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Appendix A: Numerical Simulations. The system (9-13) in the main text was integrated forward in

time with starting conditions i(0) = 1, ik(0) = 0 for k > 0, I(0) = N−1, Q(0) = 1 − N−1. The tested

parameter sets were:

β ∈ {0.24 , 0.32 , 0.40 , 0.48 , 0.56 , 0.64 , 0.72 , 0.80 , 0.88 , 0.96 , 1.04 , 1.12 , 1.20}

θ ∈ {0.1 , 0.2 , 0.3 , 0.4 , 0.5 , 0.6 , 0.7 , 0.8 , 0.9}

a ∈ {0.01 , 0.02 , 0.03 , 0.06 , 0.09 , 0.12 , 0.15 , 0.20 , 0.30 , 0.40 , 0.50}

N ∈ {103 , 104 , 105 , 106 , 107 , 108 , 109}

µ ∈ {0.001 , 0.002 , 0.003 , 0.004 , 0.005 , 0.006 , 0.007 , 0.008 , 0.009 ,

0.01 , 0.02 , 0.03 , 0.04 , 0.05},

and in all simulations ν = 0.2 and n = 60.

The above parameter ranges indicate that 1 ≤ R0 ≤ 6. However, the effective basic reproduction

ratio of influenza in a host population takes the population immunity into account. In our case, effective

R0 is β(1 − θ)/ν. In the above tested parameter ranges 71% of the parameter sets fall inside the range

1 ≤ β(1− θ)/ν ≤ 3, while 44% of the parameter sets fall in the range 1 ≤ β(1− θ)/ν ≤ 2. This is consistent

with recent opinion of influenza’s low R0 (Mills et al. 2004). Empirical studies necessarily measure the

effective basic reproduction ratio of influenza.

Our parameter ranges yield a total of 13 × 9 × 11 × 7 × 14 = 126, 126 parameter sets, 84,084 of which

had R0-values greater than one. 90 of these parameter sets had epidemic lengths greater than 1000 days —

these parameter sets were discarded. The simulation results can be summarized by a 83, 994 × 10 matrix

where the first five columns are the parameter values β, θ, a, log N , and µ respectively. The last five columns

represent dynamic quantities of interest, namely, 1−Q(tf ), 1−θ−S(tf ), tf , DS, and δ, respectively. We label

the columns from 0 to 9, so that columns 0 to 4 correspond to parameters and columns 5 to 9 correspond

to dynamic quantities. Partial correlation coefficients between a parameter and a dynamic quantity can

be calculated, keeping the remaining four parameters constant. For example, we would denote the partial

correlation coefficient between immunity (θ) and epidemic length (tf ) by

r17·0234,
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and we calculate it using the recursions in Cramér (1945) (pp.305-308). The partial correlations mentioned

in the last paragraph of the results section were calculated as

r59·01234 = −0.15 (+0.21) , r69·01234 = −0.06 (+0.21),

r57·01234 = −0.61 (−0.37) , r67·01234 = −0.62 (−0.36),

r79·01234 = +0.60 (+0.25).

The parenthetical correlations have outliers (all epidemics longer than 250 days) removed. In all simulations,

we also noted whether the covariance curve peaked before the force of infection (I) curve. The covariance

curve peaked first in 97% of simulations.

Appendix B: Reverse-sigmoidal cross-immunity function. We consider an alternate cross-immunity

function

τ∗(k) =
b + 1

b + eak
(B1)

which is sigmoidal in shape (but reversed) so that the initial part of the cross-immunity curve τ ∗ is concave,

as opposed to convex in the exponential case. To compare τ (from the main text) to τ ∗ (above), we fix

the number of amino-acid changes at which a host retains 50% immunity. For example, in the top graph of

Figure B1, the exponential cross-immunity curve, τ(k) = e−ak, has a = 0.05; this means that a host retains

50% immunity if the challenging strain is 13.86 substitutions (amino-acid changes) from the immunizing

strain. The reverse-sigmoidal (RS) curves marked by the asterisks are likewise chosen for 50% immune-loss

after 13.86 substitutions. The curve marked by one asterisk (*) has a = 0.3 and b = 62, while the curve

marked by two asterisks (**) has a = 0.5 and b = 1022.

The bottom panel in Figure B1 is set up similarly. The unlabeled exponential curve has a = 0.1. The

less concave curve (*) has a = 0.3 and b = 6, while the more concave curve (**) has a = 0.5 and b = 30. In

all three curves, a virus escapes 50% immunity after 6.93 amino-acid changes.

Our alternate cross-immunity function τ∗ is meant to mimic a situation where the first several substi-

tutions do not benefit the virus with very much immune escape. This is motivated by the fact that an

observable amount of immune escape occurs only after the virus has acquired substitutions in at least two

different epitopes (Wilson and Cox 1990). If this is indeed the case, then the first several amino-acid changes

in the HA1 may not confer much of a fitness benefit on the virus. In the top panel of Figure B1, the first

4 or 5 substitutions in the two τ∗-curves maintain the virus’s fitness at more or less the same level as the
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Figure B1: Reverse-sigmoidal cross immunity function as defined by equation (B1)

.
Top panel: exponential τ -curve has a = 0.05. RS-curve marked by (*) has a = 0.3, b = 62, while RS-curve marked
by (**) has a = 0.5, b = 1022. All 3 curves exhibit 50% immune loss after 13.86 amino-acid changes. Bottom panel:
exponential τ -curve has a = 0.10. RS-curve marked by (*) has a = 0.3, b = 6, while RS-curve marked by (**) has
a = 0.5, b = 30. All 3 curves exhibit 50% immune loss after 6.93 amino-acid changes.

epidemic strain, while the first 4 or 5 substitutions under the exponential cross-immunity function (τ) allow

the virus to escape more than 20% of the immune response. A similar but dampened effect is seen in the

bottom panel of Figure B1.

