http://www.stockton-press.co.uk/bjp

Activation of two types of Ca^{2+} -permeable nonselective cation channel by endothelin-1 in A7r5 cells

'Yasushi Iwamuro, ^{2,4}Soichi Miwa, 'Tetsuya Minowa, 'Taijiro Enoki, 'Xiao-Feng Zhang, ¹Masatsune Ishikawa, ¹Nobuo Hashimoto & ²Tomoh Masaki

Department of ¹Neurosurgery, ²Pharmacology and ³Anesthesiology, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan

1 In A7r5 cells loaded with the Ca²⁺ indicator fura-2, we examined the effect of a Ca²⁺ channel blocker SK&F 96365 on increases in intracellular free Ca²⁺ concentrations ([Ca²⁺]i) and Mn²⁺ quenching of fura-2 fluorescence by endothelin-1 (ET-1). Whole-cell patch-clamp was also performed.

2 Higher concentrations (≥ 10 nM) of ET-1 (higher [ET-1]) evoked a transient peak and a subsequent sustained elevation in $[Ca^{2+}]$ i: removal of extracellular Ca^{2+} abolished only the latter. A blocker of Ltype voltage-operated Ca^{2+} channel (VOC) nifedipine at 1 μ M reduced the sustained phase to about 50%, which was partially sensitive to SK&F 96365 (30 μ M).

3 Lower [ET-1] (≤ 1 nM) evoked only a sustained elevation in [Ca²⁺]i which depends on extracellular Ca^{2+} . The elevation was partly sensitive to nifedipine but not SK&F 96365.

4 In the presence of 1 μ M nifedipine, higher [ET-1] increased the rate of Mn²⁺ quenching but lower [ET-1] had little effect.

5 In whole-cell recordings, both lower and higher [ET-1] induced inward currents at a holding potential of -60 mV with linear I-V relationships and reversal potentials close to 0 mV. The current at lower [ET-1] was resistant to SK&F 96365 but was abolished by replacement of Ca^{2+} in the bath solution with Mn^{2+} . The current at higher [ET-1] was abolished by the replacement plus SK&F 96365.

6 In a bath solution containing only Ca^{2+} as a movable cation, ET-1 evoked currents: the current at lower [ET-1] was sensitive to Mn^{2+} , whereas that at higher [ET-1] was partly sensitive to SK&F 96365. 7 These results indicate that in addition to VOC, ET-1 activates two types of Ca^{2+} -permeable nonselective cation channel depending on its concentrations which differ in terms of sensitivity to SK&F 96365 and permeability to Mn^{2+} .

Keywords: Endothelin-1; nonselective cation channel; calcium; SK&F 96365; manganese, A7r5 cell

Introduction

Endothelin-1 (ET-1) is a potent vasoconstricting peptide with a long duration of action (Yanagisawa et al., 1988). ET-1 binds to receptors on vascular smooth muscle cells and subsequently induces an increase in the intracellular free Ca^{2+} concentrations $([Ca^{2+}]i)$, which is a trigger for contraction of cells. Several mechanisms have been proposed for the elevation of $[Ca^{2+}]$ i: (1) release of intracellularly stored Ca^{2+} via increased formation of inositol trisphosphates (IP₃) (Kasuya et al., 1989; Van Renterghem et al., 1988); (2) activation of voltageoperated Ca²⁺ channel (VOC) (Goto et al., 1989; Inoue et al., 1990) and (3) activation of other types of Ca^{2+} entry channels represented by voltage-independent Ca^{2+} channels (Enoki *et*) al., 1995b; Fasolato et al., 1994; Felder et al., 1994; Huang et al., 1990; Minowa et al., 1997; Simpson et al., 1990).

Although not firmly established, the voltage-independent $Ca²⁺$ channels are usually classified according to the mode of activation into four groups (Clementi & Meldolesi, 1996): receptor-operated Ca²⁺ channels (Benham & Tsien, 1987), Gprotein-operated Ca²⁺ channels (Komori & Bolton, 1990), store-operated Ca^{2+} channels (SOCC) (Hoth & Penner, 1992) and second messenger-operated Ca^{2+} channels (Matthews et al., 1989).

SK&F 96365 was initially introduced as a blocker of receptor-mediated Ca^{2+} influx in a broad sense (Merritt *et al.*, 1990). The data are now accumulating which indicate that this drug blocks Ca^{2+} influx through some of the voltageindependent Ca^{2+} channels. So far the effects of SK&F

96365 have been examined in only a limited number of cell types and in all these cells, the drug has been found to block some of the voltage-independent Ca^{2+} channels (Chung *et al.*, 1994; Franzius et al., 1994; Koch et al., 1994; Wayman et al., 1996). Thus Ca^{2+} channels which are resistant to this drug have not yet been reported.

It is known that Ca^{2+} signaling mechanisms in response to ET-1 are different depending on its concentrations. Namely, higher concentrations of ET-1 stimulates both release of Ca^{2+} from intracellular stores (via increased formation of IP_3) (Kasuya et al., 1989; Rubanyi & Polokoff, 1994) and entry of extracellular Ca^{2+} , whereas lower concentrations of ET-1 stimulates only entry of extracellular Ca^{2+} without release of Ca^{2+} from intracellular stores (Enoki *et al.*, 1995b). Thus it is possible that different Ca^{2+} entry channels are involved in the elevations of $[Ca^{2+}]$ i induced by lower and higher concentrations of ET-1. To verify this possibility, we tested the effect of pharmacological manipulations including SK&F 96365 on the elevation of $[Ca^{2+}]$ i and whole-cell currents in A7r5 cells (a cell line derived from rat aorta) induced by lower and higher concentrations of ET-1.

