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1 The e�ect of reducing reagents on o-conotoxin GVIA (o-CgTX) inhibition of the release
of [3H]-acetylcholine ([3H]-ACh) induced by tityustoxin, K+ 50 mM and electrical stimulation
was investigated in rat brain cortical slices.

2 In cortical slices the inhibition of tityustoxin or electrically-stimulated [3H]-ACh release by o-CgTX
was dramatically increased by reducing reagents ascorbate or b-mercaptoethanol. Dehydroascorbic acid
did not substitute for ascorbate

3 Depolarization induced by K+ 50 mM caused [3H]-ACh release from cortical slices which was not
inhibited by o-CgTX, even in the presence of ascorbate.

4 In the guinea-pig myenteric plexus, o-CgTX inhibition of the tityustoxin induced release of [3H]-ACh
was independent of ascorbate.

5 It is suggested that N-type-like calcium channels in guinea-pig myenteric plexus may have
pharmacological/biochemical diversity from similar channels of rat cerebral cortex.
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Introduction

Voltage-dependent Ca2+ channels (VDCC) are ubiquitous
components of excitable tissues from virtually all types of
animals. Electrophysiological studies have revealed several
classes of VDCC in neurones. These channels are products of
di�erent genes and are classi®ed mainly by their characteristic
currents, potentials for activation or inactivation, their a1
subunit and their sensitivity to o-toxins (Zhang et al., 1993;
Olivera et al., 1994). Calcium channels have been classi®ed as
of the L, N, T, P or Q-type. The ®rst known neuronal-type
calcium channel, the N-type, has been implicated in controlling
transmitter release in some species (Hirning et al., 1988). o-
Conotoxin GVIA (o-CgTX), a peptide isolated from Conus
geografus blocks N-type calcium channels selectively and re-
versibly (Fox et al., 1987; Tsien et al., 1988). However, o-
CgTX only partially blocks transmitter release from mamma-
lian central nervous system (Reynolds et al., 1986) and in some
studies has been found to have no e�ect on evoked neuro-
transmitter release (Mangano et al., 1991; Casali et al., 1995).

The o-CgTX binds irreversibly and with high speci®city to
VDCC in lower vertebrates (Rivier et al., 1987) and in mam-
mals (Feigenbaum et al., 1988; Wagner et al., 1988), but it
inhibits only slightly the depolarization-induced Ca2+ in¯ux in
rat brain synaptosomes (Lundy et al., 1991). K+ induced Ca2+

uptake by chicken synaptosomes was blocked by o-CgTX but
this toxin had no e�ect on the depolarization-induced Ca2+

entry into rat synaptosomes from frontal lobe (Maubecin et
al., 1995). A low sensitivity to o-CgTX of calcium channels
coupled to transmitter release was observed in rat cortical
slices (Lundy et al., 1991; Perrier et al., 1992) and synapto-
somes (Suszkiw et al., 1986). These data argue against a major
contribution of o-CgTX-sensitive, N-type calcium channels to
the induced Ca2+ entry and release of neurotransmitter in
mammalian brain cortical slices.

In the course of an investigation of the release of acety-
lcholine ([3H]-ACh) from brain cortical slices, we observed that
the inhibitory e�ect of o-CgTX was enhanced by ascorbate.
The aim of this work was to explore this point further by
studying the e�ect of the reducing reagents ascorbate and b-
mercaptoethanol on the e�ects of o-CgTX. Since variations in
stimulus conditions may alter the e�ectiveness of o-CgTX in
inhibiting neurotransmitter release (Wessler et al., 1990), we
experimented with di�erent depolarizing conditions, such as
electrical ®eld stimulation, high K+, or tityustoxin, a scorpion
toxin that increases Na+ entry through tetrodotoxin-sensitive
Na+ channels (Gomez et al., 1973).

