
1

Supporting Methods

Quantification of Protein Half-Lives in the Budding Yeast Proteome

1. Cell Growth and Cycloheximide Treatment
Three parallel cultures (1.7 mL) of each TAP-tagged strain were grown in

separate 96-well plates in YEPD medium to log phase (OD600 ~ 0.5) at 300C.
Cycloheximide (Sigma), a translation inhibitor, was added to a final concentration
of 35 µg/mL to terminate protein synthesis (1,2). This concentration of
cycloheximide was selected to be high enough to inhibit protein synthesis without
causing significant growth defects during the course of the experiment (data not
shown).  We observe a ~10% decrease in cell growth 30 min following
cycloheximide treatment.  Following cycloheximide treatment, equal numbers of
cells (as determined by OD600 units) were collected at 0, 15 and 45 min by
centrifugation at 40C and flash-frozen in liquid nitrogen.

2. Extract Preparation and Western Blot analysis
Cell lysates were prepared as described in ref. 3, with the following minor

modifications.  Pelleted cells were lysed by addition of 60 µL of hot SDS-PAGE
sample buffer followed by boiling for 5 min.  Lysed cells were centrifuged, the
supernatant extracts were reordered into fresh 96-well plates such that the three
time points corresponding to a given TAP-tagged strain were located adjacent to
each other, and lysates were frozen at -800C.  14 µL aliquots of the lysates were
loaded onto 26 well, pre-cast 4-15% gradient acrylamide Tris-HCl Criterion gels
(Bio-Rad) such that the three time points corresponding to a given TAP-tagged
strain were run in adjacent lanes of the same gel, thereby avoiding errors
introduced by gel-to-gel variability in the Western analysis.  A pre-stained
molecular weight ladder (Bio Rad) and “Magic Mark” (Invitrogen) molecular
weight standards were included on each gel.  The gels were run at 150 Volts for
100 min and transferred onto nitrocellulose membranes using the Trans-Blot cell
(Bio Rad) at 1200 mA for 90 min in 20 mM NaPO4, pH 6.8 buffer.  The blots were
probed using affinity purified rabbit polyclonal antibody raised against the
calmodulin binding peptide (1:5,000 dilution; Open Biosystems).  This antibody
detects the TAP tag with great sensitivity as it can bind CBP as well as the
protein A segment of the tag.  The blots were subsequently probed with
horseradish peroxidase (HRP) conjugated goat secondary antibody (1:20,000
dilution; Jackson ImmunoResearch) against rabbit IgG and developed with
SuperSignal West Femto Maximum Sensitivity Substrate ECL (Bio Rad). The
chemiluminescent signals of the bands corresponding to the TAP-tagged
proteins were detected at three exposure times (30 sec, 1 min. and 5 min) using
a CCD camera (FluorChem 8800, Alpha Innotech).

3. Image Analysis and Data Generation
The image analysis is divided into three phases: (i) protein band definition,

(ii) gel exposure selection, and (iii) signal intensity evaluation. During phase (i)
the custom software (QuantiAction) works together with the user to define bands.
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First, the user selects an area of the gel representing a complete time course for
one protein; this selection consists of a rectangular box enclosing all the bands.
Second, the software finds the lane separation points within the user’s selection,
thus defining inner rectangular boxes, each enclosing only one band.  Multiple
exposure times (10 sec, 1 min and 5 min) of gel images were acquired using a
CCD camera in 16-bit gray scale levels.  Longer exposure times were used to
enhance the signal to noise ratio of low abundance proteins while shorter
exposure times ensure that the signal of abundant proteins does not reach
saturation.

During phase (ii), for each protein we select the longest exposure in which
none of the bands in the time course has reached saturation and use this for half-
life calculations.  We define saturation as the number of pixels within a band
whose value is on or above the maximum empirical pixel value that the camera
can generate.

During phase (iii) the band selection information is used on the exposure
chosen during phase (ii) to measure the band signals.  Background correction is
estimated based on the assumption that at least one of the upper or lower lines
of the band’s bounding box lie in the background.  The background signal level is
calculated as the mean of the pixels in both (if upper and lower have similar pixel
values) or just one (the line with lower pixel values) of the upper and lower lines
of the bounding box.  The background level is subtracted from each pixel inside
the bounding box. The band’s signal is then defined as the sum of all pixels
inside the bounding box whose value is greater than 0.  A standard linear least
squares fit method is then used to estimate the degradation rate constant.
Finally, all the data entered by the user or generated by the software, including
the band selection box coordinates, is then saved in the database for later
retrieval and analysis.