Materials

Cell culture

A7r5 cells derived from rat aortic smooth muscle cells were ⁴ Author for correspondence. cultured in monolayer in Dulbecco's modified Eagle's medium

supplemented with 10% fetal bovine serum (Hyclone) at 37° C in a humidified 5% $CO₂/95%$ air atmosphere.

Measurement of $\int Ca^{2+}$]i in A7r5 cells

 $[Ca^{2+}]$ i was measured using a fluorescent probe fura-2 as described (Groschner et al., 1994; Minowa et al., 1997). For loading of fura-2, the cultured A7r5 cells were incubated in Ca²⁺-free Krebs-HEPES solution containing 5 μ M fura-2/AM (acetoxymethyl ester) for 45 min at 37° C. After centrifugation, the cells were resuspended at a density of approximately 1.25×10^6 cells ml⁻¹ in Ca²⁺-free Krebs-HEPES solution containing (mM): NaCl 140, KCl 3, MgCl₂ 1, glucose 11 and HEPES 10; pH 7.3, adjusted with NaOH. 0.5-ml aliquots of the suspension were used for measurement of fluorescence by a CAF 110 spectrophotometer (JASCO, Tokyo, Japan). CaCl₂ was added to the suspension at a final concentration of 2 mM immediately before measurement (normal Krebs-HEPES). For measurement of $[Ca^{2+}]i$, fura-2 was excited at two wavelengths of 340 nm and 380 nm, and emission was monitored at 500 nm at 25° C. [Ca²⁺]i values were calculated from fura-2 fluorescence ratios (R) according to the following equation:

$$
[Ca^{2+}]i = Kd(S_{f2}/S_{b2}(R - R_{min})/(R_{max} - R)
$$

where R_{max} and R_{min} are the ratios, e.q., 340 nm/380 nm, obtained at saturating and zero Ca^{2+} concentrations by adding Triton X-100 and subsequently EGTA at final concentrations of 0.1% and 5 mM, respectively, Kd is defined as 224 nM, S_{b2} is the 380 nm excitation signal at the saturating Ca^{2+} concentration, and S_{f2} is the 380 nm excitation signal in the absence of Ca^{2+} .

Electrophysiology

A7r5 cells were perfused with Krebs-HEPES solution containing 2 mM Ca^{2+} , visualized with Nomarski optics (Carl-Zeiss Axioskop) and whole-cell recordings were made with thin-wall

borosilicate glass patch pipettes (resistance, $3-5 \text{ M}\Omega$) as described previously (Enoki et al., 1995b; Kobayashi & Takahashi, 1993; Minowa et al., 1997). Pipettes were filled with Cs-aspartate solution containing (in mM): Cs-aspartate 120, CsCl 20, $MgCl₂$ 2, HEPES 10, EGTA 10 (pH 7.3, adjusted with CsOH). EGTA was added to the pipette solution at a final concentration of 10 mM, a concentration having enough buffering capacity for Ca^{2+} to prevent a transient increase in $[Ca^{2+}]$ i (Neher, 1988), and the concentration of free Ca^{2+} in the solution was maintained at 100 nM by adding the amount of CaCl₂ as described by Van Heeswijk et al. (1984). Tight seal whole-cell currents were recorded with an EPC 7 patch-clamp amplifier (List, Darmstadt, Germany) and analysed with the pClamp software package (Axon Instruments, Burlingame, CA, U.S.A.). Perfusion rate was maintained at 2.2-2.5 ml min⁻¹ and the bath volume was \sim 1.0 ml. All experiments were done under voltage-clamp at a holding potential of -60 mV at room temperature (22 - 24 \degree C). To examine the Ca^{2+} currents through the cation channel, the bath solution was switched from Krebs-HEPES to 30 mM $Ca^{2+}/100$ mM N-methyl-D-glucamine (NMDG) solution which contained (in mM): $CsCl₂$ 30, NMDG chloride 100, MgCl₂ 1, glucose 11, HEPES 10 (pH 7.4, adjusted with Tris). In all experiments, the bath solution was supplemented with 1 μ M nifedipine to block Ca²⁺ entry through VOC. Currentvoltage relationships were obtained by applying voltage steps of 100 ms duration ranging from -100 to $+80$ mV in 20 mV increments before and after application of drugs. The druginduced currents at each membrane potential were determined by subtracting currents before application of the drug from currents after its application.

Statistical analysis

All results were expressed as mean \pm s.e.mean. The data were subjected to a two-way analysis of variance, and when a

Figure 1 Effects of varying concentrations of nifedipine on elevations in intracellular free Ca²⁺ concentrations ($[Ca^{2+}]$ i) induced by endothelin-1 (ET-1) in fura 2-loaded A7r5 cells. (a and c) Original tracings illustrating the pattern of elevations in $[Ca^{2+}]}$ induced by a higher concentration (100 nM; a) or a lower concentration (1 nM; c) of ET-1 and the effects of varying concentrations of nifedipine on the elevations. (b and d) Original tracings illustrating the pattern of elevations in $[Ca^{2+}]$ i induced by a higher concentration (100 nm; b) or a lower concentration (1 nm; d) of ET-1 in media lacking Ca^{2+} .

significant F value was encountered, Newman-Keuls' multiplerange test was used to test for significant differences between treatment means. A probability level of $P < 0.05$ was considered statistically significant.

