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Risk characterization involves hazard identification, determination of dose-response relationships, and exposure assessment. Improvement of the risk
assessment process requires inclusion of the best available science. Recent findings in the area of dioxin toxicity have led to a major effort to
reassess its risk. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), commonly referred to as "dioxin," is the most toxic member of a class of related chem-
icals including the polyhalogenated dibenzo-p-dioxins, dibenzofurans, biphenyls, naphthalenes, azo- and azoxy-benzenes, whose toxicities can be
expressed as fractional equivalencies of TCDD. These chemicals exert their effects through interaction with a specific intracellular protein, the Ah
receptor. While binding to the receptor is necessary, it is not sufficient to bring about a chain of events leading to various responses including
enzyme induction, immunotoxicity, reproductive and endocrine effects, developmental toxicity, chloracne, tumor promotion, etc. Some of these
responses appear to be linear at low doses. Immunotoxicity and effects on the reproductive system appear to be among the most sensitive
responses. The Ah receptor functions as a transcriptional enhancer, interacting with a number of other regulatory proteins (heat shock proteins,
kinases, translocases, DNA binding species). Interaction with specific base sequences in the DNA appear to be modulated by the presence of other
growth factors, hormones, and their receptors as well as other regulatory proteins. Thus, dioxin appears to function as a hormone, initiating a cas-
cade of events that is dependent upon the environment of each cell and tissue. While Ah receptor variants exist, all vertebrates examined have
demonstrated such a protein with similar numbers of receptors and binding affinity for TCDD. Most species respond similarly to dioxin and related
compounds. While a given species may be an outlier for a given response, it will behave like other animals for other responses. For both in vivo and
in vitro end points where animal and human data exist, such as enzyme induction, chloracne, immunotoxicity, developmental toxicity, and cancer, the
sensitivity of humans appears similar to that of experimental animals. Current levels of environmental exposure to this class of chemicals may be
resulting in subtle responses in populations at special risk such as subsistence fisherman and the developing infant, as well as in the general popula-
tion. Increased understanding of the mechanism of dioxin's effects as well as elucidation of exposure-dose relationships is leading to the develop-
ment of a biologically based dose-response model in the ongoing process of incorporating the best science into the risk assessment of TCDD and
related compounds.- Environ Health Perspect 102(Suppl 9)157-167(1994)
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Introduction
Risk assessment is a scientific process that
can be divided into several stages. These
phases involve exposure assessment, hazard
identification, and elucidation of dose-
response relationships. Integration of these
various activities results in scientific risk

characterization. These assessments can

then be put in the context of economic
considerations, societal benefits, policy
considerations, etc., when formulating a

risk management decision. Thus, while risk
assessment is an integral component of risk
management, this scientific exercise is only
part of the decision-making process.
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Improvement of the risk assessment
process requires the incorporation of the
best and most current scientific thinking.
In place of default positions which make
certain assumptions, dosimetric and mech-
anistic information can be incorporated to
reduce the uncertainties involved in risk
characterization.

Recent findings in the field of dioxin
toxicity have led to a major effort to
improve the assessment of its risk. This was
in response to a meeting of international
experts held under the auspices of the
Banbury Center (1) in the fall of 1990.
While this was not a consensus conference,
general agreement was reached on several
issues: a) as far as is known at this time, all
dioxin effects are mediated through the Ah
receptor; b) people have sensitivity similar
to animals to dioxin effects and c) com-
pounds which are related in structure to
dioxin and have the same mechanism of
action need to be considered as part of the
dioxin problem. Therefore, having a better
understanding of the hazard and the mech-
anism of dioxin effects, a more biologically
based risk assessment should be achievable.

There was not general agreement on what a
"safe" level of dioxin would be, although
there was a hypothesis suggested that if a
threshold for receptor activation existed,
then there would be an exposure level at
which no responses could occur. Research
needs were identified to address this crucial
question.

The focus of this manuscript is to
address the issue of the mechanism of
dioxin toxicity and how this information
can improve the risk assessment process.

Backgound
2,3,7,8-Tetrachlorodibenzo-p-dioxin
(TCDD, dioxin) is the most toxic member
of a class of planar, halogenated chemicals
(Figure 1). It has no known industrial or
commercial use and has been produced as
an unwanted byproduct of certain indus-
trial processes and combustion. TCDD has
been produced during the production of
certain chlorinated phenols and their deriv-
atives, and as a result of high temperature
pyrolysis and combustion of organic com-
pounds containing halogens. Chlorine
bleaching of paper pulp has also led to the
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Figure 1. Structure of 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD; dioxin).

production of dioxin in paper products.
Dioxin is extremely stable, both to envi-
ronmental and biological breakdown, lead-
ing to its persistence in the environment
and its bioaccumulation in the food chain.
Because of its high lipophilicity and water
insolubility, dioxin concentrates in sedi-
ments and is incorporated into the fatty tis-
sue of fish, birds, reptiles, and mammals.
Much of its presence in plants is due to
atmospheric transport on particles, result-
ing in settling on the leafy tissues of plants.
Dioxin can also be found in consumer
products such as chlorinated herbicides,
chlorinated phenol-containing products,
and contaminated paper goods (2).