Methods

Materials were as follows: ACh chloride, ATP, choline chlor-
ide, dithiothreitol (DTT), 3-heptanone, diethyl-p-nitrophenyl
phosphate (paraoxon), physostigmime free base, 1-4-bis [5-
phenyl 2 oxazolyl] benzene-2, 2'-p-phenylene bis [5-phenyl
oxazole] (POPOP), 2,5 diphenyloxazol (PPO), sodium tetra-
phenylborate (TPB), ascorbic acid, b-mercaptoethanol and o-
conotoxin GVIA were from Sigma Chemical Co. (St. Louis,
Missouri). Tityustoxin was puri®ed as previously described
(Gomez & Diniz, 1966). All the other chemicals were analytical
grade. Holtzman rats (200 ± 250 g) were killed by decapitation.
The cerebral cortex was removed and sliced in a McIlwain
Tissue Slicer (Brinkman Instruments Inc., UK). Pieces of
guinea-pig myenteric plexus with its accompanying plexus
were obtained from guinea-pigs of either sex, as described by
Rang (1964). The release of [3H]-ACh into the incubating
medium was studied after labelling tissue ACh with [me-
thyl-3H]-choline (78 Ci mM71; Amershan Searle) as previously
described by Casali et al. (1995) and Gomez et al. (1995).
Brie¯y tissue ACh stores were ®rst depleted by incubation in
Krebs/Trizma medium for 15 min in the presence of 50 mM

K+. To label the endogenous pools of ACh, the slices or the
strips of myenteric plexus were incubated in Krebs-Trizma
medium 30 min with 0.12 mCi ml71 of methyl[3H]-choline.
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Then the brain cortical slices or the strips of myenteric plexus
were separated from the incubating ¯uid by centrifugation
followed by three washes with 1.0 mM cold choline. Subse-
quently, the slices or the strips were preincubated for 15 min in
the presence or absence of o-CgTX 0.1 mM, ascorbate
0.57 mM, dehydroascorbic 0.57 mM or b-mercaptoethanol
0.1 mM followed by 30 min stimulation with tityustoxin
2.5 mM, K+ 50 mM or electrical ®eld stimulation at 10 Hz
(10 V, 2 ms for 3 min). The Krebs-Trizma medium contained
(in mM): NaCl 136, KCl 2.7, CaCl2, 1.8, Trizma base 10, glu-
cose 5.5 and diethyl p-nitrophenylphosphate (Paraoxon, Sigma
Chemical Co.) 20 mM was added to prevent hydrolysis of ACh.
The ®nal pH was adjusted to 7.4. In order to characterize the
radioactivity released, [3H]-choline and [3H]-acetylcholine were
separated from the supernatants by the choline kinase method
(Goldberg & McCamman, 1973) or by high voltage electro-
phoresis. [3H]-acetylcholine represented 60 ± 72% of the total
radioactivity. Statisticals analyses were performed by analysis
of variance (ANOVA).

Results

Reducing reagents allow o-CgTX to inhibit the evoked
release of [3H]-ACh in rat cortical slices

In agreement with the consensus that o-CgTX has little or no
e�ect on transmitter release in the mammalian central nervous
system, it failed to inhibit tityustoxin-evoked release of [3H]-
ACh from rat cortical slices in the absence of ascorbate (Figure
1a), con®rming our previous observations (Casali et al., 1995).
However, in the presence of ascorbate 0.57 mM, o-CgTX
0.1 mM inhibited by 90% the release of [3H]-ACh induced by
tityustoxin 2.5 mM (Figure 1a). Ascorbate alone or in the
presence of tityustoxin did not interfere with the release of
[3H]-ACh. To determine whether the ascorbate acts as a re-
ducing agent, we tested the oxidized form of ascorbic acid,
dehydroascorbic. Figure 1b shows that in rat brain cortical
slices the presence of dehydroascorbate, o-CgTX has no in-
hibitory e�ect on the release of [3H]-ACh evoked by tityus-
toxin. Thus, the ascorbate enhancement of the inhibition by o-
CgTX on the evoked release [3H]-ACh appears to be related to
its reducing properties. Therefore we tested another reducing
reagent, b-mercaptoethanol. Figure 1c shows that in the pre-
sence of b-mercaptoethanol 0.1 mM, o-CgTX inhibited by
70% the release of [3H]-ACh induced by tityustoxin from rat

brain cortical slices. In the absence of b-mercaptoethanol, o-
CgTX had no e�ect on the evoked release of [3H]-ACh by
tityustoxin from rat brain cortical slices. Like ascorbate, b-
mercaptoethanol alone did not interfere with the spontaneous
release of [3H]-ACh or the release evoked by tityustoxin de-
polarization of rat brain cortical slices.