Drugs

Chemicals were obtained from the following sources: ET-1, from Peptide Institute (Osaka, Japan); fura-2/AM and EGTA, from Dojindo Laboratories (Kumamoto, Japan); nifedipine, from Sigma (St. Louis, MO, U.S.A.); SK&F 96365, from Biomol (Plymouth Meeting, PA, U.S.A.). Nifedipine was dissolved in ethanol and the final concentration of ethanol was lower than 0.1% .

Results

$\int Ca^{2+}$ *li* measurement in A7r5 cells

In resting A7r5 cells, $[Ca^{2+}]i$ was 54 ± 16 nM, mean \pm s.e. $(n=30)$. As shown in Figure 1a, a higher concentration (100 nM) of ET-1 evoked biphasic changes in $[Ca^{2+}]$ i in A7r5 cells consisting of an initial transient peak and a subsequent sustained phase: the values were 450 ± 88 (n=5) and 143 ± 40 nM ($n=5$), respectively. ET-1 at 10 nM also induced biphasic changes in $[Ca^{2+}]$ i but the transient phase was smaller $(245\pm79 \text{ nM}, n=5; P<0.01,$ significantly different from the value at 100 nm ET-1) with the sustained phase being unchanged (124+37 nM, $n=5$). In contrast, a lower concen-

Figure 2 The concentration-response relationships for inhibition by nifedipine of the elevations in $\int Ca^{2+}$]i induced by 1 nm, 10 nm and 100 nM ET-1. The extent of the inhibition was represented by a percentage of the value just before addition of nifedipine. Each point represents mean values \pm s.e.mean of five experiments. * $P < 0.01$; $\#P$ < 0.05: significantly different from the value at 10 nM and 100 nM ET-1.

Figure 3 Effects of varying concentrations of SK&F 96365 on elevations in intracellular free Ca²⁺ concentrations ([Ca²⁺]i) induced by endothelin-1 (ET-1) in fura 2-loaded A7r5 cells in the presence of 1 μ M nifedipine. (a and b) Original tracings illustrating the effects of varying concentrations of SK&F 96365 on elevations in $[Ca²⁺]$ induced by a higher concentration (100 nm; a) or a lower concentration (1 nM; b) of ET-1. (c) The concentration-response relationships for inhibition by SK&F 96365 of the elevations in $\left[\text{Ca}^{2+}\right]$ induced by 1 nM, 10 nM, and 100 nM ET-1 in the presence of 1 μ M nifedipine. The extent of the inhibition was represented by a percentage of the value just before addition of $SK&F$ 96365. Each point represents mean values \pm s.e.mean of six experiments. * $P < 0.01$; significantly different from the value at 10 nM and 100 nM ET-1.

tration (1 nM) of ET-1 evoked only a sustained elevation where $[Ca^{2+}]$ i was 101 ± 27 nM (n=5) (Figure 1b).

A specific blocker of L-type VOC nifedipine suppressed the sustained elevation in $[Ca^{2+}]$ i induced by 100 nM ET-1 in a concentration-dependent manner, and its effect reached the maximal level at $1 \mu M$ where the inhibition amounted to 50.2 + 7.4% ($n=5$) (Figures 1a and 2).

Essentially similar results were obtained by use of 10 nM ET-1 (Figure 2): the inhibition by $1 \mu M$ nifedipine was $43.8 \pm 5.8\%$ (n=5). Notably, when 1 μ M ET-1 was used instead of 10 nM or 100 nM, the inhibitory effect of nifedipine was more marked: the inhibition amounted to $70.5+11.4\%$ $(n=5,$ significantly different from the value at 10 nM or 100 nM ET-1) (Figures 1c and 2).

The sustained phase induced by lower or higher concentrations of ET-1 was abolished after removal of extracellular Ca^{2+} (Figure 1b and d), indicating that the sustained phase results mainly from transmembrane Ca^{2+} influx.

To determine what types of Ca^{2+} entry channel are involved in the nifedipine-resistant part of the sustained elevation in $[Ca^{2+}]$ i induced by ET-1, we examined the effects of SK&F 96365 in the presence of 1 μ M nifedipine to completely block VOC.

In the presence of 1 μ M nifedipine, the [Ca²⁺]i in resting A7r5 cells was 56 ± 14 nM (n=25) which was not significantly different from the value in the absence of nifedipine. Under this condition, 100 nM ET-1 also evoked biphasic changes in $[Ca²⁺]$ i in A7r5 cells with the initial transient peak of $380+140$ nM ($n=6$) and the sustained phase of $123+50$ nM $(n=6)$. SK&F 96365 suppressed the nifedipine-resistant part of the sustained elevation in $[Ca^{2+}]$ i induced by 100 nM ET-1 in a concentration-dependent manner, and the maximum inhibition was observed at concentrations higher than 10 μ M: the inhibition by 10 μ M SK&F 96365 amounted to 59.9 + 12.6% $(n=6)$ (Figure 3a and d). When 10 nm ET-1 was used,