Biological Responses to TCDD
Dioxin causes a broad range of effects, some
of which are species specific (3-5). Dioxin
is often described as the most toxic man-
made chemical because of the low doses
which cause lethality in certain animal
species such as the guinea pig. Dioxin
causes delayed lethality, the time to death
being dependent on the species in question,
not on the doses (6). For example, the time
to death varies from 1 to 2 weeks in the
guinea pig, 2 to 3 weeks in the rat, 3 to 4
weeks in the mouse, and 6 to 8 weeks in the
monkey. Death is usually preceded by a
severe loss of body mass, called the wasting
syndrome. Laboratory animals often lose
from one third to one half of their body
weight prior to death. This process is
noticeable within days of a lethal dose.
Nonlethal, but highly toxic, doses may also
result in severe wasting (7). Atrophy of the
lymphoid tissues, such as the thymus and
spleen, and of the testes occurs at acutely
toxic doses in adult animals.

Hyperplastic and/or metaplastic
changes are also characteristic of certain
epithelial tissues. The liver is a dioxin tar-
get organ in many species (8). Increase in
liver size can occur at relatively low doses,
reflecting not only enzyme induction but
also changes in lipid content. Necrosis and
fatty changes occur at higher doses. In the
guinea pig, effects on the liver can be
observed at the ultrastructural level (9).
No effects on liver function have been
observed in highly exposed humans (10).

Hyperplasia has also been reported in the
gastric mucosa, and the bile duct and uri-
nary bladder epithelia. Squamous metapla-
sia occurs in the Meibomian glands of the
eyelid, resulting in blepharitis, and in the
ceruminous glands of the ears, leading in
both cases to waxy exudates.

Chloracne has been called the "hall-
mark of dioxin toxicity" (11). This is a
severe form of cystic acne involving both
hyperplastic and hyperkeratotic changes in
the skin, as well as altered pigmentation.
Chloracne occurs following either dermal
or systemic exposure in sensitive species,
which include man, monkeys, hairless
mice, and rabbits. The condition is
extremely persistent, in some cases lasting
over 30 years following the initial exposure.
Dioxin and related compounds cause a
generalized ectodermal dysplasia (12),
resulting in alterations in the teeth and
nails in both humans and monkeys, as well
as effects on the nails of hairless mice (13).
Chloracne is a relatively high-dose response
to dioxin, occurring in mice and monkeys
at doses where effects such as thymic atro-
phy and some wasting are noted. In
humans, it is a reliable indicator of heavy
dioxin exposure (14).
TCDD is a developmental toxin in all

species examined. However, it appears to
induce major structural abnormalities fol-
lowing prenatal exposure only in the mouse
(15) where it causes hydronephrosis and
cleft palate at doses which are not fetally or
maternally toxic. This characteristic
syndrome has been used to categorize
chemicals as to whether or not they are
dioxinlike. Prenatal exposure of the devel-
oping mouse fetuses also has effects on the
developing immune system, leading to
altered differentiation of lymphocytes
(16). Recent studies by Peterson and co-
workers (17-19) have demonstrated that
in utero exposure to the developing male
rat pup leads to persistent demasculiniza-
tion and feminization. Embryo/fetal toxic-
ity occurs at similar maternal doses in the
guinea pig, rat, and hamster (20).

Dioxin is highly immunotoxic in the
mouse (21). One of the most sensitive
responses is the suppression of the primary
antibody response, an integrated response
requiring the combined action of B-cells,
T-cells, and macrophages. In addition,
dioxin appears to compromise the host
defenses of the mouse as shown by
enhanced sensitivity to influenza virus
(22), and mutes the response to trichinella
(148). In vitro studies have suggested that
mouse, monkey, and human lymphocytes
are responsive to dioxin effects. Recent

Table 1. Biochemical effects of TCDD.

A. Enzyme Induction->Altered metabolism
CYPlA 1 (3)
CYP1A2 (3)
DT-diaphorase (3)
UDP-glucuronyltransferase (3)
Glutathione-S-transferase (3)
Aldehyde dehydrogenase (3)
Ornithine decarboxylase (3)
Tyrosine kinase (130,131)
Terminal deoxynucleotidyltransferase ( 16)
Phosphoenolpyruvate carboxykinase (132)
Plasminogen activator inhibitor-2 (68)

B. Modulation of hormones and receptors
-eAltered homeostasis
Androgens (88,133,87)
Estrogens (3)
Estrogen receptor (134,135,73)
Glucocorticoids (3,136)
Glucocorticoid receptor (73)
Insulin ( 137,138)
Gastrin (139)
Thyroid hormones (140,141)
Melatonin (142)

C. Modulation of growth factors and receptors
--altered growth and differentiation
Vitamin A (3)
EGF( 143)
TGFa (31,143,144,30)
EGF receptor (91,29,31)
TGFo (31,143,144)
TNFa (145)
IL1 (68)
c-Ras (146)
c-ErbA (147)

studies have demonstrated, however, that
the rat is relatively resistant to the
immunosuppressive effects ofTCDD, with
doses that cause mild thymic atrophy actu-
ally resulting in enhancement of the pri-
mary antibody response (R Smialowicz,
personal communication). Similar doses
result in enhanced sensitivity in the rat to
influenza virus (G Burleson, personal com-
munication).