Sensitivity of rat cortical slices to o-CgTX in the
presence of ascorbate and under di�erent conditions of
stimulation

The e�ectiveness of o-CgTX as an inhibitor of neuro-
transmitter release depends on the stimulus (Wessler et al.,
1990; Keith et al., 1993; Turner & Dunlap, 1995). To
study further the e�ect of o-CgTX and ascorbate on the
release of [3H]-ACh from rat brain cortical slices we used
two other stimuli: electrical ®eld stimulation (Figure 2a) or
K+ depolarization (Figure 2b). In the presence of ascor-
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Figure 1 The e�ect of ascorbate, dehydroascorbic or b-mercaptoethanol on the o-CgTX inhibition of [3H]-ACh release induced by
tityustoxin in rat brain cortical slices. Slices (+40mg) were pre-incubated in a Krebs-Trizma medium in the presence or absence of
ascorbate 0.57mM (a), dehydroascorbic acid 0.57mM (b), b-mercaptoethanol, 0.1 mM (c) and o-CgTX 0.1mM for 15min. They were
then stimulated for 30min with tityustoxin 2.5 mM. (a) Column A, control; B, ascorbate 0.57mM; C, tityustoxin 2.5 mM; D,
tityustoxin 2.5 mM plus o-CgTX 0.1mM; E, tityustoxin 2.5mM plus ascorbate 0.57mM; F, tityustoxin 2.5 mM; ascorbate 0.57mM plus
o-CgTX 0.1mM. (b) Column A, control; B, dehydroascorbic acid 0.57mM C, tityustoxin 2.5mM; D, tityustoxin 2.5 mM plus o-CgTX
0.1 mM; E, tityustoxin 2.5 mM plus dehydroascorbic acid 0.57mM; F, tityustoxin 2.5 mM, dehydroascorbic acid 0.57mM plus o-CgTX
0.1 mM. (c) Column A, control; B, b-mercaptoethanol 0.1mM; C, tityustoxin 2.5 mM; D, tityustoxin plus o-CgTX, 0.1 mM, E,
tityustoxin 2.5 mM plus b-mercaptoethanol 0.1 mM; F, tityustoxin, 2.5mM, b-mercaptoethanol 0.1 mM plus o-CgTX 0.1 mM. The values
represent the means+s.e.mean for duplicates of 3 experiments. For other details see Methods. *Statistically di�erent from the
control value, P50.01. **Statistically di�erent from the tityustoxin value, P50.01.
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Figure 2 The e�ect of ascorbate on the o-CgTX inhibition of [3H]-
ACh release induced by electrical and KCl stimulation of rat brain
cortical slices. Slices (+40mg) were pre-incubated in a Krebs-Trizma
medium in the presence or absence of ascorbate 0.57mM and o-
CgTX 0.1 mM for 15min. They were then stimulated with electrical
pulses of 10Hz (a) or K+ 50mM for 30min (b). (a) Column A,
control; B, ascorbate 0.57mM; C, electrical stimulation 10Hz; D,
electrical stimulation 10Hz plus o-CgTX 0.1mM; E, electrical
stimulation 10Hz ascorbate 0.57mM plus o-CgTX 0.1 mM. (b)
Column A, control; B, ascorbate; C, KCl 50M; D, KCl 50mM plus
o-CgTX 0.1mM; E, KCl 50mM plus ascorbate 0.57mM; F, KCl
50mM, ascorbate 0.57mM plus o-CgTX 0.1mM. The values represent
the means+s.e.mean for duplicates of 3 experiments. For other
details see Methods. *Statistically di�erent from the control value,
P50.01. **Statistically di�erent from the tityustoxin value, P50.02.
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bate, o-CgTX inhibited by 36% the release of [3H]-ACh
induced by electrical stimulation with pulses of 10Hz for
3min. Without ascorbate, o-CgTX had no e�ect on the
release of neurotransmitter induced by electrical stimula-
tion. The e�ect of ascorbate and o-CgTX on the evoked
release of [3H]-ACh by 50 mM K+ depolarization is shown
in Figure 2b. K+ 50 mM increased the release of neuro-
transmitter to levels comparable to those produced by ti-
tyustoxin or electrical stimulation of rat brain cortical
slices. This increased release of [3H]-ACh was not inhibited
by o-CgTX, even in the presence of ascorbate.

