LeB4-signal peptide, bold: cDNA coding for mini-gp130-ELP; Primer and restriction sites are indicated. The ATG start codon is underlined.

**(B) Protein sequence of mini-gp130-ELP.** Grey: LeB4-signal peptide; red: sgp130 domains 1-3; red, cursive: amino acid sequence determined by Edman-degradation of the mature purified mini-gp130-ELP; blue: c-myc-tag; green: 100 repeats of ELP; brown: ER-retention-signal.

## **Supplementary Figure 2**

### Protein stability of purified mini-gp130-ELP at 37°C and 4°C.

(A) 1 μg purified mini-gp130-ELP was diluted in 1 ml PBS and incubated for 48 h at 37°C. Aliquots of originally 10 ng mini-gp130-ELP were separated by SDS/PAGE and blotted onto a PVDF membrane. Proteins were detected with the c-myc specific antibody 9E10 and visualized by ECL detection. Lane 1+2: 0 h; lane 3+4: 12 h; lane 5+6: 24 h; Lane 7+8: 48 h.
(B) 1 μg purified mini-gp130-ELP was diluted in 1 ml PBS and incubated for 26 d at 4°C. Aliquots of originally 10 ng mini-gp130-ELP were separated by SDS/PAGE and blotted onto a PVDF membrane. Proteins were detected with a c-myc specific antibody and visualized by ECL detection. Lane 1: 0 d; lane 2: 7 d; lane 3: 19 d; Lane 4: 26 d.

### **Supplementary Figure 3**

### Expression of sgp130-variants in transgenic tobacco.

Leaves of transgenic lines were extracted in a mortar under liquid nitrogen in 50 mM Tris-HCl, 200 mM NaCl, 5 mM EDTA, 0.1% Tween 20, pH 8.0. The homogenate was centrifuged for 5 min at 4°C and 16,000 g. Proteins were separated on a 10% SDS polyacrylamide gel, blotted and c-myc-tag containing proteins were detected by Western blotting and ECL.

(A) Lane 1: 40 µg extract of sgp130Fc-ELP transgenic tobacco plants; lane 2: 40 µg extract of sgp130Fc transgenic tobacco plants; lane 3: 40 ng c-myc-tagged scFv control protein. M: molecular mass marker (kDa).

(**B**) Lane 1: 5 µg extract of mini-gp130-ELP transgenic tobacco plants; lane 2: 5 ng control protein; lane 3: 10 ng c-myc-tagged single chain Fv control protein; lane 4: 5 µg extract of mini-gp130-ELP transgenic tobacco plants. M: molecular mass marker (kDa).

## Supplementary Figure 4 Calibration of size exclusion chromatography.

(A) For calibration the high molecular mass standard from Amersham Pharmacia Biotech was used. Peak 1: Thyroglobin 669 kD; Peak 2: Ferritin 490 kDa; Peak 3: Katalase 232 kDa; Peak 4: Aldolase 158 kDa.

(B) The known molecular masses of the purchased standard proteins and their respective elution volumes were subject to linear regression.

## Supplementary Figure 5 Absorption spectra of pure mini-gp130-ELP

(A) The absorption spectrum of purified mini-gp130-ELP was recorded in the range of 240-320 nm.

**(B)** The protein concentration of purified mini-gp130-ELP (after inverse transition cycling and size exclusion chromatography) was calculated as indicated from the absorption at 280 nm.