The carcinogenicity ofTCDD has been
examined in 17 studies in laboratory ani-
mals (23). All of these studies demon-
strated that dioxin is a positive animal
carcinogen in the rat, mouse, and hamster.
It causes tumors at multiple sites in both
sexes. In addition, recent studies with fish
have demonstrated that dioxin is a multi-
site, multisex carcinogen in Medaka (24).
While a number of inconclusive epidemio-
logical studies have been conducted (25),
three recent mortality studies (26-28)
involving occupational exposure, validated
by serum TCDD levels in a subset of the
exposed cohort, have demonstrated an
increased risk for all cancers after dioxin
exposure.
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Figure 2. Cartoon for the mechanism of action of
TCDD and related chemicals. Abbreviations: L, ligand;
R, receptor; hsp, heat shock protein; *, activation.

The biochemical effects of TCDD may

be difficult to classify as toxic or adverse
responses, but they clearly represent a mol-
ecular and/or cellular response to that
chemical. These effects can be grouped into
three classes (Table 1): a) altered metabo-
lism resulting from changes in enzyme lev-
els; b) altered homeostasis resulting from
changes in hormones and their receptors;
and c) altered growth and differentiation
resulting from changes in growth factors
and their receptors. Not all of these effects
occur in all species, and many are tissue
specific. The mechanism is also not under-
stood for many of these effects. However,
changes in the drug-metabolizing enzymes
involve transcriptional control. Some of the
effects on hormone levels such as estrogen
and thyroid hormones may involve
increased metabolism of these hormones as

a result of the induction of the drug-
metabolizing enzymes. In contrast, the
basis for the changes in the receptors for
both the hormones and growth factors is
not understood. The tissue and stage speci-
ficity of these effects must be emphasized.
For example, while dioxin results in a

decrease in the level of hepatic EGF recep-
tor (29), and an increase in its ligand
TGFoc in human keratinocytes (30), the
inverse is true in the developing palate
(31). No change has been noted in the
EGF receptor in hairless mouse skin under-
going a chloracenergenic response (32).

Mechanism ofAction

How does dioxin cause its biological effects?
There is general agreement that all the effects
of TCDD are mediated through the action
of a cellular protein known as the Ah recep-
tor (33-36). This is a high-affinity binding
protein, present in low numbers per cell. It
has been found in most tissues, although the
number varies (37,38). The binding affinity
appears to be similar for a large number of
species, induding humans (39). The general

scheme for the action of the Ah receptor is
shown in Figure 2. This cartoon is analogous
to that developed for several of the steroid
receptors, and it has been hypothesized that
the Ah receptor may belong to the steroid
receptor superfamily (40-42). However,
recent cloning of the Ah receptor (43,44)
has revealed no sequence homology between
the ligand binding subunit of the Ah recep-
tor and the steroid receptor superfamily.
These two groups have found that the Ah
receptor has a basic helix-loop-helix domain
that allows interaction with DNA, and, as
will be discussed, interacts with DNA in the
form of a heterodimer with another basic
helix-loop-helix protein (45).

Like any kind of hormone which acts as
a second messenger in the cell, TCDD
action can be thought of as involving three
separate steps: a) recognition of the signal;
b) transduction of the signal; and c)
response. The first step of signal recogni-
tion involves binding of the ligand,
TCDD, or a related compound, to the Ah
receptor. This interaction is highly specific;
detailed structure/activity relationships
have been developed for this interaction,
which appears to involve not only the
necessity of lateral halogenation and polar-
izability, but planarity and stacking interac-
tions as well (34,46,47). Recent studies
have shown that the form of the ligand
binding subunit of the Ah receptor that
binds to TCDD is not an isolated peptide,
but part of a multimeric complex. Based on
results using immunoprecipitation of the
complex with either antibodies to the lig-
and binding subunit (48) or to HSP90
(49,50), it has been suggested that two
molecules of HSP90 are involved in this
ligand-binding complex. Recent studies by
Perdew (51) have indicated that the
cytosolic form of the receptor is a tetramer
involving two molecules of HSP90, the lig-
and binding subunit, and a molecule of
p50. However, the presence of two hsp9O
molecules it still tentative since recent stud-
ies using high stringency immunoprecipita-
tion of the ligand binding subunit with
monoclonal antibodies fails to bring down
the stress proteins (52). Nevertheless, it is
clear that binding of the ligand to the Ah
receptor involves a multimeric protein
complex.

