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Statistical Models for Genetic
Susceptibility in Toxicological
and Epidemiological Investigations
by Walter W. Piegorsch

Models are presented for we in assessing genetic susceptibility to cancer (or other diseases) with animal or human data.
Observations are assumed to be in the form of proportions, hence a binomial sampling distribution is considered. Genera-
lized linear models are employed to model the response as a function ofthe genetic component; these include logistic and
complementary log forms. Susceptibility ismeasured via odds ratios of response, relative to a background genetic group.

g ancestess and confidence intervals for these odds ratios are basedonmaximum likelihod estimatesofthe regression
parameters. Additionalconideration is given to the problem ofgene-environment inteactosand to testingwhether certain
genetic identifiers/categories may be collapsed into a smaller set of categories. The collapsibility hypothesis provides an
example of a mechanistic context wherein nonhierarchical models for the linear predictor can sometimes make sense.

Introduction
Recent technological advances in biomedical experimentation

have greatly improved identification ofgenetic damage (1) and
recognition of genetic factors that may affect disease suscep-

tibilities in animal (2) andhuman (3) subjects. Molecular genetic
techniques are now used to idenitify specific genotypes or genetic
patterns in individuals affected by some disease or, for example,
exhibiting cancer. For instance, the role ofgenetic factors in lung
tumor onset and progression has been recently highlighted (4-7),
as have genetic components in the development ofhuman blad-
der tumors and other cancers (8-10). To study these effects,
various biochemical, cytogenetic, and molecular probes are used
(11-14), and epidemiologic research has moved to use these
methods in studies ofdisease/cancer susceptibility (15,16). Of in-
terest is whether individuals in various genetic categories display
greater risk of cancer or disease than those identified in some
background, control, or genetic "wild-type" category. Statistical
models and methods for assessing these risks in both animal ex-

periments and human population studies are described in the
following sections.

Statistical Models: Generalized
Linear Forms
Assume the existence ofT>2 genetic susceptibility groups or

categories, identified without error via some form ofbiological/
biomolecular probe, and indexed by i=O,. . ., T-1. For instance,
the experimental study design might compare the effects of
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a set of Tdifferent genotypes or polymorphisms on the cancer
or disease under study. The group at i = 0 is considered the
background group to which susceptibility comparisons are to be
made. From each prospectively sampled group, a count, Yi, of
individuals exhibiting tumors is recorded. This is compared to
the total number, Ni, of individuals in each group
(i = 0. . . .T - 1). For example, one might compare the propor-
tion of mice developing tumors between two different inbred
strains. The Yis are assumed to take the binomial distribution
(17) with (known) sample size parameter Ni and probability
parameterpi.
As noted above, susceptibility in the ith genetic group is

measured relative to the response in the background, i = 0
group. This is quantified via the odds ratios

1-Pi P0

To model thepi and the {i, it is natural to consider the logistic
form (18)

log ji} = A + Caj (1)

(i=O,. . .T-1). This is a generalized linear model (19) that links
a function (here, the logit) of the response probability to the
linear predictor it + aj. (In this over-saturated form, the model
requires an identifiability constraint: ao=O.)
Under this logistic model, the odds ratios take the simple form

Oi=expfxi, Vi. Estimation and testing of regression parameters
associated with these odds ratios is performed with computer
programs and packages such as SAS (20) or GLIM (21) that fit
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the logistic model and provide maximum likelihood (ML)
estimates, likelihhod ratios (LR), etc.
The null effect specifies constant susceptibility relative to the

background group; this corresponds to equality ofodds ratios:

Ho: Wr, = Nf2 = *-- = NfT-1
Under the logistic model, this becomes

Ho: ol=cL2= ...=cTl=
Departures from Ho suggest susceptibility somewhere among
the T groups. Of typical interest is identification of increased
cancer susceptibility; this is indicated for the ith group when
0i > 1, which occurs under the logistic model if and only if
ai >0. Thus, tests ofHo against one-sided alternatives are readi-
ly available by testing the sign of ai.
To test Ho against a global one-sided departure, HI: ca >0, Vi,

(i.e, that all odds ratios exceed one) one appeals to the large-
sample normality of the ML estimate &i. A recommended ap-
proach that identifies simultaneously individual departures from
Ho (i.e, which of the individual ai are positive) is based on a
modification of the well-known Bonferroni inequality (22).
Begin with the individual Wald test (23) p-values

Pi = 1 - oD &i / se(&i) ) ,

where se(ci,) is the large-sample standard error of ,i, and c1(.)
is the cumulative distribution function from a standard normal
distribution. Order these values from smallest to largest; denote
P(j) as the ith smallest ordered probability. Set the desired
simultaneous confidence level to 1-a. Then, calculate the index,
A, which is the largest i such that

va
P(T-1-i+v) > T

(this inequality must hold for every value ofv=1, . . . ,i, at each
i under scrutiny). Conclude that ac is significantly greater than
0 with simultaneous confidence 1-a, ifPi<a/A. (IfAlcannot
be calcualted, conclude that cai is significantly greater than 0 at
all levels of i). Other aspects of this and related approaches to
one-sided testing are described in detail elsewhere (24).

