Supporting information for Lu *et al.* (2003) *Proc. Natl. Acad. Sci. USA*, 10.1073/pnas.0931375100.

Table 5. Growth of *C. heterostrophus* WT and mutant strains on different carbon and nitrogen sources

Carbon	Growth, cm		Nitrogen	Growth, cm	
source*	WT	1301-R-45	source [†]	WT	1301-R-45
Glucose	8.0	8.0	Ammoniun	5.0	5.0
Xylose	8.0	8.0	Nitrate	8.0	8.0
Sorbose	1.5	1.3	Nitrite	4.0	4.0
Mannitol	8.0	8.0	Arginine	5.0	5.0
Gluconate	4.0	4.0	Glutamine	8.0	8.0
Glycerol	2.0	2.0	Histidine	5.0	5.0
Lactate	4.0	4.0	Methionine	4.0	4.0
Polypectate	7.0	7.0	Tyrosine	7.0	7.0
Succinate	7.0	7.0	Adenine	5.0	5.0

Colony diameters (average of three replicates) were measured 7 days after inoculation. WT = C4; REMI mutant R.C4.2696 represented by progeny 1301-R-45.

^{*}Each compound was added (10 g/liter) to MM; nitrogen source was $Ca(NO_3)_2 \cdot 4H_2O$ at 1 g/liter.

[†]Each compound was added (1 g/liter) to MM; carbon source was glucose (10 g/liter). Ammonium: NH₄Cl; nitrate: Ca(NO₃)₂ • 4H₂O; nitrite: NaNO₂.