Once TCDD is bound to the receptor,
the other proteins dissociate. It is not clear
whether this occurs prior to nuclear
translocation. Perdew (53) has shown that
the tetrameric species can be found both in
the cytosol and in the nucleus. Other
investigators have demonstrated that the
physical behavior of the ligand-bound

receptor is different in the cytosol and the
nucleus (54). The predominant nuclear
form of the receptor appears to be a het-
erodimer. Using wild-type and mutant
mouse hepatoma lines, Hankinson and co-
workers (55) had demonstrated that
translocation of the ligand-binding subunit
into the nucleus required interaction with a
protein called "arnt" (aryl hydrocarbon
receptor nuclear translocating protein).
More recent work by this group (45) has
shown that the arnt protein actually dimer-
izes with the ligand binding subunit to
form the DNA-binding species.

Activation of the receptor requires more
than ligand binding, dissociation of the
multimeric complex, translocation into the
nucleus, and dimerization. In addition,
activation of the heterodimer appears to be
required. Treatment of the ligand/receptor
complex with RNAse appears to block its
DNA binding ability (56), suggesting the
potential involvement of RNA in the
receptor action. Phosphorylation also
appears to be required for an active DNA-
binding species to be formed. Phosphatase
treatment blocks DNA binding (57), and
DNA binding can be facilitated by treat-
ment with protein kinase C (58), suggest-
ing that serine/threonine phosphorylation
plays an essential role in putting the recep-
tor in a DNA binding form. However,
other data suggests that dephosphorylation,
possibly at another site, may also be a nec-
essary step in the activation process since
the active form of the receptor has a higher
pI than the dimeric form which is unable
to bind to DNA (53). The sequential
nature of phosporylation and dephosphory-
lation steps in the activation of the receptor
is also suggested by in vivo data suggesting
that phorbol esters, which activate protein
kinase C, can block the action ofTCDD at
the level of the receptor (59).

The activated receptor-ligand complex
binds to specific sites on DNA, and appears
to function as a transcriptional enhancer
(60). This interaction has been best
described for control of the CYPIA1 gene,
resulting in induction of the synthesis of
this cytochrome not only in the liver, but in
extraheptatic tissues. The dioxin responsive
enhancer (DRE; xenobiotic responsive
enhancer, XRE) is located in the 5' region
upstream of the structural gene for the
cytochrome. It involves a core heptanu-
cleotide sequence, TXGCGTG, sur-
rounded by flanking regions and occurs in
multiple copies upstream of the transcrip-
tion start site (61-63). Within the core
sequence, several nucleotides are absolutely
essential for binding; mutational analysis
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Figure 3. Possible mechanism of gene specificity.

has demonstrated that mutation of these
bases eliminates binding (64). Use of
reporter constructs has also shown that
there appears to be cooperativity in the con-
trol of expression of CYPIAI by the DRE
(65). Presence of two consensus sequences
within the DRE results in a synergistic
enhancement of transcription as compared
to the presence of only one consensus
sequence. It is not yet clear whether the
presence of the third, or even a fourth, con-
sensus sequence within the DRE leads to
additional cooperativity. Inhibitory regions
have also been suggested to be present in
the regulatory region, which may block the
enhancer action of the receptor (66).
A note of caution should be exercised

when the mechanism of action of TCDD
and the receptor complex is described.
Almost all of the studies have involved the
control of the CYPIAI gene in either liver
or hepatoma cells. Analysis of control of
CYPIA2 has failed to reveal the presence of
a consensus sequence or even the exact
CYPIA1 core in the region upstream of the
CYPIA2 gene (67). Sequence analysis of
the regulatory region of PAI-2, which has
been shown to be transcriptionally regu-
lated in human keratinocytes (68), has also
failed to reveal the presence of a functional
CYPIAI DRE (C Corton, personal com-
munication). The same caution should be
exercised in the understanding of the het-
eromeric nature of the DNA binding form
of the receptor. While the arnt protein is
involved in binding to the receptor in regu-
lating the expression of CYPIAI, it is pos-
sible that it is but one of a family of
proteins which bind to the ligand-binding
subunit (Figure 3). The presence of multi-
ple "arnts" has been suggested by recent
studies of Tukey and co-workers (69),
indicating that a second protein may be
involved in binding to the regulatory
region of CYPIA2. It is possible that it is
the interaction with this second protein
that controls both the DNA binding,
which is the interaction with specific and

unique genes, and the tissue specificity of
dioxin's effects.

The question that is frequently asked is
whether or not the Ah receptor controls all
the effects of dioxin. The discussion above
makes it clear that this is too simplistic a
question. What is meant by the Ah recep-
tor? Are we talking about the ligand bind-
ing subunit? If so, the answer appears to be
yes. If one is talking about the tetrameric
cytosolic species, which probably modu-
lates the specificity of the ligand binding,
or about the activated heteromer which is
involved in interaction with DNA, the
answer may be more complicated. Two
lines of evidence have been used to address
the role of the receptor in dioxin's effects.
The first involves structure-activity studies
in which there is an apparent rank order in
the relationship between compounds that
can bind to the receptor and their effects.
Chemicals with higher affinity binding are
more potent in their effects (70).