Figure 4 Original tracings illustrating the effects of a lower (1 nM) or a higher concentration (100 nm) of ET-1 on Mn^{2+} -quenching of fura-2 fluorescence in A7r5 cells in the presence of 1μ M nifedipine and their modification by SK&F 96365. At the beginning of experiments, MnCl₂ and nifedipine were added to incubation medium at a final concentration of 100 μ M and 1 μ M, respectively, and fluorescence was monitored with an excitation wavelength at 360 nm
and an emission wavelength at 500 nm for Mn²⁺-quenching. ET-1 at 1 nM or 100 nM and SK&F 96365 at 30 μ M were added at the time indicated by arrows and a bar, respectively. For reference, changes in $[Ca^{2+}]}i$ were simultaneously measured by monitoring the fura-2 fluorescence at excitation wavelengths of 340 nm and 360 nm and an emission wavelength of 500 nm.

essentially similar results were obtained (Figure 3c): the inhibition by 10 μ M SK&F 96365 was 59.7 + 3.8% (n=6). In contrast, totally different results were obtained, when a lower concentration (1 nM) of ET-1 was used (Figure 3b and c): in this case, SK&F 96365 up to the concentration of 30 μ M had no significant effect on the nifedipine-resistant part of the sustained elevation in $[Ca^{2+}]$ i: the inhibition by SK&F 96365 was $2.9 + 1.9\%$ (n=6).

Based on the sensitivities to nifedipine and SK&F 96365, the sustained elevation in $[Ca^{2+}]i$ can be divided into two groups. The elevation induced by lower concentrations $(\leq 1$ nM) of ET-1 is a resistant to SK&F 96365 but more sensitive to nifedipine, whereas the elevation induced by higher concentrations (≥ 10 nM) of ET-1 is sensitive to SK&F 96365 but less sensitive to nifedipine.

Figure 5 Whole-cell recordings of inward currents induced by a lower concentration (1 nM) of ET-1 in A7r5 cells in the presence of 1μ M nifedipine. The cells were clamped at a holding potential of -60 mV with the whole-cell configuration and ET-1 was added to the bath solution at a final concentration of 1 nm during the time interval indicated by a horizontal bar. After the ET-1 induced currents had reached a steady-state, SK&F 96365 was added to the bath solution at a final concentration of 10 μ M (a) or Ca²⁺ in the bath solution was replaced by 2 mm Mn^{2+} (b). (c) The currentvoltage relationships for the ET-1-induced current and the current inhibited by replacement of Ca^{2+} with Mn^{2+} . At the time indicated by x, y and z in panel b, voltage steps of 100-ms duration ranging from -100 to $+80$ mV in 20-mV increments were applied. The currents induced by ET-1 were obtained by subtracting currents at x from those at y, and the currents inhibited by replacement of Ca^{2+} with Mn^{2+} were obtained by subtracting currents at z from those at y.

To further characterize the properties of the sustained elevation in $[Ca^{2+}]$ i induced by ET-1, we examined Mn²⁺ quenching of the fura-2 fluorescence as an index of Mn^{2+} entry. In the presence of 1 μ M nifedipine, exposure of the cells to 1 nM ET-1 had little effect on the rate of quenching of fura-2 fluorescence which was excited at 360 nm and monitored at 500 nm (Figure 4). In contrast, exposure of the cells to 100 nM ET-1 induced a marked increase of the quenching rate, which was blocked by 30 μ M SK&F 96365.

Whole-cell current in A7r5 cells

To further elucidate the characteristics of the Ca^{2+} entry, whole-cell recordings were performed with A7r5 cells. At a holding potential of -60 mV, addition of ET-1 to the bath solution at concentrations from 100 pM to 10 nM induced a slow inward current with an increase in baseline `noise' (Figures 5 and 6).

The current induced by a lower concentration (1 nM) of ET-1 showed a linear current-voltage relationship against the membrane potential between -100 mV and $+80$ mV with the reversal potential of $-15.6+12.5$ mV (n=11) (Figure 5c). In most cells, the responses continued for over 30 min after washout of ET-1. The current was totally resistant to 10 μ M SK&F 96365 (Figures 5a and 7), but it was abolished when Ca^{2+} in the bath solution was replaced by 2 mM Mn^{2+} (Figures 5b and 7). The characteristics of the current inhibited by the replacement were essentially similar to the ET-1 induced current in terms of the linear current-voltage relationship and the reversal potential.

The current induced by a higher concentration (10 nM) of ET-1 also showed a linear current-voltage relationship against the membrane potential with the reversal potential of -14.7 ± 3.7 mV (n=18) (Figure 6a). In most cells, the responses also continued for over 30 min after washout of ET-1. Notably, the current was partially sensitive to 10 μ M $SK&F$ 96365 and the inhibitory effect of the drug was reversible (Figures 6a and 7). The characteristics of the current inhibited by SK&F 96365 were essentially similar to the ET-1 induced current, in terms of the linear current-voltage relationship and the reversal potential.

As shown in Figures 6b and 7, the ET-1-induced current was partially suppressed after replacement of Ca^{2+} in the bath solution by 2 mM Mn^{2+} (33.3 + 9.2%, n=4). When 10 μ M SK&F 96365 was added to the bath solution after the replacement, the ET-1-induced current was completely suppressed (Figures 6b and 7). Again, the characteristics of the current inhibited by SK&F 96365 were essentially similar to the ET-1-induced current, in terms of the linear currentvoltage relationship and the reversal potential.

In the presence of 10 μ M SK&F 96365, 10 nM ET-1 induced a current with a linear current-voltage relationship and the reversal potential of $-15.3 + 5.2$ mV (n=3) (Figure 6c). When Ca^{2+} in the bath solution was replaced by 2 mM Mn^{2+} in the presence of 10 μ M SK&F 96365, the ET-1-induced current was completely suppressed (Figure 6c).