If a quantification via some intensity variable, say, vi, exists
for each genetic category/group, the logistic model may be
enhanced by incorporating this quantitative information. A sim-
ple (logistic) linear model is

og 1PL }-Pi

(i=0,... ,T-1), where it is assumed that v0<vI<... <vT-1.
Under this dose-response model, the odds ratios are

= 0(vj-v0), Vi.

Hence, #j=0 (for all t) ifand only if0=0, while Oi>l (for all i)

if and only if 0>0. One-sided testing is again of interest,
although it takes on a simpler formulation in the dose-response
setting, since only one parameter, 0, is assessed. For example,

Table 1. Lung tumor susceptibility data.
Group

0.70-kb/0.55-kb
0.70-kb homozygous (i=0) heterozygous (i=l)

lung tumors: 8/16 11/12

the Wald test of Ho:0=0 versus HI:0>0 rejects Ho when 0
Ise(6 >z4, where za, is the 1-a quantile from a standard normal
distribution.

Example 1
To illustrate use of the logistic model in Equation 1, consider

the lung tumor susceptibility data given by Ryan et al. (4). These
authors considered susceptibility to the known murine car-
cinogen urethan by examining specific allelic forms of the K-
ras-2 proto-oncogene in recombinant offspring from crosses of
inbred strains of mice. The susceptibility allele is characterized
by a shorter initial exon (length 0.55 kb) compared to the normal
allele (length 0.70 kb). The mice under study were known to be
either homozygous for the 0.70-kb allele, or heterozygous (0.70
kb/0.55 kb). Ifthe 0.55-kb allele were to confer or otherwise in-
dicate increased susceptibility to lung tumorigenesis,
heterozygous mice would exhibit greater lung tumor rates and
thus an odds ratio relative to the homozygous mice greater than
one.
The data for the T=2 groups are shown in Table 1. Applying

a logistic model to these data gives anML estimate ofthe regres-
sion parameter as &l = 2.398, with se(&,) = 1.16. AWald test of
the no susceptibility hypothesis Ho:a =0 yields a test statistic of

a
Z= 1 =2.07,se(z)

with one-sidedp-value equal to 0.019. From theML estimate of
al, one finds theML estimate ofthe odds ratio to be exp[&d] = ,
= 11.0. Large-sample 95% confidence limits for ^6, are given by

exp{ al ± za/2se(a&) I .

For these data, this yields 1.14 <461 <106.45.
Based on this analysis, it seems fair to conclude that the

0.70-kb/0.55-kb heterozygous genotype exhibited moderately in-
creased risk of murine lung tumorigenesis relative to the
homozygous genotype. Sample sizes are small; total samples of
at least 100 have been suggested to achieve nominal operating
characteristics in one-sided testing under the logistic model (24).
Thus, further experimentation and analysis are required before
unequivocal conclusions can be reached as to the heterozygote
susceptibility in this setting.

Two-Way Models and Gene-
Environment Interactions

In example 1, only T=2 genetic groups were examined for
murine lung cancer susceptibility. With T=2 groups, a number
ofpossible analyses can identify susceptibility, including 2 x 2
contingency table calculations with x2 tests (25), Fisher exact
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tests (26,27), etc. These approaches often provide similar in-
ferences. For example, the one-sidedp-value from the Fisher ex-
act test comparing the two proportions in example 1 is 0.024,
almost identical with the value of 0.019 achieved with the Wald
test of a I.
The usefulness of the logistic model is more evident, however,

in cases with many genetic categories or a dose-response under
study, or when additonal factors or other sources of variability
are identified and examined as part ofthe susceptibility analysis.
For example, with human lung cancer, susceptibility may
associate with genetic effects, lifestyle-related factors such as
cigarette smoking, occupational or environmental exposures to
pulmonary genotoxins, or a combination of these factors (15).
(An application of the logistic model to such data is presented in
example 2, below.) Indeed, recognition is growing that genetic
susceptibility must be studied in the context of external en-
vironmental exposures that might initiate or contribute to disease
progression (28). In these cases, the linear predictor in Equation
1 is easily extended, and the logistic model facilitates estimation
of the additional parameters.
Consider the case oftwo factors: the genetic factor continues

to be indexed by i=0,..., T-1, and an additional, "environmen-
tal" factor is now considered, indexed by j=O,...,J-1. The
associated two-way extension ofEquation 1 takes the T x J form

log {1 } = + j + Yij (2)

(i=O,...,T-l; j=0,.. .,J-1). As above, for reasons of estimability
one assumes that

O=[o0=YO = YOj= Vij.

The interaction parameters in Equation 2, 'yj, relate to the
odds ratios via

zij = in1fvuf / vioviIj},
where

Pij (l-Po)
Iu = POO(l-Pj)

Thus, HO:yij=0 is equivalent to a simple multiplicative relation-
ship among odds ratios (29-31 ):

Vij = VioN -

Multiple-level multiplicative interactions are assessed by
simultaneously identifying equality to 0 for each 'yij of interest.
The (T-1)(J-1) degree of freedom (df) hypothesis Ho:-yij=0
( V ij) is equivalent to Ho:#ij= OiO&O^, ( v id)k.

