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Two different types of DNA adducts are formed from many aromatic amines by bioactivation: N-acetylated and nonacetylated, arylamine DNA
adducts. It has become clear from experiments using N-acetyl-2-aminofluorene and 2-aminofluorene adducts to C8 of deoxyguanosine that these
two types of adducts may have different effects on DNA structure and DNA replication. We have determined blocking of DNA replication by various
other N-acetylarylamine and arylamine deoxyguanosine adducts. It was found that the N-acetyl group in general is required for blocking of DNA
replication; the nature of the aromatic moiety seems to be of minor importance. Little information is available on the genotoxic effects of these
adducts in mammalian cells in vivo. We have tried to get more insight in this by investigating the clastogenicity, the initiation of preneoplastic cells,
and the promotional effects of various aromatic amines from which different ratios of N-acetylarylamine DNA adducts to arylamine DNA adducts are
formed in the rat liver. Our results show that formation of N-acetylarylamine adducts to C8 of deoxyguanosine in the liver is correlated with clasto-
genicity and hepatic promoting effect. Initiation capacities, however, seem to be correlated with formation of nonacetylated, arylamine adducts.
Mechanisms by which formation of N-acetylarylamine DNA adducts may generate a promoting effect in the liver are discussed. - Environ Health
Perspect 102(Suppl 6):153-159 (1994)
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Introduction
For aromatic amines, two major pathways
of metabolic activation have been impli-
cated in the generation of genotoxic
metabolites in vivo (1). One is the forma-
tion of N-hydroxy-N-acetylarylamines by
subsequent N-acetylation and N-hydroxy-
lation, followed by O-esterification; the
other is formation of hydroxylamines. The
hydroxylamines are reactive per se but fur-
ther metabolism by O-esterification to more

reactive metabolites is also involved. The
two pathways lead to the formation of dif-
ferent types of DNA adducts: N-acetylated
arylamine adducts at C8 of deoxyguanosine
(and to a minor extent adducts at N) are

formed by the first pathway, while
nonacetylated arylamine adducts at C8 of
deoxyguanosine and N6 of deoxyadenosine
are formed by the second. With certain
aromatic amines, other metabolic pathways
may also be important [e.g., for benzidine
and 4-aminobiphenyl DNA adducts may

be formed by a prostaglandin H synthase-
dependent route (1)].
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Numerous studies have been conducted
to determine the effects of the two types of
adducts on DNA structure. In most of
these studies, N-(deoxyguanosin-8-yl)-2-
acetylaminofluorene (dG-C8-AAF) and its
nonacetylated analog, N-(deoxyguanosin-
8-yl)-2-aminofluorene (dG-C8-AF) were
used as model adducts. Significant differ-
ences have been observed in the way these
two types of adducts alter the conforma-
tion of DNA (2). dG-C8-AAF adducts
either adopt a syn conformation and induce
a major distortion of the DNA helix or
induce a B to Z transition ofDNA. In con-
trast, dG-C8-AF adducts seem to be incor-
porated in DNA without causing major
distortions.

These conformational differences are
probably responsible for the different rates
of repair of the adducts. dG-C8-AAF
adducts are repaired relatively rapidly in rat
liver in vivo with a half-life of 7 days (3-5);
dG-C8-AF adducts are repaired more
slowly and accumulate during chronic
feeding (5-7). The latter also applies to the
minor N-acetylated adduct at N2 of deoxy-
guanosin, which has been taken to suggest
that this adduct does not distort the DNA
helix either. Structural differences seem
also to be responsible for differences in
replication of DNA strands modified with
dG-C8-AAF or dG-C8-AF adducts. When
incorporated in single-stranded phage DNA,
dG-C8-AAF adducts very effectively block
replication of this modified DNA after

transfection in Escherichia coli. (8,9).
Already one adduct per DNA molecule was
sufficient to completely inactivate single-
stranded OX174 (9). This contrasts to the
results obtained with dG-C8-AF adducts:
on average seven adducts were needed to
block the infectiveness of a 4X174 mole-
cule (10).