Figure 7 summarizes the effect of 10 μ M SK&F 96365, replacement of Ca^{2+} in the bath solution by 2 mM Mn^{2+} or their combination on the currents induced by 100 pM, 1 nM and 10 nM ET-1. The currents induced by lower concentra-

Figure 6 Effects of SK&F 96365, replacement of Ca^{2+} with Mn^{2+} in the bath solution or their combination on whole-cell currents induced by a higher concentration (100 nM) of ET-1 in A7r5 cells in the presence of 1 μ M nifedipine. The cells were clamped at a holding potential of -60 mV with the whole-cell configuration. Upper and lower panels show typical tracings of whole-cell recordings and current-voltage relationships, respectively. ET-1 or $SK&F$ 96365 was added to the bath solution at a final concentration of 10 nM or 10 μ M, respectively, during the time intervals indicated by horizontal bars. In (b) and (c), Ca²⁺ in the bath solution was replaced by 2 mm \dot{M}^{2+} (indicated by Ca \rightarrow Mn). At the time indicated by x, y and z in each panel, voltage steps ranging from -100 to $+80$ mV in 20-mV increments were applied. The currents induced by ET-1 were obtained by subtracting currents at x from those at y, and the currents inhibited by $\hat{S}K\&F 96365$ or replacement of Ca^{2+} with Mn^{2+} were obtained by subtracting currents at z from those at y.

tions (100 pM and 1 nM) of ET-1 were resistant to SK&F 96365, but they were abolished by replacement of Ca^{2+} in the bath solution with 2 mm Mn^{2+} . In contrast, the current induced by a higher concentration (10 nM) of ET-1 was highly sensitive to 10 μ M SK&F 96365 but less sensitive to replacement of Ca^{2+} in the bath solution by 2 mM Mn^{2+} : the inhibition by these treatments were $54.8 \pm 6.9\%$, (n=5) and $33.3+9.2\%$ ($n=5$), respectively. In addition, the currents induced by 10 nM ET-1 were abolished by combined treatment with 10 μ M SK&F 96365 and replacement of Ca^{2+} in the bath solution by 2 mM Mn^{2+} $(95.9+7.0\%, n=4)$.

Finally we examined the Ca^{2+} currents activated by ET-1. For this purpose, all the cations in the bath solution were replaced by 30 mM Ca^{2+} and nonpermanent cation NMDG. Even after this replacement, ET-1 at 1 nM evoked an inward current (Figure 8a), which was abolished by adding 2 mM Mn^{2+} to the bath solution (Figure 8a). ET-1 at 10 nM also evoked an inward current in the same bath solution, which was partially and reversibly blocked by 10 μ M SK&F 96365 (Figure 8b).

Figure 7 Summary of the inhibitory effects of 10 μ M SK&F 96365, replacement of Ca²⁺ in the bath solution by 2 mM Mn²⁺ or their combination on whole-cell inward currents induced by varying concentrations (100 pM, 1nM and 10 nM) of ET-1 in A7r5 cells in the presence of 1 μ M nifedipine. A7r5 cells were clamped at a holding potential of -60 mV with the whole-cell configuration. After the ET-1-induced currents had reached a steady-state, 10 μ M SK&F 96365 was added to the bath solution (open bars) or Ca²⁺ in the bath solution was replaced by $2 \text{ mm} \hat{\text{M}} n^{2+}$ (hatched bars). In some experiments (rightmost bar), SK&F 96365 was added after Ca^{2+} in the bath solution had been replaced by 2 mm Mn^{2+} . The inhibition was represented by a percentage of the suppressed current to the current just before addition of SK&F 96365 or replacement of Ca² by 2 mm Mn^{2+} . Each bar represents mean values \pm s.e.mean of 7, 4, 6, 5, 5, 3 or 4 experiments (from leftmost bar). $*P<0.01$; significantly different from the currents before the treatment. $\#P < 0.01$; significantly different from the inhibition by replacement with Mn^{2+} at 100 pM and 1 nM ET-1. $\frac{1}{7}P<0.01$; significantly different from the inhibition by either SK&F 96365 or replacement with Mn^2 at 10 nM ET-1.

Discussion

Measurement of $\int Ca^{2+}$ li in A7r5 cells

In the present study using A7r5 cells, higher concentrations (210 nm) of ET-1 evoked an increase in $[\text{Ca}^{2+}]$ i consisting of two components: a rapid initial transient phase and a sustained phase (Figure 1a). In contrast, lower concentrations $(\leq 1 \text{ nm})$ of ET-1 induced only a sustained phase (Figure 1c). The sustained phase induced by both concentrations of ET-1 was totally abolished by removal of extracellular Ca^{2+} (Figure 1b) and d). These results are consistent with previous results (Enoki et al., 1995a;b; Minowa et al., 1997) and indicate that the sustained phase is due to transmembrane Ca^{2+} influx, whereas the initial transient phase is the result of mobilization of Ca^{2+} from intracellular stores via increased formation of IP3, as noted previously (Kasuya et al., 1989; Van Renterghem *et al.*, 1988). Conversely, these data suggest that Ca^{2+} signaling of ET-1 is different depending on its concentrations; higher concentrations of ET-1 induces activation of Ca^{2+} entry channel with increased formation of $IP₃$, whereas lower concentrations of ET-1 exclusively activate Ca^{2+} entry channel.