Sensitivity of guinea-pig myenteric plexus to o-CgTX in
the presence of ascorbate

Figure 3 shows the e�ect of ascorbate and o-CgTX on the
evoked release of [3H]-ACh by tityustoxin in guinea-pig
myenteric plexus. Tityustoxin 2.5 mM doubled the release of
neurotransmitter and o-CgTX inhibited this release by 79%
with ascorbate and 69% without ascorbate. These conditions
were not statistically signi®cant from each step (P40.05).
Thus, the inhibition of tityustoxin-induced release of [3H]-
ACh by o-CgTX was independent of the presence of as-
corbate.

Discussion

It has been shown in rat brain slices (Lundy et al., 1991; Perrier
et al., 1992), synaptosomes (Suszkiw et al., 1989) and neuro-
muscular junctions (Uchitel et al., 1992) that the calcium
channels are insensitive to o-CgTX. However, o-CgTX abol-
ishes neurotransmitter release in the chicken or frog (Olivera et
al., 1994). We have also found that o-CgTX has no e�ect on
the release of [3H]-ACh induced by tityustoxin in incubated
brain cortical slices of the rat (Casali et al., 1995). However,
the present results show that o-CgTX inhibits the release of
[3H]-ACh induced by tityustoxin when reducing reagents, as-
corbate (Figure 1a) or b-mercaptoethanol (Figure 1c) are

present. In the absence of paraoxon, an inhibition of 70% by
o-CgTx of the evoked release of [3H-]ACh was also dependent
of ascorbate (data not shown). Thus the result is not a con-
sequence of the conditions used to recover [3H]-ACh from the
medium (inhibition of cholinesterase by paraoxon), because
the same observation was made when measuring 3H e�ux in
hemicholinium-3 treated slices.

In rat brain cortical slices, o-CgTX did not inhibit [3H]-
ACh release when ascorbate was replaced by its oxidized
form, dehydroascorbic acid (Figure 1b). Ascorbate also al-
lowed o-CgTX to inhibit the release of [3H]-ACh from rat
cortical slices stimulated by electrical ®eld stimulation (Fig-
ure 2a). The weak inhibitory e�ect may be related to the
high frequency stimulation used in our experiments. How-
ever, ascorbate had no e�ect on the blocking action of o-
CgTX on the release of [3H]-ACh induced by K+ depolar-
ization (Figure 2b). This apparent discrepancy is explained
by known di�erences in the e�ects of the di�erent stimuli
used. For example, o-CgTX, in the presence of ascorbate
and EDTA, is more e�ective in blocking release of ACh in
response to electrical ®eld stimulation than K+ stimulation
in the myenteric plexus indicating di�erent types of N-type
calcium channels in these tissues (Wessler et al., 1990). Data
from the literature show the similarity between the e�ects of
electrical stimulation and tityustoxin (Gomez et al., 1973;
Warnick et al., 1976; Prado et al., 1992) as well as the
di�erent e�ects of electrical stimulation and K+ depolar-
ization on the release of neurotransmitters (Momyama &
Takahashi, 1994).