Also in double stranded DNA it was
found that dG-C8-AAF adducts blocked
replication more effectively than dG-C8-
AF adducts. When randomly introduced in
the plasmid pBR322, one to two adducts
are needed to block replication of the plas-
mid in repair deficient E. coli strains, while
8 to 17 of the nonacetylated adducts are
needed (11). Comparable results were
obtained with modified double-stranded
OX174 and M13mp9 DNA (8-10,12):
dG-C8-AAF adducts always blocked repli-
cation more efficiently than dG-C8-AF
adducts, both in wild-type and repair-defi-
cient hosts. As a result of this efficient
blockage, preferential use of unmodified
strands was observed during replication of
plasmids in which dG-C8-AAF adducts
were introduced in one strand specifically
(13,14).

The mutagenic effects of dG-C8-AAF
and dG-C8-AF adducts have been studied
extensively; they result in different types of
mutations in various systems (15,16). It
was suggested that many factors, such as
type of DNA (single- or double-stranded,
phage or plasmid, extrachromosomal or
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not), host cell (bacteria, mammalian cells),
repair, etc., may determine the mutation
spectra of the two adducts (16,17).

Thus, there is much experimental evi-
dence for a major effect of dG-C8-AAF
adducts on the structure ofDNA and subse-
quent blocking of DNA replication, while
dG-C8-AF adducts have much less effect.

We have investigated if this might be a
general feature of N-acetylated arylamine
adducts by determining the effects of dG-
C8-4'-fluoro-4-acetylaminobiphenyl and
dG-C8-4-acetylaminobiphenyl adducts
and their nonacetylated analogs on block-
ing of DNA replication (see below). These
experiments also indicated that for these
adducts the presence of the N-acetyl moiety
strongly enhances the blocking of DNA
replication; the nature of the aromatic moi-
ety seems to be of minor importance (see
discussion in the next paragraph).

There is only limited information on the
role of N-acetylarylamine versus arylamine
DNA adducts for the process of chemical
carcinogenesis. DNA adducts are found in
many organs after administration of aromatic
amines and derivatives, often also in non-
target organs. In target organs, N-acetylaryl-
amine as well as arylamine adducts are
found [e.g., from 2-acetylaminofluorene
and N-hydroxy-2-acetylaminofluorene in
the male rat liver (3,4,7,18,19), and from
N-hydroxy-4'-fluoro-4-acetylamino-
biphenyl in the rat liver and kidney
(20,21)]. However, in other target organs,
only arylamine adducts have been found,
[e.g., from 4-aminobiphenyl in the dog
bladder (22-24), N-hydroxy-2-acetyl-
aminofluorene in the rat mammary gland
(25), and 3,2'-dimethyl-4-aminobiphenyl
in rat colon (26)]. These data suggest that
formation of only arylamine adducts might
be sufficient for carcinogenesis and that
these adducts may bring about all the
genetic changes needed for the induction
of malignant tumors. Still, in various
organs in which these adducts are formed
at a high level, no tumors develop. For
example, nonacetylated arylamine adducts
are formed from N-hydroxy-2-acetyl-
aminofluorene in the female rat liver,
which is resistant to hepatocarcinogenesis
by this compound (27,28), and from 4-
acetylaminobiphenyl in the dog liver
(22,24) and rat liver (29), which are not
target sites.

We have shown previously that inhibi-
tion of the formation of dG-C8-AAF
adducts did not change the initiation
capacity (induction of foci of y-glutamyl-
trans-peptidase positive preneoplastic cells)
of N-hydroxy-2-acetylaminofluorene in the

rat liver (30). Because the amount of dG-
C8-AF adducts was unaffected in these
experiments, this suggests a role for these
adducts in initiation. Inhibition of the for-
mation of dG-C8-AAF adducts from N-
hydroxy-2-acetylaminofluorene during a
promotion experiment in the rat liver, how-
ever, greatly decreased the promoting effect
of this compound (31). Therefore, these
adducts may play a role in promotion.
We have further investigated the role of

the different DNA adducts in the process
of hepatocarcinogenesis by determining the
initiation and promotional capacities of
various analogs ofN-OH-AAF from which
different ratios of the two types of DNA-
adducts are formed in vivo.