The sustained increase in $[Ca^{2+}]$ was partially sensitive to an inhibitor of L-type VOC nifedipine. This result is consistent with previous reports (Goto et al., 1989; Inoue et al., 1990) and indicates that this part of the increase is the result of Ca^{2+} influx through VOC. However, the sensitivity to nifedipine was different depending on the concentrations of ET-1: about half of the increase induced by higher concentrations of ET-1 was eliminated by nifedipine, whereas about 70% of the increase induced by lower concentrations of ET-1 was eliminated (Figures 1 and 2).

The nifedipine-resistant part of the sustained increase in $[Ca²⁺]$ i induced by lower concentrations of ET-1 was totally insensitive to a maximally effective concentration ($\geq 10 \mu$ M) of an inhibitor of voltage-independent Ca^{2+} channel SK&F 96365 (Figure 3b). In contrast, the nifedipine-resistant increase in $[Ca^{2+}]$ i induced by higher concentrations of ET-1 was partially sensitive to SK&F 96365, although the remaining part was insensitive to this blocker (Figure 3a and c). These results show that at lower concentrations of ET-1, only SK&F 96365 resistant Ca^{2+} entry channel is activated, whereas SK&F 96365-sensitive Ca^{2+} entry channel becomes activated with increases in the concentrations of ET-1 in addition to the former channel. Furthermore, these data also show that at all concentrations of ET-1, VOC is activated.

Stimulation of the cells by higher concentrations of ET-1 induced an increase in the rate of Mn^{2+} quenching of fura-2 fluorescence, which was blocked by SK&F 96365. In contrast, stimulation by lower concentrations of ET-1 was without effect on the rate (Figure 4). These results show that Ca^{2+} entry channel activated by lower concentrations of ET-1 is impermeable to Mn^{2+} , whereas the channel activated by higher concentrations of ET-1 is permeable to Mn^{2+} .

Whole-cell current recordings

The current induced by lower concentrations ET-1 $(\leq 1 \text{ nM})$ The characteristics of the current induced by lower concentrations of ET-1 (the linear current-voltage relationship and its reversal potential close to 0 mV) indicate that the channel is either equally permeable to both extracellular Na+ and intracellular Cs^+ (Figure 5) or only to Cl^- . The latter possibility can be excluded because the calculated equilibrium potential for Cl^- (ECl⁻;-46.9 mV in normal Krebs-HEPES

Figure 8 Whole-cell recordings of inward currents induced by ET-1 in A7r5 cells in the presence of 1 μ M nifedipine in 30 mM Ca²⁺ 100 mm N-methyl-D-glucamine (NMDG) solution in A7r5 cells. The cells were clamped at a holding potential of -60 mV with the whole-cell configuration. Upper and lower panels show typical tracings of whole-cell recordings and current-voltage relationships, respectively. ET-1 was added to the bath solution at a final concentration of 1 nm (a) or 10 nm (b) during the time interval indicated by a horizontal bar. After the ET-1-induced current had reached a steady-state, MnCl₂ (a) or SK&F 96365 (b) was added to the bath solution at a final concentration of 2 mM and 10 μ M, respectively. At the time indicated by x and y, voltage steps ranging from -100 to $+80$ mV in 20-mV increments were applied and the current induced by ET-1 was obtained by subtracting currents at x from those at y.

solution) is not close to the reversal potential, and because the pipette solution contains excess EGTA to completely suppress the increase in $[Ca^{2+}]$ i which might trigger Ca^{2+} -activated Cl⁻ current. Thus it can be concluded that the channel activated by low concentrations of ET-1 is nonselective cation channel.

The current was resistant to SK&F 96365 (Figures 5a and 7) and impermeable (or very low permeability) to Mn^{2+} (Figure 4). Notably the current was completely blocked when Ca^{2+} in the bath solution was replaced by Mn^{2+} (Figures 5b and 7). Most importantly, this channel was permeable to Ca^{2+} , based on the data that the current was induced even in the medium containing only Ca^{2+} as a movable cation (Figure 8a). This channel seems to be different from SOCC, because increased formation of IP₃ and subsequent Ca^{2+} mobilization from internal stores are absent at these concentrations of ET-1 (Figures 1, 3 and 4) and because it is resistant to SK&F 96365 which is reported to block SOCC (Chung et al., 1994; Franzius et al., 1994; Koch et al., 1994; Wayman et al., 1996).

It is likely that this channel is responsible for the sustained increase in $[Ca^{2+}]$ i induced by lower concentrations of ET-1, judging from the impermeability to Mn^{2+} and insensitivity to SK&F 96365. In terms of these properties, this channel seems to be an as yet unidentified Ca^{2+} -permeable nonselective cation channel.

The current induced by higher concentrations of ET-1 $(\geq 10 \text{ nm})$ In contrast, the current induced by higher concentrations of ET-1 (≥ 10 nM) was sensitive to both SK&F

96365 and replacement of Ca^{2+} in the bath solutions by 2 mM Mn^{2+} and the sum of their percentage inhibitions adds up to about 100% (Figures 6 and 7). These data indicate that the current induced by higher concentrations of ET-1 (≥ 10 nM) can be divided into two components based on the sensitivity to SK&F 96365 and permeability to Mn^{2+} . One component is resistant to SK&F 96365 and impermeable to Mn^{2+} (Figure 6a, c and 7). In this sense, this channel is considered to be the same channel as that activated by lower concentrations of ET-1.