4. First-Order Decay Kinetics of Protein Degradation
To determine if, on average, protein degradation follows first order decay

kinetics, we performed the following analysis:
1. Normalize the background corrected intensity of each time course with

respect to the intensity of time-point 0 via the following

formula: ( ) ( )
( )0n
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I t

I
= . This normalization is necessary when comparing

intensities measured on different Western blots.
2. Average the normalized intensities for each time point over all protein

time-courses using the following formula: ( ) ( )
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⎡ ⎤= ⎣ ⎦∑ , where N

is the number of proteins for which we have obtained measurements and
( )i

nI t  is the normalized intensity of the i protein.
3. Fit a first order exponential by using the linear least square fit method on

the averaged log-transformed normalized intensities, ( )nI t ,.
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4. Determine the significance of the correlation coefficient of the fitted
exponential.

We observed Pearson R = -0.96, P < 0.09. The significance of the correlation is
influenced (negatively) by the small number of data points used to fit the line
however, this correlation supports, at the 10% significance level, the hypothesis
that, on average, the protein degradation follows first order decay kinetics.

5. Measurement Error Analysis
We assumed that our half life estimates are the product of two variables:

(i) protein half-life (T1/2) and (ii) a log-normally distributed multiplicative (additive
in log scale) error factor (ε) with mean, µln(ε) = 0 and unknown variance.  Given a
random set of replicate half life measurements (T1, T2), we show that the
multiplicative error factor is log-normally distributed by plotting the distribution of
ln(T1/T2) and observing that it is approximately normal (Fig. 6) and is only weakly
dependent in the absolute value of T1 or T2 (data not shown).  We estimate the
variance, in log scale, of the multiplicative error term, ln(ε) as half the variance of
the random variable ln(T1/T2).  The variance of the error term reflects the
anticipated error in our measurements.  To compare this internal experimental
error to systematic errors resulting from using TAP tags or from the use of
cycloheximide, we computed Kolmogorov-Smirnov (KS) statistics on the
distributions of differences between replicate experiments and the distribution of
differences between our measurements and literature half lives or half lives
derived using specific antibodies.

6. Dilution Series
To estimate the dynamic range and the linearity limit of our Western

blotting technique, we carried out dilution experiments.  Using purified protein,
TAP-tagged Escherichia coli initiation factor A (INFA) (3), we performed serial

dilutions with dilution factor }{0.5,   0.25,   0.125X ∈  where 
1

1 t

t

PX
P−

= − . Here we

describe our results and more details for X = 0.125.
Note that this experiment is different from other controls because purified

protein (spiked into wild type yeast extract) is used and the errors involved in
protein extraction steps are eliminated.  This experiment is primarily designed to
measure the sensitivity and resolution of Western blots used for quantitative
intensity measurement.

We start with 6.6234 fmol of INFA and do 7
8

dilutions in 21 sequential

steps down to 0.4011 fmol. We use the following formula for converting from fmol
to molecules/cell:

1.7 mL 7  4 10 cells
mL

× ×
OD×

0.5 OD×
14 mL

×
60 mL

23 176.023 10 1.31717 10mole cells mole
molec molec

− − ×
× × = ×

1 75 moluculesfmole
cell

=
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Given that we could detect 0.4011 fmol, and using the above formula, the
dilution range translates into 30-500 molecules/cell, or the least abundant 14% of
the yeast proteome for which a valid abundance measurement is available. Note
that the lowest reported abundance is ~50 molecules per cell (3).

To determine whether our measurement technique can detect the 7
8

dilution, we analyzed the background-corrected intensity measurements
generated by QuantiAction.  We compared the observed and the input dilution
factors.  To estimate the observed dilution factor we initially log transformed the
background-corrected intensity measurements and then used linear least
squares fit to estimate the correlation between log protein intensity and dilution
number.  We observed a correlation R = 0.9822, P < 2.9e-15, the observed
dilution factor was 0.1184 with standard error 0.00385 (Table 9 and Fig. 8).
Since the 95% confidence interval of the correlation (0.1108 – 0.1262) contains
the input dilution factor, 0.125, we conclude that our measurement technique can

reliably detect a 7
8

 signal change.  Given that our most reliable data points are

separated by 15 min (time point 0 and 15 min), using these two points alone to
calculate half-life, this signal change would translate into a half-life of
approximately 78 minutes. Therefore, 78 minutes would be the maximum
detectable half-life under ideal conditions; however given that in our experiment
there is an extra step (of cell lysis) before the Western procedure, we
conservatively cap the half-lives at 60 min.

7. Clustering
We combined information on three parameters of proteins: (i) protein

production rate (mRNA abundance x ribosome density), (ii) protein abundance
and (iii) protein half-life.  We ranked the proteins according to each of the three
parameters and assigned each protein a score:  positive, if they are in the upper
40 percentile for a given parameter; negative if they are in the lower 40
percentile; or undefined if they are in the middle 20 percentile.  Proteins that were
classified either as positive or negative for all three parameters were grouped
into clusters according to their behavior for the three parameters.  This analysis
yielded eight disjoint cluster configurations (+++, ++-, +--, ---, etc); two of these
clusters contain the majority of the proteins (++- and --+).  We then computed GO
functional enrichments for each cluster using the TANGO program (4) fully
correcting for multiple testing.