1 ATGGCTTCCA AACCTTTTCT ATCTTTGCTT TCACTTTCCT TGCTTCTCTT

## Α

Primer: 5´gp130-∆signal

|     | A          | <i>f</i> /111 |            |            |            |
|-----|------------|---------------|------------|------------|------------|
| 51  | TACAAGCACA | TGTTTAGCAG    | AGCTGCTGGA | TCCTTGCGGC | TATATCTCCC |
| 101 | CTGAGTCTCC | TGTGGTGCAG    | CTGCATTCTA | ACTTCACCGC | CGTGTGTGTG |
| 151 | CTGAAGGAAA | AGTGCATGGA    | CTACTTCCAC | GTGAACGCCA | ACTACATCGT |
| 201 | GTGGAAAACC | AACCACTTCA    | CCATCCCCAA | GGAGCAGTAC | ACCATCATCA |
| 251 | ACCGGACCGC | TTCTTCTGTG    | ACCTTCACCG | ATATCGCCTC | CCTGAATATC |
| 301 | CAGCTGACCT | GCAACATCCT    | GACCTTTGGA | CAGCTGGAGC | AGAATGTGTA |
| 351 | CGGCATCACC | ATCATCTCTG    | GCCTGCCTCC | AGAGAAGCCT | AAGAACCTGT |
| 401 | CCTGCATCGT | GAATGAGGGC    | AAGAAGATGA | GGTGTGAGTG | GGATGGCGGC |
| 451 | AGAGAGACAC | ATCTGGAGAC    | CAACTTCACC | CTGAAGTCTG | AGTGGGCCAC |
| 501 | CCACAAGTTT | GCCGACTGCA    | AGGCCAAGAG | AGATACCCCT | ACCTCTTGCA |
| 551 | CCGTGGACTA | CTCCACCGTG    | TACTTCGTGA | ACATCGAGGT | GTGGGTGGAG |
| 601 | GCTGAGAATG | CTCTGGGCAA    | GGTGACCTCT | GACCACATCA | ACTTCGACCC |
| 651 | CGTGTACAAG | GTGAAGCCTA    | ACCCTCCTCA | CAACCTGTCC | GTGATCAACT |
| 701 | CTGAGGAGCT | GTCCTCTATC    | CTGAAGCTGA | CCTGGACCAA | CCCTTCCATC |
| 751 | AAGTCCGTGA | TCATCCTGAA    | GTACAACATC | CAGTACAGGA | CCAAGGATGC |
| 801 | TTCTACCTGG | TCTCAGATCC    | CTCCTGAGGA | TACCGCTTCC | ACCAGATCCA |
| 851 | GCTTCACAGT | GCAGGACCTG    | AAGCCTTTTA | CCGAGTACGT | GTTCAGGATC |
| 901 | CGGTGCATGA | AGGAGGATGG    | CAAGGGCTAT | TGGTCTGACT | GGTCTGAGGA |
|     |            |               |            |            |            |

Primer: 3´gp130-Nael

#### Nael

►

| 951  | GGCTTCTGGC | ATCACCTACG | AGGACAGAGC | CGGCGGACAA | GCGGCCGCAG |
|------|------------|------------|------------|------------|------------|
| 1001 | AACAAAAACT | CATCTCAGAA | GAGGATCTGA | ATGGGGCCGT | CGAGATGGGC |
| 1051 | CACGGCGTGG | GTGTTCCGGG | CGTGGGTGTT | CCGGGTGGCG | GTGTGCCGGG |
| 1101 | CGCAGGTGTT | CCTGGTGTAG | GTGTGCCGGG | TGTTGGTGTG | CCGGGTGTTG |
| 1151 | GTGTACCAGG | TGGCGGTGTT | CCGGGTGCAG | GCGTTCCGGG | TGGCGGTGTG |
| 1201 | CCGGGCGTGG | GTGTTCCGGG | CGTGGGTGTT | CCGGGTGGCG | GTGTGCCGGG |
| 1251 | CGCAGGTGTT | CCTGGTGTAG | GTGTGCCGGG | TGTTGGTGTG | CCGGGTGTTG |
| 1301 | GTGTACCAGG | TGGCGGTGTT | CCGGGTGCAG | GCGTTCCGGG | TGGCGGTGTG |
| 1351 | CCGGGCGTGG | GTGTTCCGGG | CGTGGGTGTT | CCGGGTGGCG | GTGTGCCGGG |
| 1401 | CGCAGGTGTT | CCTGGTGTAG | GTGTGCCGGG | TGTTGGTGTG | CCGGGTGTTG |
| 1451 | GTGTACCAGG | TGGCGGTGTT | CCGGGTGCAG | GCGTTCCGGG | TGGCGGTGTG |
| 1501 | CCGGGCGTGG | GTGTTCCGGG | CGTGGGTGTT | CCGGGTGGCG | GTGTGCCGGG |
| 1551 | CGCAGGTGTT | CCTGGTGTAG | GTGTGCCGGG | TGTTGGTGTG | CCGGGTGTTG |
| 1601 | GTGTACCAGG | TGGCGGTGTT | CCGGGTGCAG | GCGTTCCGGG | TGGCGGTGTG |
| 1651 | CCGGGCGTGG | GTGTTCCGGG | CGTGGGTGTT | CCGGGTGGCG | GTGTGCCGGG |
| 1701 | CGCAGGTGTT | CCTGGTGTAG | GTGTGCCGGG | TGTTGGTGTG | CCGGGTGTTG |
| 1751 | GTGTACCAGG | TGGCGGTGTT | CCGGGTGCAG | GCGTTCCGGG | TGGCGGTGTG |
| 1801 | CCGGGCGTGG | GTGTTCCGGG | CGTGGGTGTT | CCGGGTGGCG | GTGTGCCGGG |
| 1851 | CGCAGGTGTT | CCTGGTGTAG | GTGTGCCGGG | TGTTGGTGTG | CCGGGTGTTG |
| 1901 | GTGTACCAGG | TGGCGGTGTT | CCGGGTGCAG | GCGTTCCGGG | TGGCGGTGTG |
| 1951 | CCGGGCGTGG | GTGTTCCGGG | CGTGGGTGTT | CCGGGTGGCG | GTGTGCCGGG |
| 2001 | CGCAGGTGTT | CCTGGTGTAG | GTGTGCCGGG | TGTTGGTGTG | CCGGGTGTTG |
| 2051 | GTGTACCAGG | TGGCGGTGTT | CCGGGTGCAG | GCGTTCCGGG | TGGCGGTGTG |
| 2101 | CCGGGCGTGG | GTGTTCCGGG | CGTGGGTGTT | CCGGGTGGCG | GTGTGCCGGG |
| 2151 | CGCAGGTGTT | CCTGGTGTAG | GTGTGCCGGG | TGTTGGTGTG | CCGGGTGTTG |
| 2201 | GTGTACCAGG | TGGCGGTGTT | CCGGGTGCAG | GCGTTCCGGG | TGGCGGTGTG |
| 2251 | CCGGGCGTGG | GTGTTCCGGG | CGTGGGTGTT | CCGGGTGGCG | GTGTGCCGGG |
| 2301 | CGCAGGTGTT | CCTGGTGTAG | GTGTGCCGGG | TGTTGGTGTG | CCGGGTGTTG |
| 2351 | GTGTACCAGG | TGGCGGTGTT | CCGGGTGCAG | GCGTTCCGGG | TGGCGGTGTG |
| 2401 | CCGGGCGTGG | GTGTTCCGGG | CGTGGGTGTT | CCGGGTGGCG | GTGTGCCGGG |
| 2451 | CGCAGGTGTT | CCTGGTGTAG | GTGTGCCGGG | TGTTGGTGTG | CCGGGTGTTG |
| 2501 | GTGTACCAGG | TGGCGGTGTT | CCGGGTGCAG | GCGTTCCGGG | TGGCGGTGTG |
| 2551 | CCGGGCGGGC | TGGCGGCCGC | AGAACCCAAA | GACGAACTCT | AG         |