Thus, mammalian myenteric plexus may have a Ca2+

channel subtype with a mixed pharmacology. The ascorbate-
independence of the o-CgTX inhibition of the evoked [3H]-
ACh release in guinea-pig myenteric plexus suggests a phar-
macological di�erence between the calcium channels in this
tissue and those in rat brain cortex.

At present, we do not know how reducing agents enhance
o-CgTX blockade in the central but not in the peripheral
nervous systems of these two species studied. The site of
action of the reducing reagents that induce o-CgTX in-
hibition of the release of [3H]-ACh from rat brain cortical
slices may not be on the functional active -S-S groups of o-
CgTX. This hypothesis is supported by the ®nding that o-
CgTX inhibition of the evoked release of [3H]-ACh from
guinea-pig myenteric plexus did not require ascorbate (Fig-
ure 3).

Molecular biological investigations have demonstrated that
the main determinant of Ca2+ channel phenotype is the a1
subunit, of which 5 classes have been cloned from vertebrates
(Zhang et al., 1993; Dunlap et al., 1995). In addition to the a1
subunit that is the pore for calcium, a number of clones have
been isolated for accessory subunits (e.g. b, a2d) that modify
Ca2+ channel properties. The a2d subunits are usually con-
sidered to be a single molecular entity, since they are encoded
by a single gene that generates two invariably disulphide linked
protein moieties (De Jongh et al., 1990; Jay et al., 1991;
Witcher et al., 1995). The disulphide-linked tertiary structure is
necessary for a proper a2d transmembrane interaction with the
a1 subunit (Gurnett et al., 1996). Ascorbate or b-mercap-
toethanol may act on S-S bridge(s) of a2d-subunits allowing, in
rat brain cortical slices, inhibition of the release of [3H]-ACh
by o-CgTX-GVIA. Under reducing conditions, in the presence
of b-mercaptoethanol, the complex a2d is separated into two
components, the 143,000 Da form of the a2-subunit and the
smaller, 27,000 Da for the d-subunit (De Jongh et al., 1990; Jay
et al., 1991).

Ascorbic acid inhibits Na+ dependent calcium uptake in rat
cultured astrocytes (Takuma et al., 1995). The release of ACh
stimulated by tityustoxin is Na+ and Ca2+- dependent (Gomez
et al., 1973; 1975) and ascorbate had no e�ect on the tityus-
toxin induced release of [3H]-ACh (Figure 1a). Therefore, any
ascorbate involvement with the Na+-dependent Ca2+ uptake
does not explain the o-CgTX induced inhibition of the release
of [3H]-ACh.
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Figure 3 The e�ect of ascorbate on the o-CgTX inhibition of [3H]-
ACh release induced by tityustoxin in guinea-pig myenteric plexus.
Pieces of longitudinal muscles with its accompanying plexus
(+40mg) were pre-incubated for 15min in Krebs-Trizma medium
in the presence or absence of ascorbate 0.57mM or o-CgTX 0.1mM
for 15min. They were then stimulated with tityustoxin 2.5mM for
30min. Column A, control; B, ascorbate 0.57mM; D, tityustoxin
2.5 mM; E, tityustoxin 2.5 mM plus o-CgTX 0.1 mM; F, tityustoxin
2.5 mM, ascorbate 0.57mM plus o-CgTX 0.1mM. The values represent
the means+s.e.mean for duplicates of 3 experiments. For other
details see Methods. *Statistically di�erent from the control value,
P50.01. **Statistically di�erent from the tityustoxin value, P50.02.

Reducing agents and o-CgTX inhibition of ACh release90 T.A.A. Casali et al



Finally the data suggest a pharmacological/biochemical
diversity among N-like calcium channels of guinea-pig myen-
teric plexus and rat brain cortical slices. However, di�erences
between rat brain and guinea-pig myenteric plexus could re-
¯ect species di�erences in the cellular environment, VDCC
regulation or VDCC composition/structure. Further experi-
ments are necessary to clarify these di�erences.

We thank Adriane A. Pereira, Andreia G. Alves and Antonio C.S
Gomes for technical assistance and Dr Willian Van der Kloot for
reading and suggestions in this manuscript. This work was
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