To investigate if the N-acetylarylamine
DNA adducts which block DNA replica-
tion quite efficiently in vitro and in bacteria,
may also block replication in mammalian
cells in vivo, we determined the clasto-
genicity of various analogs in rat liver and
correlated this with the amounts of N-
acetylarylamine DNA adducts formed in
this organ.

Blocking of DNA Replication
by dG-C8-Acetylarylamine
and dG-C8-Arylamine Adducts

Information on the effects of N-acetylaryl-
amine and arylamine DNA adducts on
DNA replication has been obtained mainly
from experiments with dG-C8-AAF and
dG-C8-AF. Only a few studies have been
performed with the analogous 4-amino-
biphenyl adducts (8,11). These studies
showed a difference in the ability of those
adducts to block replication compared to
2-aminofluorene adducts. A lesser inhibi-
tion by the dG-C8-4-acetylaminobiphenyl
(dG-C8-AABP) adduct was observed when
incorporated in double-stranded plasmid
and phage DNA compared to dG-C8-
AAF; its effect was similar to that of the
nonacetylated adducts dG-C8-4-amino-
biphenyl (dG-C8-ABP) and dG-C8-AF. It
has been suggested that the possibility of
the dG-C8-AABP biphenyl adducts to
adopt a nonplanar aromatic conformation
may be responsible for the smaller effect of
dG-C8-AABP (11). In single-stranded
M13mp9 DNA; however, dG-C8-AABP
adducts blocked replication much more
than nonacetylated adducts (8), although
still less effectively than dG-C8-AAF adducts.
We have found a comparable blocking

by biphenyl and fluorene adducts in single
stranded 4X174 DNA (Table 1): on aver-
age, one dG-C8-acetylarylamine adduct
was sufficient to inactivate OX174, irrespec-

Table 1. Blocking of replication of single-stranded
4X174 DNA by dG-C8-N-acetylarylamine adducts and
dG-C8-arylamine adducts.a

Average number of
adducts for a complete blockage

dG-C8-AAFb 1
dG-C8-FAABPc 1
dG-C8-AABPc 1
dG-C8-AFd 7
dG-C8-FABPc 2
dG-C8-ABPc 3

aFor the methods of modification of 4X174 DNA, see
Van de Poll et al. (32). Different levels of modification
were used with each adduct (D-25 adducts/phage mol-
ecule). 4X174 phage was transfected into E. co/ispher-
oplasts (AB 1157, repair proficient) and plated with E.
coli host on soft agar to determine phage survival.
bData from Lutgering et al. (9). CData from Van de Poll
et al. (32). dData from Lutgering et al. (10).

tive of the nature of the aromatic moiety.
Nonacetylated adducts, however, were less
effective: on average two to seven adducts
were needed for complete inactivation. In
addition, termination of in vitro replication
by DNA polymerase I (Klenow fragment)
of single stranded M13mp9 DNA modi-
fied with dG-C8-AAF, dG-C8-FAABP,
and dG-C8-AABP adducts always occured
before a modified base, whereas replication
of M13 DNA modified with dG-C8-AF,
dG-C8-FABP, and dG-C8-ABP termi-
nated before as well as opposite an adduct
(32,33). These data suggest that all dG-C8-
acetylarylamine adducts may block DNA
replication equally effectively and that dG-
C8-arylamine adducts are less effective.
This difference seems to be determined
mainly by the N-acetyl group rather than
aromatic moiety.

DNA Adduct Formation,
Initiation, and Promotion by
N-Hydroxy Acetylarylamines
in the Rat Liver in Wivo
We have used N-hydroxy-2-acetylamino-
fluorene N-hydroxy-4'-fluoro-4-acetyl-
aminobiphenyl, N-hydroxy-4-acetylamino-
biphenyl, and in some experiments N-
hydroxy-2-acetylaminophenanthrene.

