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The potential of genotoxicity biomarkers as predictors of detrimental environmental effects, such as altered reproductive success of wild organisms,
must be rigorously determined. Recent research to evaluate relationships between genotoxic responses and indicators of reproductive success in
model animals is described from an ecotoxicological perspective. Genotoxicity can be correlated with reproductive effects such as gamete loss due
to cell death; embryonic mortality; and heritable mutations in a range of model animals including polychaete worms, nematodes, sea urchins,
amphibians, and fish. In preliminary studies, the polychaete worm, Neanthes arenaceodentata, and the nematode, Caenorhabditis elegans, have
also shown the potential for cumulative DNA damage in gametes. If DNA repair capacity is limited in gametes, then selected life history traits such
as long and synchronous periods of gametogenesis may confer vulnerability to genotoxic substances in chronic exposures. Recommendations for
future research include strategic development of animal models that can be used to elucidate multiple mechanisms of effect (multiend point) at
varying levels of biological organization (multilevel). - Environ Health Perspect 1 02(Suppl 12):9-12 (1994)
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Introduction
Genetic ecotoxicologists are interested in
five detrimental outcomes of exposure to

genotoxic substances. These include
increased frequencies of: gamete loss due to

cell death, embryo mortality (lethal muta-

tions), abnormal development, cancer, and
heritable mutations which may cause either
increased or decreased genetic diversity. In
ecotoxicology, effects on individuals are gen-

erally not as significant as they are in human
toxicology. Consequently, a primary goal of
ecotoxicology is to relate effects manifested
in individuals to changes in population size
or structure. Altered fertility, development,
and embryonic survival are environmentally
significant, because they can reduce repro-

ductive success and thus alter population
size or structure. Nevertheless, little has been
done to explore linkages between genotoxic
responses and resultant reproductive and
developmental effects.
Research to understand the relationships

between genotoxic responses and measures

of reproductive success has its roots in an
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extensive literature on nonmammalian ani-
mal models in radiobiology and chemical
carcinogenesis. For example, Schroeder (1)
reviewed much of the early literature on
radiation-induced mutations in fish.
Others (2) have reviewed research on
germ-cell mutations in animals such as
Drosophila melanogaster. However, this
work was not directed toward ecotoxico-
logical problems. Thus, many of the suc-
cesses in aquatic radiobiololgy have never
been adapted for evaluation of chemical
effects, and model animals such as
Drosophila cannot be used for exposures in
media such as soil, sediment, and water. It
is vital that we build upon findings of pre-
vious studies as well as continue to develop
and improve effective techniques for
addressing ecotoxicological problems.
With the development of new animal

models in genetic ecotoxicology, new rela-
tionships between genotoxic responses and
measures of reproductive success are begin-
ning to emerge. These recent advancements
set the stage for rapid progress in this field in
the years to come. We present an overview,
from an ecotoxicological perspective, of
recent research relating genotoxic responses
and measures of reproductive success in key
animal models. In addition, selected princi-
ples that could accelerate progress in this
area of research are discussed.

The Polychaete Worm
Neanthes arenaceodentata
Using the polychaete, Neanthes arenaceo-
dentata, correlations between cytogenetic
effects and decreased fertility have been
observed. These studies have also provided

evidence that certain life history traits may
confer vulnerability to genotoxic substances
(3). Harrison et al. (4) initiated research
into the cytogenetic effects of ionizing radi-
ation. They determined that chromosomal
aberrations and sister chromatid exchanges
(SCE) were induced in larvae of N. are-
naceodentata at 2.0 Gy and 0.6 Gy, respec-
tively. In a subsequent study, N.
arenaceodentata were exposed to several
doses of gamma radiation, and the doses at
which chromosomal aberrations were
induced (in mixed tissues of juveniles) were
compared to the doses at which broodsize
alterations and lethality occurred in both
irradiated adults and irradiated juveniles
(5). At 2.0 Gy, significant increases in
chromosomal aberrations were observed
again. Significant decreases in broodsize
were observed at 4 Gy in worms irradiated
as adults and at 8.4 Gy in worms irradiated
as juveniles; in contrast, lethality occurred
at much higher doses of 500 Gy. It was
hypothesized that chromosomal aberrations
caused cell death in gametes and subse-
quent decreases in broodsize. It would be
expected that cytogenetic effects could be
detected at lower levels than broodsize
decreases, because some cytogenetic
changes, such as small chromatid deletions,
would not always be lethal to cells.
Refined estimates of the acute doses of

