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Age-Dependent Dose–Response Function. An as-yet-unexplained aspect of the

Sverdlovsk outbreak is the absence of any victims under the age of 24, despite the fact

that children apparently were in the path of the plume (1). Fig. 8 compares the age

distribution of the Sverdlovsk victims to the distribution one would expect based on

Russian demography circa 1979. This anomaly has prompted several researchers to

assume that the likelihood of contracting inhalation anthrax is age dependent (2–4).

Nonhuman primate experiments shed no light on this anomaly because they use adult

monkeys. Such age dependence may exist, but the Sverdlovsk data in Fig. 8 does not

show a pronounced age dependence relative to what one would expect based on Russian

demography because the large number of cases in the 40- to 50-year-old age range can be

explained by the age of the workers at the pipe factory, which constituted the largest

cluster of victims (18) in the Sverdlovsk data. Moreover, in general, children are more

susceptible to infectious diseases because of their immature immune system, not less

susceptible, as suggested by the Sverdlovsk data. Breathing rates, lung morphology, and

the exact demography of the Chkalovsky district of Sverdlovsk might explain some

difference in the infection rate between children and adults, but one would not expect the

complete absence of children in a sample of 70 victims.

Fig. 9, on the other hand, does show a clear age dependence for the duration of the

incubation period among male victims, but no pronounced age dependence for the

incubation period for female victims. The 95% confidence intervals are shown for a

linear regression of the incubation period against the victim’s age.

Reproducing the Spatial Distribution of Sverdlovsk Victims. Fig. 10 illustrates

pictorially the plumes for all four anthrax models examined in this paper, where the

release amount in each case is that required to produce 81 infected individuals (see Fig.

2). The cumulative distribution of victims as a function of the exposed dose, derived by

simulating the release of an amount of anthrax sufficient to produce 81 infected victims

for each model, is shown in Fig. 11.



Modeling the Incubation Period Distribution. The following discussion gives a brief

introduction to the way in which the incubation distribution is modeled in this analysis.

More details can be found in the references. At the very least, this discussion allows the

reader to understand the parameters listed in Table 1.

After the pioneering work of Sartwell (5), it is common to assume that incubation periods

follow a log-normal distribution in time, with the cumulative incubation distribution, F(t),

given by
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where M is the median incubation period and σ is the SD. The dose dependence of the

incubation period in model A1 is given by

where D is the exposed dose and α and β are parameters associated with the log-linear

model. The SD is given by a similar equation,

where γ and δ are parameters. The parameter values for the median and SD in model A1

are obtained from a least-square fit to the Sverdlovsk data at the low-dose end of the

spectrum and nonhuman primate data at the high-dose end (6–9), as shown in Figs. 12

and 13. These fits use only the solid data points in the figures. The open data points are

useful for comparison, but these data either contain too few nonhuman primates or do not

include the raw data upon which to construct the complete time-to-death distribution and,

hence, are not used in the fits.
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Note that the nonhuman primate data are given for the time from exposure to death.

Consequently, one must estimate the equivalent human incubation period from the

nonhuman primate time to death data. Note also that the data points in Fig. 12 do not

match exactly the points in Fig. 4 because the median values in Fig. 12 are derived by

finding the maximum likelihood fit for a log-normal distribution to the Sverdlovsk and

nonhuman primate data, whereas the median values in Fig. 4 are derived by fitting a

modified Brookmeyer model to the Sverdlovsk and nonhuman primate data. These

differences are not significant.

Clearly, one would have greater confidence in these fits if more data were available in the

mid-dose range and if these data were not mixed between human and nonhuman primate

exposures. The 95% confidence intervals in both figures imply that there is considerable

uncertainty in the parameter values derived from these fits. This uncertainty has

important policy implications because it translates into an uncertainty in the early-time

tail of the incubation period distribution and, hence, in the likelihood that victims will

appear symptomatic soon after exposure. This uncertainty, in turn, affects one’s estimate

of when astute physicians might diagnose the first patient with inhalation anthrax and,

hence, provide warning that a bioterror attack has occurred absent any warning signal

from environmental sensors, as discussed in the main article.

The parameter values for models B and C can be found in the references (4, 10, 11).

