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Electronic Appendix A provides a summary of the functional roles of nuclei within the
reticular formation other than the medial structures which are the focus of the main text.

Electronic Appendix B derives the expected number of synaptic connections for the pro-
jection and inter-neurons given a parameter set. These values form the basis of the pruning
model algorithm.

Electronic Appendix C reports further values of interest from the small-world analysis of
the anatomical models.

Electronic Appendix D details the results of fitting curves to the probability distribution
functions corresponding to the cumulative degree distributions fits reported in the main
text.

Electronic Appendix E considers the plausibility of ever finding a true scale-free network
within neural tissue.

Electronic Appendix F discusses the implications of bounds from existing biological data
on the parameter-dependency of the small-world topology.

A Neuroanatomy: Functional roles of the constituent
fields and nuclei

Within the rostral-most third of the reticular formation, the cholinergic nuclei form the
so-called mesencephalic locomotor region (Whelan, 1996) and are part of the substrate
for REM sleep control (Rechtschaffen & Siegel, 2000). The medial field in this area
forms part of the oculomotor circuit which also incorporates parts of the rostral (or
oral) pons (Moschovakis, Scudder, & Highstein, 1996). Above the oral pons lies the
norepinephrinergic nuclei which are thought to modulate general arousal and attention via
cortical projections (Usher, Cohen, Servan-Schreiber, Rajkowski, & Aston-Jones, 1999).
Continuing caudally, the midline of the pons and medulla contains the serotonergic raphe
nuclei, also thought to function as a general arousal system (Aghajanian & Sanders-Bush,
2002). Finally, the lateral RF regions of the pons and medulla contain fields which are
specialised as cerebellar input-output arrays (Brodal & Bjaalie, 1992), as substrates for
specific motor pathways (e.g. chewing (Lund, Kolta, Westberg, & Scott, 1998)) and,
classically, as integrating centres for collaterals of spinal-originating ascending sensory
pathways (Scheibel, 1984).
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B Expected numbers of connections in the anatomi-
cal models

The pruning model algorithm runs until it reaches a target value of remaining number of
synapses, which is computed according to the expected synapse totals for a given target
parameter set: ¢, is the target value of P(p) and ¢, is the target value of P(l). Expected
synapse total E(Ny) = E(N,) + E(NN;) is the sum of expected totals of projection E(IV,)
and inter-neuron E(N;) originating synapses. For both collateral variants, F(V;) is the

o E(N;) =n"(n—1)N:t, (1)

where n~ = n(1 — p) is the number of inter-neurons in a cluster (remembering that n is
the total number of neurons in a cluster).

As there are two collateral variants, there are two definitions of E(N,). For the
spatially uniform variant, this is straightforward:

E(N,) = N.n" (N, —1) P(c) t, n, (2)

where n? = n p is the number of projection neurons in a cluster. However, for the
distance-dependent variant, the expected number of cluster contacts per projection neu-
ron is dependent on the position of its parent cluster. Thus, we know that for a given
projection neuron in cluster ¢, its expected number of cluster contacts E(ch) is

E(Ny) =2 (iz“) + ’"Z“ [ (3)

i=dmin+1
where d,.;;, and d, 4. are
dmin :min(Nc_c7 (Nc_ 1) - (NC_C)) (4)
dmam :maX<Nc_Cu (NC_ 1) - (NC_C)) (5)

in words, d,;, is the minimum and d,,,4, is the maximum number of intervening clusters
to either end of the model from cluster c¢. Thus, E(N,) for the distance-dependent model
is given by

E(N,) =n? (ZC E(N;)) ty n. (6)

C Small-world topologies of the stochastic model

By ranking parameter combinations by 5., the same 6 combinations appear in descend-

ing order for both the distance-dependent and spatially-uniform collateral versions (see
Table 1).



Table 1: First six parameter combinations ordered by maximum S for spatially-uniform
(U) and distance-dependent (D) collateral probability models.

p P() Pl S, S

max max

0.7 09 0.1 4.6612 10.0513
0.7 05 0.1 3.1197  6.9934
0.8 09 01 2.6488  5.8910
0.8 05 0.1 1.9645  4.2939
0.7 09 05 1.6500  3.4214
09 09 01 1.4694  3.0680

D Degree distribution curve-fitting

We used the curve equations and initial conditions given in Table 2. As is common prac-
tice, these were fitted to the inverted cumulative degree distribution 1 — F(3) (we retain
the F'() term in the main text to avoid unnecessary confusion) using the MatLab func-
tion Isqcurvefit. The inverted distribution was used in line with previous work (Amaral,
Scala, Barthelemy, & Stanley, 2000; Strogatz, 2001): this ensures, among other things,
that 7 > 0 as required. Before fitting the exponential curve, all values in the data vector x
were shifted by the first element(x = x — 1) so that the x; = 0, and thus the exponential
fit would start at 1.