ionizing radiation that caused both
decreased fertility and increased embryonic
mortality were developed later. in this study
(6), in which adult N. arenaceodentata were
irradiated, broodsize decreases were only
observed between 5 and 10 Gy, but embry-
onic mortality was observed at much lower
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doses of 0.5 Gy. Significantly, the doses at
which embryonic mortality was induced
were similar to those at which SCE were
induced in the first study. Because SCE
have been correlated with mutagenesis (7),
it is possible that these are predictive of the
levels at which lethal mutations are induced
in embryos. These data suggest that embry-
onic mortality might have been attributable,
at least in part, to lethal mutations in
embryos and that lethal mutations in
embryos may be more sensitive indicators of
reproductive impairment than are alter-
ations in fertility. For N. arenaceodentata,
Anderson and Harrison (3) have reviewed
the mechanistic linkages between genotoxic
responses and measures of reproductive suc-
cess as well as the factors such as cell cycling
and gametogenic stage that may modify
effect-level estimates.
Chronic-exposure experiments were also

conducted (8). Comparison of the embry-
onic survivorship data obtained from acute
and chronic exposures revealed that DNA
repair may not be active in gametes of this
species. For total doses of 10 Gy or less,
rates of embryonic mortality observed in
chronic exposures were the same as those
observed following acute exposures of the
same total dose. These data indicate that
DNA damage may be cumulative in
oocytes of N. arenaceodentata, which leads
to the hypothesis that organisms with long
synchronous periods of gametogenesis may
be more vulnerable to cumulative effects of
chronic exposure to genotoxic substances,
depending on the repair capacities of
oocytes.

The Nematode
Caenorhabditis elegans
The nematode Caenorhabditis elegans is an
excellent animal model for evaluating rela-
tionships between genotoxicity and repro-
ductive success. Virtues of this species
include: availability of detailed information
regarding genetics, reproduction and devel-
opment (9), a short generation time of 4
to 5 days, hermaphroditic reproduction
which negates the need to conduct mat-
ings, and availablility of procedures for
long-term culture and mutagenesis research
(10). In addition, cytogenetic methods are
available for embryonic nuclei (11).
Recent experiments with C elegans high-

light the importance of considering a diver-
sity of genotoxic responses and
reproductive outcomes in assessing the
effects of mutagenic substances. For exam-
ple, experiments in which young adult
worms were exposed to ethyl methane sul-
fonate (EMS) at a developmental stage in

which both mature sperm and primary
oocytes had been formed have shown that
significant increases in mutation frequen-
cies were observed at doses as low as
0.5mM EMS. Yet, a significant decrease in
the number of viable progeny occurred only
at doses in excess of 45 mM (12). Because
not all mutations will cause embryonic
death or decreased fertility, the low-level
effects of some substances may be more
likely to be related to heritable mutations
than to reproductive success. In contrast,
experiments with ultraviolet-B (UV-B) have
shown that both broodsize may decrease
and the frequency of sterile worms may
increase at doses that do not cause
detectable mutations in some mutagenesis
assays. Specifically, ongoing research in
which C. elegans are continuously exposed
to UY-B (using the irradiation techniques
of Karentz et al. (13)) over 12 generations,
has shown that broodsize decreases by 50%
in the first generation and remains stable at
the 50% level throughout all subsequent
generations. In contrast, the frequency of
sterile worms increased in every generation
after the first six generations of exposure.
Using an assay that targets a 350-gene
region (10), we quantified induced muta-
tions in nematodes removed from the
multigeneration exposure experiment after
12 generations of exposure. No increase in
mutation frequencies over controls was
observed. The mechanism of generating
sterile worms is unknown and although a
genetic effect is strongly suggested, this was
not supported by the results of this particu-
lar mutagenesis assay.
Similar to the polychaete studies, putative

cumulative dose effects were observed in the
nematode. When C. elegans (with mature
sperm and primary oocytes) were exposed to
10 mM EMS for 1, 4, 8, and 24 hr, a dose-
dependent increase in mutation frequencies
was observed (Table 1). A rigorous test of
the extent to which long-term, low-level
exposures to mutagens may be accumulated
in gametes would require direct assessments
of the kinetics of absorbed dose and of
DNA repair in gametes. In the mouse, it is
believed that DNA repair is not active in

postmeiotic cells (14), and thus precedent
exists for low DNA repair capacities in
selected gametogenic stages of some organ-
isms. Further experimental assessments
would greatly increase our understanding of
the factors that confer vulnerability to geno-
toxic substances as well as of the potential
for low-level exposures to cause significant
environmental harm. Because controversy
often surrounds prediction of low-dose
effects in environmental risk assessment,
further mechanistic research could have
important implications in environmental
management.