## В

cleavage site of the signal peptide

#### LeB4-signal peptide sgp130-ELP MASKPFLSLLSLSLLLFTSTCLAELLDPCGYISPESPVVQLHSNFTAVCV 50 LKEKCMDYFHVNANYIVWKTNHFTIPKEQYTIINRTASSVTFTDIASLNI 100 QLTCNILTFGQLEQNVYGITIISGLPPEKPKNLSCIVNEGKKMRCEWDGG 150 RETHLETNFTLKSEWATHKFADCKAKRDTPTSCTVDYSTVYFVNIEVWVE 200 AENALGKVTSDHINFDPVYKVKPNPPHNLSVINSEELSSILKLTWTNPSI 250 KSVIILKYNIQYRTKDASTWSQIPPEDTASTRSSFTVQDLKPFTEYVFRI 300 RCMKEDGKGYWSDWSEEASGITYEDRAGGQAAAEQKLISEEDLNGAVEMG 350 HGVGVPGVGVPGGGVPGAGVPGVGVGVGVGVGVGVGGGVPGAGVPGGGV 400 PGVGVPGVGVPGGGVPGAGVPGVGVPGVGVPGVGVPGGGVPGAGVPGGGV 450 PGVGVPGVGVPGGGVPGAGVPGVGVPGVGVPGVGVPGGGVPGAGVPGGGV 500 PGVGVPGVGVPGGGVPGAGVPGVGVGVGVGVGVGVGGGVPGAGVPGGGV 550 PGVGVPGVGVPGGGVPGAGVPGVGVPGVGVPGVGVPGGGVPGAGVPGGGV 600 PGVGVPGVGVPGGGVPGAGVPGVGVPGVGVPGVGVPGGGVPGAGVPGGGV 650 PGVGVPGVGVPGGGVPGAGVPGVGVPGVGVPGVGVPGGGVPGAGVPGGGV 700 PGVGVPGVGVPGGGVPGAGVPGVGVPGVGVPGVGVPGGGVPGAGVPGGGV 750 PGVGVPGVGVPGGGVPGAGVPGVGVPGVGVPGVGVPGGGVPGAGVPGGGV 800 PGVGVPGVGVPGGGVPGAGVPGVGVGVGVGVGVGVGGGVPGAGVPGGGV 850 PGGLAAAEPKDEL\*

Α

1 2 3 4 5 6 7 8



В







Α





В