Table 2: Fitted curves to the degree distribution and initial search parameters. Data
point is x.

distribution initial parameters
exponential e A=2

power law ax~ " a=1,171=2
truncated power law az Te M a=1,T=\A=2
Gaussian 1—(0.5(1 +erf>=5)) p=mean(z),0 =1

The curve-fits were quantitatively compared using Akaike’s Information Criterion (cor-
rected). The basic form is calculated according to

AIC = Nn (%) +2K (7)

where N is the number of data points, SS is the sum-of-squares resulting from the curve
fit, and K is the number of parameters in the curve plus one (so, for example, K = 2 for
the exponential curve). The corrected version adds a term to account for situations in

which N — K:
2K(K +1)

—_— 8

N-K-1 (8)
We also fitted curves to the degree distribution P(3) of the stochastic model, primarily

to investigate the poor fits of the curves to the output F(/3) illustrated in main text. The

AIC. = AIC +



curve family used included exponential, Gaussian, double Gaussian, quadratic, and power
law fits (see Table 3). A quadratic fit was included to fit P(3) that the other curves could
not.

Table 3: Fitted curves to the degree distribution P(/) and initial search parameters. G,
and G4 refer to separately parameterised Gaussians G.

distribution initial parameters
exponential e a=\=2

power law ax " a=1717=2

Gaussian G = (1/o+/(27))exp(—(z — p)?/(202)) p = mean(z),o =1

double Gaussian Gy + Go p1 = min(z), g = max(x),0; = o9 =1
quadratic a+ br + ca? a=b=c=1

Most of the curve fits were Gaussian or double Gaussian (Table 4) - examples are
shown in Figure 1. The double Gaussian fits corresponded to the cumulative degree
distributions F(3) poorly fitted by the tested curves, as illustrated in the main text.
There is little evidence to suggest that a Gaussian-based distribution of connectivity is
not to be expected for neural networks, but we acknowledge that the work on large-scale
distributions of axonal or synaptic connectivity is sparse. The observed bimodal (double
Gaussian) distributions are due to the different distributions of connectivity for each of
the two neuron classes (inter- and projection-neurons). Numerous power law best-fits
to P(f) were found, which taken at face value would imply the presence of a scale-free
topology. However, the corresponding distributions were not characteristically heavy-
tailed (example in Figure 1c) and the corresponding F(3) were best-fit by a Gaussian.
We use this result to sound a cautionary note to the reader: despite the generally used,
loose definition of a scale-free network, a power-law best fit to a degree distribution is
not sufficient evidence to conclude that a network is scale-free (see Li, Alderson, Tanaka,
Doyle, and Willinger (2004) for a more rigorous treatment).

Table 4: Percentage best-fit of each curve-type to the P(f) of input, output, and undi-
rected links in the spatially-uniform and distance-dependent collateral versions of the
stochastic model.

spatially-uniform distance-dependent
Curve type inputs outputs undirected inputs outputs undirected
exponential 0.0 2.0 0.0 0.0 0.5 0.0
power law 0.0 22.2 114 0.0 20.7 0.0
Gaussian 99.6 24.4 50.4 98.1 26.4 73.8
double Gaussian 0.4 46.9 11.6 1.9 42.0 1.0
quadratic 0.0 4.5 26.6 0.0 10.4 25.2

These results have thrown up an interesting general question about scale-free topolo-
gies: is it possible for a network to be scale-free in one direction only? As we found,
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Figure 1: Best-fit curves to degree distribution P(/3), all from the stochastic model. (a)
An example of a double Gaussian fit to an output distribution, suggesting the presence of
two independent populations within the model. The double Gaussian fits to P(J3) seem
to correspond to the poorly fitting curves of F(3), as illustrated in the main text. (b) A
Gaussian fit to an input distribution from the distance-dependent collateral model - again
the dominant best-fit of the tested model curves. (c¢) Log-log plot showing that the output
distribution from the same model instantiation as (b) was best-fit by a power-law. The fit
is evidently poor, and the corresponding F(3) was best-fit by a Gaussian. Nevertheless,
the input and output distributions of this particular model differ considerably.