The Sea Urchin Strongylo-
centrotus purpuratus
The sea urchin, Strongylocentrotus purpura-
tus, is an ideal species for evaluating rela-
tionships between cytogenetic responses in
embryos and abnormal development. Hose
(15) adapted an anaphase aberration tech-
nique to aquatic embryos which has proved
a practical assay for assessing genotoxicity.
In addition, development and fertilization
responses in this species have been studied
widely and used in bioassays conducted for
environmental regulation.
Recently, the sensitivity of the anaphase

aberration assay was compared to that of
abnormal development in embryonic S.
purpuratus (16). These were also compared
to the sensitivity of the fertilization end
point, which is most commonly used in
environmental management (Table 2). For
phenol, anaphase aberrations were induced
at doses that did not significantly inhibit
development. In contrast, pentachlorophe-
nol exposure induced anaphase aberrations
only at doses higher than those that elicited
abnormal development. Benzidine exposure
resulted in significant increases in anaphase
aberrations and abnormal development at
the lowest dose tested. For these three
chemicals, fertilization was never the most
sensitive end point. These data highlight
the need for both development and geno-
toxicity assays in ecological risk assessment.
The development test clearly predicts toxic-
ity associated with mechanisms which may
include genetic effects. On the other hand,

Table 1. Mutagenesis in the nematode Caenorhabditis elegans following exposure to 10 mM EMS at four time
points.a

Exposure time, hr No. F1 No. mutants Mutant frequency, x 10-2
1 258 5 1.9 ± 0.9
2 251 9 3.6 ± 1.2
8 286 23 8.1 ± 1.7

24 195 34 17.0±3.0

"The assay was conducted according to the methods of Rosenbluth et al. ( 10) using JP10 nematodes. The labora-
tory control value for mutation frequencies in this assay is 0.2 ± 0.2 x 1 0-2.
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Table 2. Lowest observed effect concentrations (LOEC) for fertilization, development, and anaphase aberrations in
embryos of the sea urchin, Strongylocentrotus purpuratus, exposed to three mutagenic chemicals (concentrations
in mg/I) after Anderson et al. (15).

Chemical Fertilization Development Anaphase aberrations

Phenol 50.0 > 20.0 2.5
Pentachlorophenol 0.5 <0.1 <0.1
Benzidine 10.0 < 1.0 10.0

the genotoxicity assay can be more sensitive
and may be predictive of latent effects that
will not be realized until later stages of
development. To our knowledge, stage-
specific expression of genotoxic effects has
never been evaluated in aquatic organisms.
The sea urchin has also been used to evalu-

ate the developmental and genotoxic effects
of increasing UV-B as a consequence of
Antarctic ozone depletion (17). Antarctic
sea urchins, Sterechinus neumayeri, were
exposed to UV-B in laboratory settings and
in situ at Palmer Station Antarctica.
Development, cellular abnormalities, and
cytogenetic effects were assessed. Data from
this study have shown that under ambient
ozone column conditions (e.g., not
depleted), UV-induced damage can be
significant in surface exposures and that
attenuation of effects with depth can be
monitored. These data highlight the fact
that assays to evaluate multilevel effects can
also be deployed for in situ experimentation.
Expanded development of multilevel, in situ
experimentation will add realism to our
assessments of genotoxic and reproductive
effects as current correlative relationships
may easily be modified by environmental
factors such as ambient ultraviolet light,
temperature, and oxygen tension.