Though it seems that creating this “hump” in the cross-immunity function would inhibit antigenic drift,

this is not always the case. If the host population does not have much immunity, then the virus does not ben-

efit very much from its initial mutations, new variants do not spread more effectively than the original strain,

and influenza evolution is slowed. However, if the host population has a significant amount of immunity then

the epidemic takes much longer to unfold under an RS-function than under an exponential cross-immunity

function, since the flu population needs to get over the “hump” in the RS-function before an epidemic can

take off; once the virus population gets over the hump, drift occurs more quickly since marginal fitness

benefits of amino-acid substitutions are greater than under the the exponential cross-immunity function.

Figures B2 and B3 illustrate this effect. In the left column of both figures (θ = 0.3) the host population

is not very immune, and the epidemic takes off after about ten days regardless of the initial mean fitness of

3



the virus population. As the concavity of the RS-function is increased, there is less fitness variation in the

initial population of mutants, and evolution proceeds more slowly. There is less drift and less excess drift. In

the right-hand column of these figures, host-immunity drives the viral population over the hump in the RS-

functions, after which the virus population is easily able to escape immunity with additional substitutions.

For example, in the top-right panel of Figure B2, an exponential cross-immunity function is used, and the

virus escapes 46% of host immunity. But, in the middle panel of the right column, the virus population

escapes 93% of host immunity — after the first 10 substitutions, immune escape happens very rapidly.

Two important conclusions can be drawn from this simple numerical experiment with our alternate cross-

immunity function τ∗. First, the δ–θ relationship described in the main text may be more extreme than

under the standard exponential cross-immunity function. Figure B4 shows not only that immunity can drive

antigenic drift, but that the dynamics may exhibit a threshold behavior where the host population becomes

a “drift-friendly” environment once it crosses an immune threshold. In Figure B4, the range 0.5 ≤ θ ≤ 0.8,

is amenable to much antigenic drift while immunity values outside this range are either too weak to drive

antigenic drift or so strong that they prevent epidemics. Second, sensitivity to the mutation rate µ may

be quite strong if the true cross-immunity function indeed has a reverse-sigmoidal shape. One of the key

determinants in getting over the hump in the τ∗-form of the cross-immunity function is the mutation rate:

the more often mutations occur, the quicker the virus population will have variants with enough mutations

to escape immunity. In Figure B4, a population-wide immunity θ = 0.5 is the approximate threshold beyond

which the epidemic undergoes significant drift; for slower mutation (µ = 0.005), more immunity is needed

(θ = 0.7) to significantly drive influenza evolution. If an intermediate range of θ truly drives antigenic

drift, an accurate measurement of the neutral mutation rate (µ) would be necessary to determine the lower

boundary of this range.
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Figure B2: Effects of concavity on excess drift (δ).

In all plots, β = 1.0, ν = 0.2, µ = 0.05, N = 105, n = 60. The three plots in the left column have θ = 0.3; the three
plots in the right column have θ = 0.7.

D is total antigenic drift, δ is excess antigenic drift, and ‘ie’ stands for immunity escaped.

Red line denotes the force of infection (I) and corresponds to the right-hand axis (in red). The filled curve is βQ ·Cov
from the Price equation (16) in the main text; it corresponds to the scale on the left-hand vertical axis. Note that
this scale is 200 times greater in the right column than in the left column.

The left-hand column has θ = 0.3, which is not enough immune pressure to drive the virus population over the “hump”
in the concave cross-immunity function. The right-hand column has θ = 0.7 which forces the virus population over
the cross-immunity hump and subsequently leads to rapid immune escape. The top row uses the exponential cross-
immunity function (τ ) from the main text with a = 0.05. The middle row uses a concave cross-immunity function
(τ∗, a = 0.3, b = 62), and the last row uses an even more concave cross-immunity function (τ ∗, a = 0.5, b = 1022).
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Figure B3: Effects of concavity on excess drift (δ).

In all plots, β = 1.0, ν = 0.2, µ = 0.05, N = 105, n = 60. The three plots in the left column have θ = 0.3; the three
plots in the right column have θ = 0.7.

D is total antigenic drift, δ is excess antigenic drift, and ‘ie’ stands for immunity escaped.

Red line denotes the force of infection (I) and corresponds to the right-hand axis (in red). The filled curve is βQ ·Cov
from the Price equation (16) in the main text; it corresponds to the scale on the left-hand vertical axis. Note that
this scale is 20 times greater in the right column than in the left column.

The left-hand column has θ = 0.3, which is not enough immune pressure to drive the virus population over the “hump”

in the concave cross-immunity function. The right-hand column has θ = 0.7 which forces the virus population over

the cross-immunity hump and subsequently leads to rapid immune escape. The top row uses the exponential cross-

immunity function (τ ) from the main text with a = 0.1. The middle row uses a concave cross-immunity function

(τ∗, a = 0.3, b = 6), and the last row uses an even more concave cross-immunity function (τ ∗, a = 0.5, b = 30).
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Figure B4: δ–θ graph for the reverse-sigmoidal cross-immunity function.

.
The solid black lines bounding the filled area are from the left panel of Figure 3 of the main text; they show excess
drift (δ) as a function of immunity for β = 1.0, ν = 0.2, a = 0.05, N = 105 with µ = 0.05 and µ = 0.005 corresponding
to the top and bottom lines, respectively. Simulations were performed with n = 60.

The blue lines show excess drift for the same set of parameter values, but for a concave cross-immunity function τ ∗,
as defined by equation (B1), with a = 0.3 and b = 62. The mutation rates for the two curves are labeled in the figure.
Simulations for the concave cross-immunity functions were performed with n = 120.
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