The other component which is activated specifically by higher concentrations of ET-1 is sensitive to SK&F 96365 and permeable to Mn^{2+} (Figures 6a, b and 7). This current also seems to be conducted through nonselective cation channel based on the following observations. First, the total current induced by higher concentrations of ET-1 showed the linear current-voltage relationship and the reversal potential close to 0 mV (Figure 6a), which was not different from the value obtained by lower concentrations of ET-1 (Figure 5). Secondly, the current inhibited by SK&F 96365 is characterized by the linear current-voltage relationship and the reversal potential close to 0 mV (Figure 6b).

The channel activated specifically by higher concentrations of ET-1 is also permeable to Ca^{2+} . That is, the total Ca^{2+} current induced by higher concentrations of ET-1 consists of two components: SK&F 96365-sensitive and -insensitive components (Figure 8b). The SK&F 96365-insensitive component is considered to result from the channel activated by lower

concentrations of ET-1, judging from its sensitivity to Mn^{2+} and insensitivity to this drug (Figures 5 and 8). It follows that SK&F 96365-sensitive component of the Ca^{2+} current is specific for higher concentrations of ET-1. These data strongly indicate that Ca^{2+} -permeable nonselective cation channel contributes mainly to the increase in $[Ca^{2+}]$ i induced by higher concentrations of ET-1.

As described in Introduction, voltage-independent Ca^{2+} channels are usually classified into four groups according to the mode of activation. The nonselective cation channel activated by lower concentrations of ET-1 but not by higher concentrations is unlikely to be SOCC, because ET-1 at these concentrations does not stimulate formation of IP_3 (and hence store depletion) and because the channel is resistant to SK&F 96365 which is reported to block SOCC (Chung et al., 1994; Franzius et al., 1994; Koch et al., 1994; Wayman et al., 1996). Since it is well-known that stimulation of ET_A receptors causes increased formation of second messengers like cyclic AMP

References

- ARAMORI, I. & NAKANISHI, S. (1992). Coupling of two endothelin receptor subtypes to differing signal transduction in transfected Chinese hamster ovary cells. J. Biol. Chem., 267 , $12468 - 12474$.
- BENHAM, C.D. & TSIEN, R.W. (1987). A novel receptor-operated $Ca²⁺$ -permeable channel activated by ATP in smooth muscle. Nature, 328, 275-278.
- CHUNG, S.C., MCDONALD, T.V. & GARDNER, P. (1994). Inhibition
by SK&F 96365 of Ca^{2+} current, IL-2 production and activation in T lymphocytes. Br. J. Pharmacol., 113 , $861 - 868$.
- CLEMENTI, E. & MELDOLESI, J. (1996). Pharmacological and functional properties of voltage-independent Ca^{2+} channels. Cell Calcium, 19, 269-279.
- ENOKI, T., MIWA, S., SAKAMOTO, A., MINOWA, T., KOMURO, T., KOBAYASHI, S., NINOMIYA, H. & MASAKI, T. (1995a).
Functional coupling of ET_A receptor with Ca^{2+} -permeable nonselective cation channel in mouse fibroblasts and rabbit aortic smooth-muscle cells. J. Cardiovasc. Pharmacol., 26, S258 -S261.
- ENOKI, T., MIWA, S., SAKAMOTO, A., MINOWA, T., KOMURO, T., KOBAYASHI, S., NINOMIYA, H. & MASAKI, T. (1995b). Longlasting activation of cation current by low concentration of endothelin-1 in mouse fibroblasts and smooth muscle cells of rabbit aorta. Br. J. Pharmacol., 115 , $479-485$.
- FASOLATO, C., INNOCENTI, B. & POZZAN, T. (1994). Receptor-
activated Ca^{2+} influx: how many mechanisms for how many channels? Trends Pharmacol. Sci., $15, 77-83$.
- FELDER, C.C., SINGER-LAHAT, D. & MATHES, C. (1994). Voltageindependent calcium channels $-$ Regulation by receptors and intracellular calcium stores. Biochem. Pharmacol., $\hat{48}$, 1997 -2004.
- FRANZIUS, D., HOTH, M. & PENNER, R. (1994). Non-specific effects of calcium entry antagonists in mast cells. Pflügers Arch., 428, $433 - 438$.
- GOTO, K., KASUYA, Y., MATSUKI, N., TAKUWA, Y., KURIHARA, H., ISHIKAWA, T., KIMURA, S., YANAGISAWA, M. & MASAKI, T. (1989). Endothelin activates the dihydropyridine-sensitive, voltage-dependent Ca^{2+} channel in vascular smooth muscle. Proc. Natl. Acad. Sci. U.S.A., 86, 3915-3918.
- GROSCHNER, K., GRAIER, W.F. & KUKOVETZ, W.R. (1994).
Histamine induces K^+ , Ca^{2+} , and Cl⁻ currents in human vascular endothelial cells. Role of ionic currents in stimulation of nitric oxide biosynthesis. Circ. Res., 75 , $304 - 314$.
- HOTH, M. & PENNER, R. (1992). Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature, 355 , $353 -$ 358.
- HUANG, X.N., HISAYAMA, T. & TAKAYANAGI, I. (1990). Endothelin-1 induced contraction of rat aorta: contributions made by Ca^{2+} influx and activation of contractile apparatus associated with no change in cytoplasmic Ca^{2+} level. *Naunyn-Schmiede*with no change in cytoplasmic $Ca²$ berg's Arch. Pharmacol., 341 , $80 - 87$.
- INOUE, Y., OIKE, M., NAKAO, K., KITAMURA, K. & KURIYAMA, H. (1990). Endothelin augments unitary calcium channel currents on the smooth muscle cell membrane of guinea-pig portal vein. J. Physiol. Lond., 423, 171-191.