The second approach involves the use
of mouse strains which have different
alleles coding for the ligand binding sub-
unit of the receptor (71). The prototypic
strains are the C57BL/6, which has a high-
affinity receptor, and the DBA/2, which
has a low-affinity receptor. The difference
in this receptor makes these two strains rel-
atively more sensitive to TCDD and
responsive to the effects of 3-methylcholan-
threne, or resistant to TCDD and nonre-
sponsive to 3MC. Poland and Glover (71)
demonstrated that a number of the effects
of TCDD-lethality, thymic atrophy,
induction of cleft palate, enzyme induc-
tion-segregated with the Ah allele, with
those animals having the responsive allele
being more sensitive. Induction of chlo-
racne and tumor promotion in hairless
mice was also shown to segregate with the
responsive allele (72). Using mice congenic
at the Ah locus, Birnbaum and co-workers
(6) demonstrated that effects on LD50 val-
ues, organ weights, and clinical chemistry
measures segregated with the Ah allele.
Induction of CYPIAI, as measured by
hepatic ethoxyresorufin-O-deethylase activ-
ity, was allele-dependent as was decreased
binding to the estrogen receptor (73). The
responsive congenic mice were also more
sensitive to the effects of TCDD on the
EGF receptor than were the nonresponsive
congenic mice (29).

Several recent studies have suggested
that binding to the Ah receptor may not be
required for dioxin's effects. One of these
studies involves the use of the two unre-
lated strains of mice and effects on develop-
mental tissues from these animals (74). It

is well known from studies of the steroid
receptors that during development, recep-
tor function may be differentially con-
trolled. If the ability of the ligand binding
subunit to bind TCDD is controlled by its
interaction with other proteins, such as
HSP90 or p50, changes in these proteins
during development may alter the ligand
binding specificity. The second series of
studies which have been interpreted to sug-
gest that the Ah receptor may not be essen-
tial for dioxin's effects involve some of the
immunotoxic effects of TCDD in mice
(75). In vitro, the lack of structure activity
relationships may be a reflection of the
need for serum in the culture conditions
(76). Dioxin's effects are easily modulated
by the presence of serum and other factors
in the growth media. Of greater interest is
the apparent lack of difference in immuno-
toxic responses (specifically the response to
sheep red blood cells) between C57BL/6
and DBA/2 mice when TCDD is given
over a 2-week period in divided doses (77).
Dosimetric differences between these two
strains may play a role in the apparent lack
of Ah-mediated response (78). While even
at low divided doses the hepatic binding
protein which sequesters TCDD in the
liver would be induced in the responsive
strain, it would not be induced in the non-
responsive strain, leaving more dioxin
available to target the cells of the immune
system. Until such a pharmacokinetic
study is conducted it will be difficult to
determine whether this immunotoxic
response is really an outlier in terms of the
general understanding that all the responses
of dioxin require binding to the Ah recep-
tor. However, it is clear that while binding
to the receptor is necessary, it is not suffi-
cient. Interaction of dioxin with the ligand
binding species and subsequent interaction
of the ligand-receptor complex with regula-
tory sequences on DNA is controlled by a
host of other proteins and regulatory steps.

Species Homology
One of the major questions concerning the
risk assessment of dioxin is the issue of
whether or not humans are a sensitive
species to the toxic effects of TCDD. The
issues of species differences in sensitivity to
dioxin is often discussed, but little under-
stood. Table 2 lists the approximate oral
LD50 for a variety of animal species follow-
ing a single exposure to dioxin. While there
is a difference of more than three orders of
magnitude in the oral dose needed to kill a
guinea pig from that needed to kill a ham-
ster, most of the laboratory species will die
with a dose that is within one order of mag-
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nitude of 100 mg/kg. The dose can be
modulated by developmental stage and
body composition (79). In certain species,
there appears to be a sex difference in the
LD50 dose, but there is no consistency as to
whether males or females are more sensitive.
While the guinea pig and hamster appear to
be outliers in terms of their sensitivity to
dioxin's acutely lethal effects, they differ by
only an order of magnitude in respect to the
sensitivity of their developing pups to
TCDD-induced developmental toxicity
(20). Using organ cultures of the develop-
ing palate from the human, rat, and mouse,
Abbott and Birnbaum (80) demonstrated
that while the sensitivity of the rat and
human was the same, the developing mouse
palate was approximately 1000 times more
sensitive to the teratogenic effects of
TCDD. This in vitro difference between
the rat and mouse is reflected in the terato-
genicy of TCDD in the mouse but not in
the rat where the only time cleft palate
occurs is at doses which are both maternally
and fetally toxic. Thus, the mouse is
uniquely sensitive to the teratogenic effects
of TCDD. However, other studies have
indicated that the doses which are
embryo/fetotoxic in the mouse are similar
to those in the guinea pig, rat, and hamster.