based on the quantitative fit results alone, some output P((3) were best fit by different
curves to the corresponding input and undirected distributions. Compare the input and
output distributions of Figure 1b, ¢ - these are taken from the same instantiation of the
spatially-uniform collateral version of the stochastic model. They clearly show that the
P(3)s are different (as are the corresponding F'((3)s). As noted by Newman, Strogatz,
and Watts (2001) input and output degree distributions of networks are often assumed
to be correlated, but there is no a priori requirement that this is the necessary. A ran-
domly chosen node in a network has probability p;; that it has a particular in-degree ¢ and
out-degree j: if the underlying physical process that generates the connection between
nodes is independent of the input-output relationship (if the number of links into a node
does not effect the number of links coming out, and vice-versa) then the separate distrib-
utions are independent and therefore p;; = p;p;. This in turn would imply that that the
undirected distribution would tend towards a Gaussian (or multiple Gaussian). Thus, in
general it is possible that input and output degree distributions are not the same, and
therefore that a network could be scale-free in one direction only.

E Power-law degree distributions in neural tissue

It has not escaped our notice that the concepts of over-growth and pruning of connectivity
could form the basis for a general inverse model of scale-free network generation (Barabasi
& Albert, 1999). The general properties of neural development have similarities to the
truncated power-law distribution algorithm proposed by Amaral et al. (2000). They
suggest that network growth is limited by “aging”, where a node becomes inactive after



a set period, and “cost”, where a node’s ability to support links is physically limited.
Both properties apply to neural network development: initial axonal growth and synapse
formation is time-limited; the quantity of connections a neuron can develop and sustain
is physically limited by the metabolic cost of development, maintenance, and signalling
(Cline, 2003; Laughlin & Sejnowski, 2003). The intriguing parallels suggest that it is
possible a truncated scale-free topology exists within the nervous system of some species
- at some level of neural organisation (neuronal, areal, and so on) - and thus it was not
improbable that the medial RF had such a topology.

It is an open question as to whether or not a scale-free network can be developed within
neural tissue. The limitations of neural development noted above would suggest that only
partially scale-free topologies would be possible. Moreover, although the existence of
super-connected hubs would make neural tissue more resistant to random damage - by
maintaining network connectivity - the death of such neurons would be catastrophic, and
any targeted disease would be highly effective. Such neurons or neuron populations (in
particular) should be revealed by systematic anterograde or retrograde staining studies,
due to the sheer number of connections they maintain, and would thus be amenable to
discovery. On the one hand, as it appears that no such super-connected neurons are
reported in the neuroscience literature, it is tempting to conclude that the characteristic
hubs of scale-free networks do not exist in neural tissue. On the other hand, given the
minute proportion of neurons stained in a typical study compared to the amount in the
originating structure, the sampling bias that results in only certain neuron classes being
stained within a structure, and the inconsistent uptake of the staining agent, it is possible
that either: (a) there has been insufficient sampling to consistently reveal super-connected
neurons or (b) that most reported stained neurons are super-connected, which is why they
stained consistently in the first place.

F Dependence of the small-world topology on con-
nection probabilities

The extent to which the medial RF conforms to a small-world topology is partly dependent
upon the determination of synaptic connection probabilities (we discuss its dependence
on the type of axon collateral distribution and on the validity of the anatomical models
in the main text). There are no existing direct estimates of connection probabilities for
the medial RF. Data from mouse cortex (Schuz, 1995) and the neural network of C.
elegans (Albert & Barabasi, 2002) suggests that the probability of connection between
any randomly chosen pair of neurons is p < 0.1 and therefore P(p), P(I) < 0.1. If these
probabilities were applicable to the medial RF, they would rule out a small-world topology
if the combination of stochastic anatomical model and spatially-uniform collaterals were
verified (see Figure 2, main text).

However, extrapolating from these unrelated instances is probably unsafe. The di-
mensions of the projection neuron dendritic tree suggests, rather, that any axon collateral
terminating in a cluster will contact the majority of projection neurons there, and thus
P(p) at least should be higher than this estimate. We can speculate on the relative con-
nectivity from the reviewed data. An absolute maximum of 30% of the cell population
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are GABAergic, and putative inter-neurons, but ~ 45% of the synapses on a giant neuron
are GABAergic with no other main afferent GABAergic source, suggesting that the in-
terneurons are proportionally more densely connected within a cluster than the incoming
projection neurons collaterals. Thus, P(l) > P(p), as required for the most small-world
like combinations of the stochastic model - the pruning model would, of course, also have
a small-world topology if this relationship held.
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