Comparable amounts of DNA adducts
were formed, as determined by administra-
tion of the radiolabeled compounds (Table
2). Although not all adducts from the
biphenyl derivatives could be identified, it
is clear that far fewer N-acetylated adducts
to the C8 of deoxyguanosine are formed
from these compounds than from N-
hydroxy-2-acetylaminofluorene. This is not
due to instability of the biphenyl adducts
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Table 2. Formation of DNA adducts from N-hydroxy-2-acetylaminofluorene (N-OH-AAF), N-hydroxy-4'-fluoro-4-
acetylaminobiphenyl (N-OH-FAABP) and N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP) in the rat liver.

pmole/mg DNA
Dose, Total,a dG-C8 adduct

pmole/kg before hydrolysis Acetylated Nonacetylated Other

N-OH-AAF 30 81 D10b 23±3 26±4 6±3
N-OH-FAABP 120 58±3 1.7±0.1 6.2±0.6 27±2
N-OH-AABP 120 46 ± 8 1.0 ± 0.1 4.7 ± 1.9 19 ± 2

Radiolabeled N-OH-acetylarylamines were administered to male Wistar rats, 24 hr after PH. Livers were removed 5
hr later and DNA was isolated and hydrolyzed in trifluoroacetic acid. After removal of the acid, nonlabeled standard
DNA adducts were added as UV markers and analyzed by HPLC. Quantitation of adducts was by determination of
radioactivity coeluting with the unlabeled markers. Data from Van de Poll et al. (21,34) and Tates et al. (44). "Data
for total adducts are based on covalent binding of radioactivity to DNA before hydrolysis and HPLC analysis.
Recovery of radioactivity after HPLC analysis was 68, 60, and 64% for N-OH-AAF, N-OH-FAABP, and N-OH-AABP,
respectively. bResults are expressed as mean ± SEM of four or five animals.
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Figure 1. Promotional effects of N-hydroxy-2-acetylaminofluorene (N-OH-AAF), N-hydroxy-4'-fluoro-4-acety-
laminobiphenyl (N-OH-FAABP) and N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP) in a modified Solt-Farber proto-
col. Male Wistar rats, 200 g, were initiated with diethylnitrosamine (200 mg/kg, ip). After 2 weeks they received
three ip injections of the compounds (at days 18, 19, and 20), a partial hepatectomy at day 21, and finally a quarter
of the dose at day 25. The liver was removed at day 28. Liver sections were stained for y-glutamyltranspeptidase
activity (GGT), the number of GGT positive foci of cells was determined and the volume of GGT positive cells was
calculated for each size class. N-OH-AAF was tested at doses of 40 pmole/kg/injection; N-OH-FAABP and N-OH-
AABP at doses of 120 pmole/kg/injection. Controls received solvent during promotion. Data are from Van de Poll
et al. (60). The number of animals per group (N) is indicated in the figure.

during the isolation and hydrolysis proce-
dure of DNA because synthetic standards
were stable. The unidentified adducts
(Table 2) probably represent nonacetylated
adducts because the majority of biphenyl
DNA adducts formed in vivo are
nonacetylated (20,21,29,34).

Promotional effects of several N-
hydroxy acetylarylamines were determined
in a modified Solt-Farber protocol. Rats
were initiated with a high, necrogenic dose
of diethylnitrosamine, followed after 2
weeks by repeated ip injections of the com-
pounds (four injections in 2 weeks). This
was combined with partial hepatectomy
(see legend, Figure 1). At the end of the
experiments, the number of y-glutamyl-
transpeptidase-positive foci of preneoplastic
cells was determined. In the animals that
had received N-hydroxy-2-acetylaminoflu-
orene, a high number of large foci were
found (Figure 1). N-Hydroxy-4'-fluoro-4-
acetyl- aminobiphenyl, although adminis-
tered at a 3-fold higher dose, was much less
effective. No increased number of foci
above control level was observed with N-
hydroxy-4-acetylaminobiphenyl (at the
same dose as its 4-fluoro analog): it was
completely ineffective as promoter. These
results indicate that promotion by the vari-
ous N-hydroxy acetylarylamines does not
correlate with total covalent binding to
DNA of these compounds. There seems to
be, however, a correlation with the forma-
tion of arylamine adducts to C8 of
deoxyguanosine (Table 2). This correlation
probably is based on the formation of N-
acetylated adducts to C8 of deoxyguano-
sine specifically, because our previous
results showed a much decreased hepatic
promotional effect of N-hydroxy-2-acety-
laminofluorene after inhibition of the for-
mation of such adducts (31).