Chloracne has been examined as
another end point for species similarity in
sensitivity. Ryan et al. (81) have estimated
the dose of dioxin-related compounds
which resulted in chloracne in a population
in Taiwan poisoned by contaminated rice
oil. The necessary dose was very similar to
that dose which causes chloracne in hairless
mice, rabbit, ears, and monkeys. It should
also be pointed out that the pathology of
the lesion is very similar in all these species.
This is most interesting given the innate
human variability which is seen in the
chloracne response in Seveso (82). While
below an estimated initial body burden of
<10,000 ppt no chloracne was observed,
and above an estimated body burden of
>60,000 ppt chloracne was always
observed, there was a wide range of serum

Table 2. Acute toxicity of TCDD.a

Species LD50, pg/kg, po
Guinea pig 0.6-2.5
Mink 4
Rat 22-320
Monkey <70
Rabbit 115-275
Mouse 114-280
Dog >1 00- <3000
Hamster 1150-5000

aData from U.S. EPA (3).

levels where the occurrence of chloracne
was sporadic.

No studies have yet examined the issue
of immunotoxic effects directly in exposed
people although standard measures of
immune dysfunction, such as changes in
lymphocyte numbers or proportions have
not revealed any effects. The most sensitive
response in mice to dioxin appears to be
suppression of the primary antibody
response. If this were to occur in people, it
could result in a low vaccination take rate in
an affected population. Inuit women living
along the Hudson Bay have elevated levels
of dioxinlike chemicals in their breast milk,
reflecting their diet of fatty sea mammals
(83,84). The young children in this popu-
lation appear to have a high rate of infec-
tions and a low rate of successful primary
vaccinations (E Dewailley, personal com-
munication). Human tonsillar lymphocytes
appear to have similar sensitivity to TCDD
in vitro as expressed by mouse splenocytes
(85). Changes in the subpopulations of
both marmoset and human lymphocytes
have also been reported following exposure
in vitro to TCDD (86). These data might
suggest that humans have similar sensitivity
in regard to their immune system as do
mice and monkeys. In contrast, the rat
appears to be relatively resistant to the
immunotoxic effects of TCDD. This
species may be an oudier for this toxic end
point, as the mouse is for teratogenesis, and
the guinea pig and hamster are for lethality.

Hormonal and growth factor changes
have been reported in humans as well as
experimental animals. A recent epidemio-
logical study has reported that occupation-
ally exposed workers (the same cohort in
which the mortality study was conducted
and that demonstrated an association of
dioxin exposure and all cancers) have
decreased levels of circulating testosterone
(87). This is the same response observed in
rodents following similar levels of dioxin
exposure (88). The levels of EGF receptor
decrease in the liver of mice (89) and
humans (90) exposed to dioxinlike chemi-
cals. Premature eruption of incisors was-
noted in children exposed prenatally to the
contaminated rice oil (12) and in mice
exposed to TCDD (91).

As previously mentioned, dioxin has
recently been demonstrated to be a carcino-
gen in humans as it is in experimental ani-
mals. Comparison of the body burdens
present in the exposed workers with those
present in experimental animals (92) reveals
that similar blood levels are present in the
dose range where tumors occur, suggesting
similar sensitivity between the species. In

fact, using the rodent data to estimate the
human response would lead one to predict
that if anything, the increased risk of cancer
should be even less than what has been
observed in the three recent studies
(D Hoel, personal communication).

While developmental toxicity,
immunotoxicity, dermal toxicity, and car-
cinogenicity are all clearly adverse effects
from dioxin exposure, induction of drug-
metabolizing enzymes may be adaptive,
rather than toxic, responses. Nevertheless,
the doses needed to bring about induction
of these enzymes in the liver, and in extra
hepatic tissues, are comparable. Mouse and
human keratinocytes require similar con-
centrations to induce EROD activity (93).
Similar levels of dioxinlike compounds are
needed to result in similar AHH induction
in the placenta of mice and humans (94).
It is interesting to note that CYPIA1 activ-
ity is only poorly induced in the liver of
humans and of guinea pigs. Neither of
these species responds to dioxin with liver
toxicity. In contrast, in those species where
CYPIAI is readily inducible, such as the
rat and mouse, liver toxicity is an invariant
correlate of dioxin's deleterious effects.

Thus, while any given species can be an
outlier for any one biological response to
dioxin, most species respond similarly for
most effects. The existing data suggest that
humans are no exception and show similar
sensitivity to the toxic effects ofTCDD as
do other animals.

ToxiIc Equivalency
As mentioned earlier, dioxin is but one
member of a large family of chemicals that
have similar structure and activity. Other
compounds that can be approximate isos-
teromers of TCDD include halogenated
members of the dibenzo-p-dioxins, diben-
zofurans, biphenyls, naphthalenes, azo- and
azoxybenzenes (Figure 4). In general, four
lateral halogens are necessary to achieve
dioxinlike effects. Increasing halogenation
reduces potency, in large part by decreasing
binding to the Ah receptor, but also by lim-
iting absorption. Some tetra-substituted
congeners have limited potency in vivo
because of rapid metabolism.