(Aramori & Nakanishi 1992; Takagi et al., 1995), it is possible that the channels are activated by second messengers (secondmessenger-operated channels). Alternatively, the channels could be directly activated by G-proteins (G-protein-operated channels), considering that ET_A receptors are coupled with Gproteins (Rubanyi & Polokoff, 1994). The cellular mechanisms for activation of these two channels are now under investigation in our laboratory.

In summary, the present study demonstrate that in addition to VOC, stimulation by ET-1 can activate two types of Ca^{2+} permeable nonselective cation channel: lower concentrations of ET-1 activate Ca2+-permeable nonselective cation channel which is resistant to SK&F 96365 and impermeable to Mn^{2+} , whereas higher concentrations of ET-1 activate another type of $Ca²⁺$ -permeable nonselective cation channel which is sensitive to SK&F 96365 and permeable to Mn^{2+} in addition to the SK&F 96365-resistant channel.

- KASUYA, Y., TAKUWA, Y., YANAGISAWA, M., KIMURA, S., GOTO, K. & MASAKI, T. (1989). Endothelin-1 induces vasoconstriction through two functionally distinct pathways in porcine coronary artery: contribution of phosphoinositide turnover. Biochem. Biophys. Res. Commun., $161, 1049 - 1055$.
- KOBAYASHI, S. & TAKAHASHI, T. (1993). Whole-cell properties of temperature-sensitive neurons in rat hypothalamic slices. Proc. R. Soc. Lond. B., $251, 89 - 94$.
- KOCH, B.D., FAUROT, G.F., KOPANITSA, M.V. & SWINNEY, D. (1994). Pharmacology of a Ca^{2+} -influx pathway activated by emptying the intracellular Ca^{2+} stores in HL-60 cells: evidence that a cytochrome P-450 is not involved. Biochem. J., 302 , $187 -$ 190.
- KOMORI, S. & BOLTON, T.B. (1990). Role of G-proteins in muscarinic receptor inward and outward currents in rabbit jejunal smooth muscle. J. Physiol., 427 , $395 - 419$.
- MATTHEWS, G., NEHER, E. & PENNER, R. (1989). Second messenger-activated calcium influx in rat peritoneal mast cells. J. Physiol., 418, 105-130.
- MERRITT, J.E., ARMSTRONG, W.P., BENHAM, C.D., HALLAM, T.J., JACOB, R., JAXA-CHAMIEC, A., LEIGH, B.K., MCCARTHY, S.A., MOORES, K.E. & RINK, T.J. (1990). SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem. J., 271, $515 - 522$.
- MINOWA, T., MIWA, S., KOBAYASHI, S., ENOKI, T., ZHANG, X-F., KOMURO, T., IWAMURO, Y. & MASAKI, T. (1997). Inhibitory effect of nitrovasodilators and cyclic GMP on ET-1-activated $Ca²⁺$ -permeable nonselective cation channel in rat aortic smooth muscle cells. Br. J. Pharmacol., 120 , $1536 - 1544$.
- NEHER, E. (1988). The influence of intracellular calcium concentration on degranulation of dialysed mast cells from rat peritoneum. J. Physiol. Lond., 395, 193-214.
- RUBANYI, G.M. & POLOKOFF, M.A. (1994). Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. *Pharmacol. Rev.*, 46 , $325 - 415$.
- SIMPSON, A.W., STAMPFL, A. & ASHLEY, C.C. (1990). Evidence for receptor-mediated bivalent-cation entry in A10 vascular smoothmuscle cells. *Biochem. J.*, 267 , $277 - 280$.
- TAKAGI, Y., NINOMIYA, H., SAKAMOTO, A., MIWA, S. & MASAKI, T. (1995). Structural basis of G protein specificity of human endothelin receptors. A study with endothelinA/B chimeras. J. Biol. Chem., 270 , $10072 - 10078$.
- VAN HEESWIJK, M.P., GEERTSEN, J.A. & VAN OS, C.H. (1984). Kinetic properties of the ATP-dependent Ca^{2+} pump and the Na^{+}/Ca^{2+} exchange system in basolateral membranes from rat kidney cortex. J. Membr. Biol., 79 , $19-31$.
- VAN RENTERGHEM, C., VIGNE, P., BARHANIN, J., SCHMID ALLIANA, A., FRELIN, C. & LAZDUNSKI, M. (1988). Molecular mechanism of action of the vasoconstrictor peptide endothelin. Biochem. Biophys. Res. Commun., 157, 977-985.
- WAYMAN, C.P., MCFADZEAN, I., GIBSON, A. & TUCKER, J.F. (1996). Two distinct membrane currents activated by cyclopiazonic acid-induced calcium store depletion in single smooth muscle cells of the mouse anococcygeus. Br. J. Pharmacol., 117, $566 - 572.$
- YANAGISAWA, M., KURIHARA, H., KIMURA, S., TOMOBE, Y., KOBAYASHI, M., MITSUI, Y., YAZAKI, Y., GOTO, K. & MASAKI, T. (1988). A novel potent vasoconstrictor peptide produced by vascular endothelial cells. *Nature*, 332 , $411 - 415$.

(Received February 11, 1998 Revised March 24, 1998 Accepted May 12, 1998)