Initiation capacity of the N-hydroxy
acetylarylamines in the rat liver was deter-
mined in a modified Solt-Farber protocol in
which administration of 2-aminofluorene
in the drinking water combined with a
necrogenic dosis of carbon tetrachloride
(CC14) was used for promotion. The N-
hydroxy acetylarylamines were adminis-
tered after partial hepatectomy (during
S-phase) because this makes it unlikely that
differences in the rate of repair of the various
DNA adducts may influence the outcome of
the experiments to a great extent. All N-
hydroxy acetylarylamines were good initia-
tors (Table 3). However, only N-hydroxy-
2-acetylaminofluorene and (to a lesser
degree) N-hydroxy-4'-fluoro-4-acetyl-
aminobiphenyl, are hepatocarcinogenic.
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Table 3. Induction of y-glutamyltranspeptidase positive foci (GGT) by N-hydroxy-2-acetylaminofluorene (N-OH-
AAF), N-hydroxy-4'-fluoro-4-acetylaminobiphenyl (N-OH-FAABP), N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP),
and N-hydroxy-2-acetylaminophenanthrene (N-OH-AAP) in the rat liver.

Dose, pmole/kg Number of foci/cm2 Volume, mm3/cm3
Controls - 80 ± 27 1.0 ± 0.3
N-OH-AAFa 30 148 ± 30b,c 8.4 ± 3.0c
N-OH-FAABPa 120 197 ± 62c 8.7 ± 4.1c
N-OH-AABPa 120 200 ± 37c 12.0 ± 4.1 c
N-OH-AAP 60 249 ±90d 15.7 ± 8.6c
Results are expressed as means ± SEM of 10 to 13 animals per treatment group. Compounds were injected ip 24
hr after partial hepatectomy. Promotion was by administration of 2-aminofluorene in drinking water (0.92 mM) for
2 weeks in combination with a necrogenic dose of CCI4. For further experimental details, see Van de Poll et al.

b d(60). 8Data are from Van de Poll et al.(60). Significantly different from controls. Cp< 0.05. p< 0.1.

Comparison of the data on initiation
with formation of N-acetylated adducts to
the C8 of deoxyguanosine (Table 2) shows
no correlation between initiation and for-
mation of these adducts. It is not possible
to correlate initiation with a specific type of
other adduct because a large part of the
biphenyl DNA adducts has not been iden-
tified.

2-Acetylaminophenanthrene is not
hepatocarcinogenic (35). Several hepatic
promoters have been administered after
administration of 2-acetylaminophenan-
threne, but this did not result in hepatocar-
cinogenicity (36,37). In this study, we
found that N-hydroxy-2-acetylamino-
phenanthrene is a good initiator. This is
probably due to the use of a stronger pro-
motion stimulus in our study.
Administration of N-hydroxy-2-acetyl-
aminophenanthrene leads to the formation
of only nonacetylated adducts in the liver

(29). Two major deoxyguanosine adducts
are formed; one of these was identified as
N-(deoxyguanosin-8-yl)-2-aminophenan-
threne (dG-C8-AP)(38).

Thus, the data on initiation by the vari-
ous N-hydroxy acetylarylamines indicate
that dG-C8-acetylarylamine adducts are
most likely not involved in this.