Because of the fact that dioxins and
related compounds usually occur in complex
mixtures, and the need to estimate the toxic-
ity of such, the international community has
come up with an approach involving toxic
equivalency factors (TEFs) to address this
issue (95-97). All of the dioxinlike com-
pounds can be assigned a TEF which is a
measure of the potency of that compound
relative to TCDD. Implementation ofTEFs
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on in vitro studies involving enzyme induc-
tion and receptor binding. Some in vivo
data exist for acute responses, such as
enzyme induction, thymic atrophy, and
lethality. For a limited number of these
chemicals, information on dermal toxicity,
teratogenicity, and carcinogenicity (includ-
ing tumor promotion), exists. Short-term or
in vitro measures of TEFs fail to take into
account pharmacokinetic or species differ-
ences which exist. However, the use of the
TEFs for the polychlorinated dibenzo-p-
dioxins (PCDDs) and polychlorinated
dibenzofurans (PCDFs) has been quite suc-
cessful in estimating the toxicity of several
complex mixtures.

Only limited attention has been
directed toward estimating TEFs for other
classes of dioxinlike chemicals. It is clearly
appropriate that they be developed for the
small subset of the PCBs which are dioxin-
like (98). Safe (70) has compiled the exist-
ing information on the relative potency of
polychlorinated biphenyls (PCBs) and sug-
gested conservative TEFs for the dioxinlike
isomers. These values have been used by
regulators and risk assessors in predicting
the toxicity of complex mixtures of

Dose-Response Relationships
Much of the concern involving human
exposure to dioxin and related chemicals
has concentrated on cancer. However,
recent studies have indicated that cancer is
a relatively high dose-response. In experi-
mental animals, liver tumors only result at
doses where acute toxicity is evident. For
example in the Kociba study (92), at the
high dose where there was a clear cut
increase in liver tumors in the female rat,
liver toxicity and weight loss were evident.
Much of the regulatory focus has been on
these liver tumors. However, it is impor-
tant to remember that tumors were signifi-
cantly increased at several other sites,
including the nasal cavity and thyroid. In
the males, lung tumors were present. It is
interesting to note that the liver tumors are
estrogen dependent in the female rat;
ovariectomy abolished the liver tumor
response (104). In contrast, the lung
tumors appear to be blocked by estrogen as
they are only present in the intact male rats
(92) and in the ovariectomized females
(105). In contrast, male mice appear to be
more sensitive to liver tumors than are

female mice (106). Squamous tumors and
lesions of the respiratory tract have been
noted in several animal studies. The
human epidemiological studies suggest that
lung tumors may be increased by exposure
to dioxin (27).

While cancer appears to require rela-
tively high body burdens to be detected,
lower doses result in other serious adverse
responses. In a multigenerational study,
Murray et al. (107) observed that the daily
dose needed to result in reproductive
effects (10 ng/kg/day) was an order of mag-
nitude lower than that resulting in hepato-
cellular carcinomas in rats (108). Recent
studies by Peterson and co-workers
(17-19) have demonstrated that a single
prenatal exposure of pregnant rats to 64 ng
dioxin/kg bw can result in permanent
effects not only in sexual behavior of the
male offspring but also lead to decreased
levels of androgens and spermatogenesis.

Immunotoxic responses have been
detected in the marmoset and in the mouse
at similar low doses. Single doses to mice of
as little as 100 ng/kg caused enhanced viral
mortality (22). A single exposure of 10 ng
TCDD/kg resulted in altered patterns of
lymphocyte subsets in the marmoset (109).
However, at weekly doses of 0.3 ng/kg, no
clear-cut change occurred in the total lym-
phocyte population (110). The ED50 for
the suppression of the primary antibody
response to sheep red blood cells in mice is
consistendy lower than that for the induc-
tion of EROD or AHH, markers for the
activity of CYPIAJ (75, 111). Detection of
the increase in mRNA for CYPIAI by
quantitative PCR techniques has demon-
strated that increases in the message occurs
at doses 100 times lower than what can be
detected either enzymatically, immuno-
chemically, or by Northern blot analysis
(112). Recent studies have demonstrated
that a significant increase in CYPIAI
mRNA can be noted in rats following a
single dose of 100 pg/kg. Given a half-life
of roughly 30 days, this would be roughly
equivalent to a daily dose of 1 to 3
pg/kg/day in the rat.

Enzyme induction, immunotoxicity,
and reproductive effects all seem to occur at
similar low doses. Since binding to the
receptor is necessary before any of these
effects can occur, it is clear that ligand bind-
ing occurs at very low doses. What is the
shape of the dose-response curve in this
region? The only responses for which good
data exist are the induction of cytochromes
P4501A1 and 1A2 in the liver of both mice
and rats. Recent data from the laboratory of
Lucier and coworkers (113) has shown that
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the increase in the mRNA and protein for
CYPIAIIIA2 gives no evidence of nonlin-
earity in the low dose region. Likewise, no
evidence for a threshold in the induction of
these two enzymatic activities was observed
in mice (114). Both of these studies
involved repeated exposures at levels of
approximately 1 to 5 ng/kg/day. Lower
exposures are currently being conducted.
The critical conclusion that can be drawn
from these studies is that there is no evi-
dence for a threshold in relatively simple,
Ah-receptor mediated responses. That is not
to say that other responses may not exhibit
nonlinear behavior at low doses. However,
it is clear that not all responses are nonlin-
ear. Therefore, there cannot be a dose
which, by definition, will have no response.