Model D is a modified version of a model developed by Brookmeyer et al. (unpublished

data; ref. 12), wherein the incubation period is described by two competing risks, an

exponentially distributed probability of spore germination and an exponentially

distributed probability of spore clearance from the lungs. The resulting probability that a

spore germinates before it is cleared from the lungs is given by
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where p is the probability of becoming infected as a function of the number of spores to

which a victim is exposed and is given by,
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where D is the exposed dose in spores, λ is the rate at which spores germinate, and θ is

the rate at which spores are effectively removed from the lungs. If a time delay is

included in the model to account for bacterial growth before the onset of symptoms, then

the incubation period distribution can be written as the convolution of the probability that

a spore germinates before being rendered nonviable and the probability that the time

delay has a given duration, as discussed in greater detail (unpublished data). The resulting

equation is
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where f (t – s) is the probability that a spore germinates before being destroyed, given in

Eq. 1, and g(s) is the probability that the time delay has duration s. The delay time can be

modeled as a “lag phase” followed by an “exponential growth phase.” Thus, one can

represent the time from spore germination to the onset of symptoms, T, as follows,
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where tlag is the lag time (assumed to be 1 h in this analysis), t2 is the bacterial doubling

time, Nthresh is the threshold number of bacillus at which symptoms appear, and D is the

initial number of Bacillus, which equals one regardless of the exposed dose because the

first spore to germinate starts the bacterial growth phase. In modeling the delay time as a

stochastic variable, one should chose a distribution that accurately represents bacterial



growth. Because bacterial growth is governed by multiple factors in the host, it is

reasonable to assume that g(s) follows a log-normal distribution, i.e.,
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where Mg is the median value of the time delay due to bacterial growth and σg is the SD.

This distribution has the virtue that its value is 0 when s equals 0, it peaks near the

median value, Mg, and then tapers off for s > Mg. The incubation distribution is then

given by Eq. 1–3 and 5, with Mg given by Eq. 4. Unfortunately, the integral in Eq. 3 must

be solved numerically, which adds a computational burden to the use of this model. The

parameter values for model D are found from a maximum likelihood fit to the Sverdlovsk

incubation data, assuming the model D dose–response curve and, consequently, that the

Sverdlovsk victims were exposed to a mean (geometric) dose of 360 spores, as illustrated

in Fig. 4.

The median incubation period for model A2 has the same functional form as that given in

model D, with the exception that model A2 assumes the model A dose–response curve

and, consequently, that the Sverdlovsk victims were exposed to a mean (geometric) dose

of 2.4 spores, as illustrated in Fig. 4. Consequently, the parameter values for model A2

differ somewhat from those for model D. The SD for model A2 is the same as that in

model A1 and, hence, model A2 is a hybrid of models A and D.

Models A2 and D simplify what is obviously a complex host response to bacterial

infection because both models assume a simple bacterial threshold for symptom onset

equal to 109 Bacillus anthracis. The selected threshold value affects the estimate of the

bacterial doubling time obtained when fitting the model to the Sverdlovsk incubation

data. Varying the threshold value parametrically produces a range of estimates for the

bacteria doubling time, as shown in Fig. 14.



Using these incubation period models and the distribution of people infected versus dose

shown in Fig. 11, one can calculate the expected incubation period distribution for the

Sverdlovsk outbreak by taking into account the fact that the victims were not all exposed

to the same dose. The result is shown in Fig. 15. Models A1, A2, C, and D all have

distributions that reproduce the Sverdlovsk data, which is not surprising because the

parameters for these models were derived from fits to the Sverdlovsk data. The model A1

and A2 fits are nearly identical, even though model A2 provides a better fit to the high-

dose nonhuman primate incubation period data, as discussed in the main article, because

the high-dose incubation period distribution is not relevant for the range of doses to

which the Sverdlovsk victims were exposed. Model C has a longer tail because it is based

on a constant median incubation period of 11 days, independent of dose. Model D also

gives a very good fit to the Sverdlovsk data. The average residuals for models A1, A2, C,

and D are 1.032, 1.028, 1.12 and 1.055, respectively; indicating that models A1 and A2

are virtually indistinguishable and that models A1 and A2 provide marginally better fits

to the Sverdlovsk data than model D. Clearly, accurate data for the median incubation

period at the ID50 dose would help distinguish between models A1 and A2. Model B does

not fit the Sverdlovsk data.
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