Clastogenicity of N-Hydroxy
Acetylarylamines in the Rat
Liver in Vivo
The clastogenicity of various N-hydroxy
acetylarylamines was studied by the induc-
tion of micronuclei in the rat liver.
Micronuclei may arise from DNA adducts
that block DNA replication during S-
phase. The presence of such adducts may
lead to gaps in the daughter strand oppo-
site the adduct. Subsequently, this gap may
be converted to a double strand break by

the action of (repair) endonucleases that
specifically attack single stranded regions
(39,40). N-Hydroxy-2-acetylaminofluo-
rene is a potent clastogen (Figure 2): a high
frequency of micronuclei was found
already at a dose of 25 pmole/kg. A clear
delay in the partial hepatectomy-induced
regenerative response was observed (41).
Clastogenicity and delay in regeneration were
also found at doses of 5 and 15 limoles/kg
(41). At doses higher than 25 pmoles/kg,
regeneration was severely inhibited and
clastogenicity, therefore, not expressed as
micronuclei (results not shown).

The other N-hydroxy acetylarylamines
were much less clastogenic; only N-
hydroxy-4'-fluoro-4-acetylaminobiphenyl
induced a significant number of micronuclei
at a dose equivalent to that in the initiation
and promotion experiments (Figure 2).
Delay in regeneration was observed only at
day 2 after partial hepatectomy. At a 3-fold
higher dose, a higher frequency of
micronuclei was found and regeneration
was still delayed at days 3 and 4. Both N-
hydroxy-4-acetylaminobiphenyl and N-
hydroxy-2-acetylaminophenanthrene
induced very few micronuclei and caused
no delay in regeneration.

Discussion
Our results indicate that formation of N-
acetylarylamine adducts to C8 of deoxy-
guanosine may correlate with clastogenicity
in the rat liver in vivo because only the
compound that forms the most of these
adducts is highly clastogenic (N-hydroxy-2-
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Figure 2. Frequency of micronuclei induced in rat liver in vivo by N-hydroxy-2-acetylaminofluorene (N-OH-AAF), N-hydroxy-4'-fluoro-4-acetylaminobiphenyl (N-OH-FAABP), N-
hydroxy-4-acetylaminobiphenyl (N-OH-AABP) and N-hydroxy-2-acetylaminophenanthrene (N-OH-AAP) injected 17 hr after partial hepatectomy. Hepatocytes were isolated 2, 3,
and 4 days after injection. All values are mean ± SEM. Four to six animals were used for each time point.
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Figure 3. Frequency of micronuclei and mitotic index after administration of aflatoxin B1 (ip injection 17 hr after
partial hepatectomy) in rat hepatocytes in vivo. Results are expressed as means ± SEM. Hepatocytes were iso-
lated 2, 3, 4, and 5 days after injection. Four or five animals were used per time point. Data for controls are his-
toric data from our laboratory (18-25 animals per time point).

acetylaminofluorene). This is consistent
with our previous results, which showed a

much reduced clastogenicity of N-hydroxy-
2-acetylaminofluorene after inhibition of
the fromation of these adducts (41). Also,
formation of N-acetylarylamine adducts to

C8 of deoxyguanosine may be correlated
with promoting activity. A correlation
between clastogenicity and hepatic promot-
ing activity has been found for other hepa-
tocarcinogens and nonhepatocarcinogens:
e.g., the very potent hepatocarcinogen afla-
toxin B1, which is an extremely good pro-
moter compared to 2-acetylaminofluorene
(42,43), induced a similar frequency of
micronuclei as N-hydroxy-2-acetylamino-
fluorene already at a 75 times lower dose
(Figure 3). Regeneration of the liver, after
the partial hepatectomy that was employed
in these experiments, was severely delayed
as is evident from the still high mitotic
index 5 days after partial hepatectomy
(Figure 3). In similar experiments, Tates et

al. (44) have shown that the nonhepatocar-
cinogen benzo[a]pyrene is not clastogenic
in the liver, although in combination with
a promotion stimulus, it induces foci of
preneoplastic cells in the regenerating liver
(45) suggesting that it is nonhepatocar-
cinogenic because it lacks promotion effect.
Other hepatocarcinogens and nonhepato-
carcinogens (total of 23 compounds) have
also been tested for clastogenicity in the
liver micronucleus assay. In general, the

hepatocarcinogens tested (13 compounds)
all gave a positive response, whereas most

of the nonhepatocarcinogens (8 com-

pounds) did not or were very weak clasto-
gens. Only two nonhepatocarcinogens were

clearly clastogenic (46). Thus, clastogenic-
ity may in general be related to hepatic
promoting activity.