Vertebrate Models
Linkages between genotoxicity and repro-
ductive success have been evaluated in a
variety of fish species. Longwell has pio-
neered this area of research with evalua-
tions of mitotic abnormality and embryo
mortality in Atlantic mackerel, Scomber
scombrus (18). A positive correlation
between anaphase aberration frequencies
and developmental abnormalities was also
obtained using trout embryos (19).
Subsequently, studies of larval herring (20)
have shown that anaphase aberrations are
positively correlated with developmental
abnormalities but also may be related to
success of individual year classes. The
induction of dominant lethal mutations by
radiation and chemicals has also been eval-
uated in a variety of fish species. The most
extensive research has been conducted with
the Japanese medaka, Oryzias latipes

(21,22). We are now expanding on this
research with studies of female germ cell
mutagenesis. Eventually, we hope to use
the medaka for studies elucidating mecha-
nisms of oocyte loss and embryo mortality.
Recently, genotoxic effects on amphibians

are being considered in our laboratory from
an ecological perspective. Although other
investigators have evaluated genotoxic effects
in amphibia exposed to mutagenic chemi-
cals (23), none have determined whether
genotoxic responses were predictive of detri-
mental reproductive effects. Studies are
underway to determine whether there are
correlations between frequencies of micro-
nuclei in circulating erythrocytes, DNA
adducts in liver, wet weight at metamorpho-
sis, and time to metamorphosis of Xenopus
laevis tadpoles following exposure to
benzo[a]pyrene. Time to metamorphosis is
related to fitness due to the necessity for lar-
vae to attain metamorphosis before larval
habitats become dry (24,25). Size at meta-
morphosis can be associated positively with
reproductive success (26). Traits that relate
to the fitness of an individual as it concerns
reproductive success can be numerous, and
the complex interrelationships between
these traits and genotoxic responses remain
almost totally unexplored.

Summary and
Recommendations
This article has raised three key points that
will have bearing on the development of
research into linkages between genotoxic
responses and reproductive effects in eco-
toxicology. These are: a) Mutations are
associated with gamete loss, abnormal
development, embryonic mortality, or heri-
table mutations in a variety of animal mod-
els. These effects can be related to
reproductive success directly or indirectly
via ecological correlates. In situ monitoring
of genotoxic responses in animals will be
accelerated as the significance of genetic
biomarkers is established and related to
detrimental reproductive effects. b) Life his-
tory traits conferring vulnerablility to geno-
toxic substances should be elucidated in
mechanistic studies which will aid in ratio-
nal selection of model animals. c) A diver-

sity of biological end points and experimen-
tal designs must be carefully considered in
studies relating genotoxic and reproductive
responses. For example, mutations, sterility,
embryonic mortality, cell death, and epige-
netic alterations may arise in one system or
exposure but not in others. Assays and
monitoring strategies could be designed in a
more parsimonious manner if mechanistic
understandings of the most responsive end
points for specific exposure conditions were
developed and such end points proved to be
consistently responsive.
These key points lead to the following

specific recommendations for strategic
development of animal models for genetic
ecotoxicology research. Most research cited
herein into development of assays using
model animals has taken into account fac-
tors such as ease of culture, knowledge and
manipulability of reproductive cycle, avail-
ability of genotoxicity test techniques, and
practical applications to diverse media. In
some instances, more sophisticated con-
cerns such as vulnerable life history strate-
gies (3), amenablility to multilevel or
multigeneration experimentation [research
in progress (5,12,16,17)], and feasibility of
assessing multiple genotoxic and reproduc-
tive end points have been considered.
However, additional considerations must
be addressed. For example, DNA repair
capacity, chromatin configuration, and sus-
ceptibility of gametogenic stages may all
have a bearing on the potential sensitivity
of an animal model (27). In addition, the
appropriateness of an animal model as a
candidate for the implementation of mod-
ern molecular techniques should be consid-
ered. It is recommended that further
development of animal models maximize
the potential for multiend point and multi-
level investigations for acute (high dose,
short exposure) and chronic (low dose,
long exposure) exposures, the vulnerability
of life history traits be examined, direct
assessments of damage to germ cells be
encouraged, and selected development of
modern molecular genetic techniques be
considered an essential priority.
As we move toward more strategic devel-

opment of the field of genetic ecotoxicol-
ogy, we accelerate our progress toward our
ultimate goals. These are to assess geno-
toxic damages in situ and understand their
significance, to provide realistic predictions
of the biological effects of genotoxic sub-
stances before they are discharged, and to
understand how toxicant-induced changes
in genomes and gene pools might affect the
long-term survival of populations.
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