Recent studies have also demonstrated
that the pharmacokinetics of TCDD and
related compounds is dose-dependent.
Distribution to the liver is nonlinear, with
the relative concentration increasing with
increasing dose (115). This appears to be
associated with the induction of a liver-spe-
cific binding protein which has been tenta-
tively identified as cytochrome P4501A2
(116,117). Hepatic sequestration results in
decreased distribution to extrahepatic tis-
sues with increasing dose. Many of the
experimental studies have been conducted
at doses where this sequestration was
occurring, leading to the false assumption
that humans and animals behave differ-
ently in how TCDD distributes.
Physiologically-based pharmacokinetic
models have been developed for both
TCDD (118) and the related brominated
congener, 2,3,7,8-tetrabromodibenzo-p-
dioxin (TBDD) (119) which incorporate
the induction of this binding protein and
the dose-dependent distribution. These
models accurately predict the effect of dose
on absorption, distribution, and elimina-
tion in rats. Carrier (120) has used human
data on the blood and adipose levels of
PCDFs to develop a pharmacokinetic
model to describe the behavior of these
compounds which also predicts nonlinear-
ity in disposition. These models raise some
concern about the estimation of half-life in

humans assuming a one-compartment
elimination (121).

Pharmacokinetic studies have also been
conducted comparing different relevant
routes of human exposure. For a number
of dioxin-related compounds, both oral
and dermal absorption has been shown to be
dose-dependent (122,123,124). Relative
absorption decreases as the dose is
increased. At relatively low experimental
doses (-1mole/kg), oral exposure results in
nearly complete absorption as compared to
an intravenous exposure. Intratracheal
instillation, an approximation of pul-
monary absorption, results in similar
absorption to that observed orally. Dermal
absorption is always more limited, being
maximal for TCDD from an organic sol-
vent of approximately 50% of an applied
dose. Maximal dermal absorption, how-
ever, can be predicted from the octanol
water partition coefficient (125).

Risk fiom Current Exposures
Where does current environmental expo-
sure place us today? In the industrialized
world, adults have approximately 6 ppt
TCDD per ml serum, on a lipid adjusted
basis (126). [In nonindustrialized areas of
the Third World which have not been
exposed to heavy herbicide use, body bur-
dens are several times lower (127)]. If the
total toxic equivalency of all the chlori-
nated dioxins and furans is included, the
body burden is approximately 30 ppt. This
value is further increased if the toxicity of
the dioxinlike PCBs is included.

What are daily exposure levels? Dietary
exposure accounts for the major source of
the human body burden. Estimates are that
daily exposure to TCDD is approximately
0.1 to 0.3 pg TCDD/kg/day, equivalent to
approximately 1 to 3 pg TEQ/kg/day
(128). If the PCBs are included in this esti-
mate, the daily dose is 3 to 10 pg/kg/day.
It is important to note that there are people
within the population who have higher
exposure than the average. For example,
since dioxin and related chemicals are so
lipophilic, they are mobilized from the adi-
pose tissue during lactation and are elimi-

nated through the milk. Therefore, nursing
infants can have daily exposures 10 to 20
times higher than the background popula-
tion. Subsistence fishermen also have ele-
vated exposure due to the presence of these
compounds in fish.

From the foregoing discussion, it
should be clear than exposure to high levels
of dioxin and related compounds has the
potential to result in a host of biological
responses. At high doses, some of these are
clearly adverse and have been observed in
the human population (e.g., depression of
circulating testosterone levels, chloracne,
cancer). These overtly toxic responses have
been noted at body burdens many times
higher than those occurring in the general
population in industrialized countries. For
people with levels higher than the general
populace but lower than occupationally
exposed cohorts or those poisoned in
industrial accidents, recent reports have
indicated alterations in lipid metabolism
and elevated incidence of diabetes (129).
Exposure to a complex mixture of PCBs
and PCDFs resulted in clear evidence of
developmental toxicity (12).

The question of greater import is what
is the risk of current environmental expo-
sure to the general population? Are the
subtle effects detected in experimental ani-
mals occurring in people today? If so, are
these adverse? Results in enzyme induction
from both rats (113) and mice (114)
would suggest that at current environmen-
tal levels (- 1 to 10 TEQ pg/kg/day) people
may be experiencing small, but significant,
increases in these markers of response.
Highly exposed populations may be at spe-
cial risk. Since animal studies suggest that
changes in hepatic enzyme induction occur
at body burdens similar to those at which
immunotoxicity in mice and permanent
effects on the reproductive system occur in
rats, it is reasonable to hypothesize that
subtle effects on these parameters may be
occurring in the human population.
Epidemiological studies to examine this
hypothesis should be undertaken.
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