8. Physical Attributes Analysis
To determine whether there exists any relationship between protein half-

life and primary sequence properties, we correlated the half-life versus all amino
acid densities.  The density of each amino acid is computed as the number of
that specific amino acid divided by the length of the protein.  This analysis
reveals a coprrelation between higher densities of serine and shorter half lives,
while higher densities of valine correlate with longer half-lives (Table 6 and Fig.
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7A).  We also observed a significant negative correlation between protein half-life
and protein length (Spearman R = -0.23, P < 3e-38, Fig. 7B).

9.   Protein Metabolism at Steady State
To visualized the dependencies among protein abundance, production,

and degradation (Fig. 5) we used a bin size of 0.64 for the log production rate
and 1.6 for the log degradation rate.

The rate of change in protein concentration can be modeled using the
following differential equation:

( ) ( ) ( )( ) ( )
. dP t

P t M t R P t D V
dt

= = ∗ − ∗ + (1)

where P is the protein concentration, M is the absolute mRNA concentration, R is
the rate of translation per mRNA molecule (corresponding to the ribosome
density), D is the protein degradation rate constant, and V is the growth rate
(volume increase factor per unit time).  At steady state the protein concentration
is constant over time or, mathematically, at t=0:

 (0) (0) (0) ( )
.

P M R P D V= ∗ − ∗ +     

 ( ) ( )0
0

M R
P

D V
∗

=
+

(2)

    ( )( ) ( )( ) ( ) ( )log 0 log 0 log logP M R D V= + − +
To test the compatibility of the various data sources and their adequacy for
quantitative modeling we used experimentally determined data for P, M, R and D.

We set 
1
902 0.0077= =V , since the doubling time is approximately 90 min.  We

transformed all data sources to a log scale and computed the Spearman and
Pearson correlation coefficient for log (P) vs. a) log (M) + log(R) and b) log (M) +
log(R) – log (D + V).  For this analysis the M and R-values were obtained from
Beyer et al. (that data set gave slightly more accurate results than the other
datasets).  The V parameter (the growth rate) was important for obtaining a valid
correlation and dominated D for stable proteins.

To test the significance of the contribution of the degradation rate constant
to protein abundance determination we performed residual analysis (5) using the
following equation:
  ( ) ( ) ( )( )log log logG P a M R b= − ∗ + +⎡ ⎤⎣ ⎦  

where log (P) is the measured protein abundance and ( ) ( )( )log loga M R b∗ + +⎡ ⎤⎣ ⎦
is the predicted protein abundance as defined without using the degradation
term.  We then computed the Spearman correlation between G and log (D + V).

10.   A Model Relating Protein Half-Life and Transcriptional Control
Within Groups of Co-regulated Genes
As described in the main text, we are analyzing the transcriptional

regulation of a set of co-regulated genes, assuming the cell tries to generate a
coordinated response at the protein level by balancing differences in the
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degradation rates using variable transcriptional control. If ( )tπ  represents the
common fold change in protein concentrations for all the proteins in a co-
regulated module, we derive the following constraint on the protein abundances:

( )(0) ( )( ) (0) ( ) ( )
( ) ( ) ( ) ( )

. .. .
P tP t P t t

P t P t P t t
π π π

π
∗ ∗

= = =  (3)

We will use equations 1 and 2 to transform this constraint into a relationship
between M (t) (expression) and D (protein degradation).  To characterize this
relationship, we assume that the translation rate and degradation rate constant
for each protein are not regulated and remain constant throughout the response
to a new condition or perturbation.  We first use the eq. 1 to rewrite eq. 3 in terms
of M, D and R, as follows:

( ) ( )( )
( )

( )
( )

.
M t R P t D VP t

P t P t
∗ − +

=

Then substituting ( ) (0) ( )P t P tπ= ∗ we have:

( )
( ) ( ) ( )( )

( ) 0

.
M t RP t D V

P t P tπ
∗

= − +

We next use eq. 2 to substitute ( ) ( )0
0

M R
P

D V
∗

=
+

and obtain:

( ) ( )( )
( )

.
D V M t RP t

P t
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=
( ) ( )0M t Rπ∗ ∗

( ) ( ) ( )
( ) ( )

1
0
M t

D V D V
M tπ

⎛ ⎞
− + = + −⎜ ⎟⎜ ⎟∗⎝ ⎠

Using equation 3 we can substitute ( )
( )

.
P t
P t

 with ( )
( )

.
t
t

π
π

, and therefore write the

expression fold change ( )
( )0

M t
M

in terms of ( )tπ  and D as follows:

( )
( ) ( ) ( )( )
0

.
M t t t
M D V

π π= +
+

(4)

As discussed in the main text, this equation predicts the correlation between
expression fold change and protein degradation rates, suggesting negative and
positive correlations for induced and repressed modules, respectively.
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