It is not clear how clastogenic damage
may be involved mechanistically in promo-

tion (if there is a causal relationship at all)
because fewer clastogenic N-acetylarylamine
DNA adducts are formed in preneoplastic
cells compared to normal hepatocytes (47),
and tumors are believed to develop from
the preneoplastic cells. A possible explana-
tion may be that reduced formation of
clastinogenic, mitoinhibitory DNA-
adducts renders preneoplastic cells rela-
tively resistant against the mitoinhibitory
and toxic effects of hepatic promoters.
Therefore, preneoplastic hepatocytes may

proliferate faster than normal hepatocytes
(clonal expansion model, 48), increasing
the chance that a further conversion
towards malignancy takes place in one of
the cells of this expanded population.

This model requires that several condi-
tions are met. For instance, a mitogenic
signal must be generated, otherwise pre-

neoplastic cells do not expand clonally
because they are not autonomous in their
growth (49,50). Regenerative proliferation
does not seem to be important in this

respect because promotion by N-hydroxy-
2-acetylaminofluorene already can be
achieved with non-cytotoxic doses (51,52).
However, decreased hepatic functioning
may play a role. Decreased protein synthesis
and mRNA template function have been
reported during promotion with this com-
pound (53). The impaired hepatic func-
tioning may be the trigger for a mitogenic
response. Indeed, there are indications that
normal hepatocytes enter the cell cyle
because similar changes in enzyme activities
have been found after administration of N-
hydroxy-2-acetylaminofluorene that are
also found after partial hepatectomy
(54-57). Also, prolonged arrest of hepato-
cytes in the G I-phase of the cell cycle (see
below) with a concomitant change in
enzyme expression, may add to the genera-
tion of a mitogenic signal.

Recently, it was suggested that the
tumor-suppressor protein p53 has an
important role in blocking cells with dam-
aged DNA in G1 to allow time for DNA-
repair (58). The protein accumulates in
response to treatments that induce DNA
damage (including clastogenic damage).
Formation of N-acetylarylamine DNA
adducts, that cause a major distortion of
the DNA structure and are clastogenic may
therefore lead to accumulation of p53 and
arrest in G1I

[Recently, we found that there is indeed
a large accumulation of p53 in the liver
after administration of a nonhepatotoxic
dose of N-hydroxy-2-acetylaminofluorene
to male rats.]

Preneoplastic cells proliferate during
promotion with N-acetylarylamines. It is
possible that this is due to lack of properly
functioning suppressor protein p53. Once
entered the cell cycle, they may remain
resistant towards the mitoinhibitory and
toxic effects of hepatic promoters because
metabolic activation of these compounds is
decreased during cell proliferation (57,59).
Due to absence of G1 arrest in response to
DNA damage, these cells are genetically
instable and will accumulate mutations and
be at high risk for malignant transforma-
tion. Of course, any other genetic defect of
preneoplastic cells other than in p53 that
result in escape from G1 arrest would have
the same effect.

Our results also suggest that formation
of nonacetylated arylamine adducts is
related to initiation. This may explain why
certain aromatic amines are sometimes not
carcinogenic for an organ in which such
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adducts are formed: initiation may have
taken place, but promotion may be lacking.
This may particularly apply to some organs
with a low cell turnover (e.g., the liver). In
other organs where promotion may be
brought about by additional compounds
(e.g., steroid hormones in the mammary
gland), a high proliferation rate (colon,

organs in the neonatal animal) or regenera-
tive hyperplasia after cell damage (urine
bladder), formation of only this type of
adducts may be sufficient for carcinogenesis.

In conclusion, we have found a correlation
between the formation of clastogenic, N-
acetylarylamine DNA adducts of various
N-hydroxy acetylarylamines and hepatic

promoting activity, whereas initiation
seems to be correlated with formation of
nonacetylated DNA adducts. At present,
the exact mechanism by which formation
of clastogenic DNA adducts may cause
hepatic promotion is not yet clear.
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