In those instances where no departure from multiplicative in-
teraction is evidenced, it may be of interest to estimate various
parameters from the reduced model. For instance, under
6ij= OijO00j, the ML estimate of Oij is simply

°j= exp(&a i+

Large-sample 1-a confidence limits for Oij are given by

ecxp{(i + N ± 7z/2 [se2(A&i) +

se2qj) + 2cov(&i,4)IW2),
where cov(&diA) is the estimated covariance between a and Oj.
(If either index is 0 the corresponding standard error will be 0
since we set ac0=00=0. Similarly, cov(&j3)=0 ifi=0 orj=0.)

Collapsibility
Collapsibility over genetic categories is another potential area

of interest in studies of genetic susceptibility to disease. One
questions whether the different genotypes have equivalent effects
and may be collapsed into one or a small group ofcategories. For
example, a single-locus, two-allele (say, B and b) system
generates three genetic categories: BB,Bb,bb. IfBbehaves as a
simple dominant allele, we can collapse these three categories
into two: B- and bb. It may be of interest to assess any such col-
lapse statistically.

Obviously, the nature ofthe collapsibility hypothesis will de-
pend on the gene under study. For instance, if one encountered
a situation where the genetic factor is important to the detoxifica-
tion ofan environmental exposure, or is important in either pro-
ducing or inactivating a toxic metabolic product ofthe exposure,
then there may be no apparent genetic effect in those individuals
without the exposure. In such a case, this may indicate collapsi-
bility atonly certain levels ofthe exposure variable. The logistic
model provides a means for assessing collapsibility of this (or
any) sort in the T x J setting. At any fixed environmental level,
sayj = jo, consider collapsibility over Cof the genetic levels, in-
dexed by ij,...,ic. This is expressed as

Under the logistic model, this corresponds to

Ho: ajl + lj0o = i + .= = aic + ylco d

Departure from Ho is assessed via a generalized LR statistic (32),
for example, with a limiting x2 distribution on C-I df.
Extensions to collapsibility over multiple levels of j are
straightforward.

Notice that atj=0 (i.e., at the "background" environmental
level) the collapsibility hypothesis is

Under the identifiability constraints -yio=0, for all i, this
simplifies to

H ,:ail= %i2= -=a= C
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Tlble 2. Case-control data on debrisoquine metabolism for lung cancer.
Metabolization category

PM IM EM
Cases 3 11 116
Controls 9 52 81

Abbreviations: PM, poor metabolizer; IM, intermediate metabolize, EM, ex-
tensive metabolize.

Thus, collapsibility at the environmental background cor-
responds to collapsibility among genetic main effects, as would
be expected. This illustrates a situation where a nonhierarchial
model (with interactions, but not all main effects, fully modeled)
makes sense from a mechanistic perspective, a paradigm not
typically encountered in (generalized) linear modeling.

Collapsibility can also be assessed under a no-interaction con-
dition, i.e, when yij =0 V ij. The collapsibiltiy hypothesis
becomes

HO: ail0= ai a1iC

at anyj. This condition is independent ofj, however, so collap-
sibility at any j when 'yij =0 Vij corresponds to collapsibility
over allj. Joint collapsibility follows similarly. Suppose collap-
sibility is considered over the two nonoverlapping categories
indexed by il,...,ic and Il,..,ID. Then, joint collapsibiltiy is ex-
pressed as a (C-1)+(D-1) df hypothesis:

Ho Vil=Vi2= *-ic;VIl =VI2== VID

corresponding to

Ho: il= ai2 = 0Xic ; a,, = a,2 * = CID

Of course, one should have some aprioi basis for considering
certain sets of genetic types as reasonable candidates for collapse
because exploratory analyses over all possible collapsings run the
risk of data overinterpretation.

Applications in Epidemiology
Once a potential susceptibility gene has been identified in

humans, its association with disease can be tested in
epidemiologic population studies using case-control study
designs (33). Sampling in a case-control study is carried out
separately for cases and controls in a retrospective manner and
thus in effect is conditioned on disease status (34). As is well
known, however, one can reverse this conditioning and model the
logit of the risk ofdisease as a function ofcovariates as in Equa-
tion 1 or 2, treating the data as if they had arisen prospectively.
The resulting regression coefficients are asymptotically unbiased
for the associated log odds ratios (35,36), and likelihood ratio
testing based on the prospective logistic model is valid when ap-
plied to case-control data (37). Thus the (prospective) logistic
models descibed above are applicable in retrospective (and pro-
spective) epidemiologic studies where genetic susceptibility is
under examination.

Table 3. Interaction of genetic susceptibility evidenced by debrisoquine
phenotype and asbestos exposure.

Cases Controls
Asbestos exposure PM/IM EM PM/IM EM
- 14 97 53 68
+ 3 47 15 17
Abbreviations: PM, poor metabolize; IM, intermediate metabolizer; EM, ex-

tensive metabolizer

Example 2
In a case-control study, Caparaso et al. (38) examined indi-

vidual subjects' abilities to metabolize the drug debrisoquine and
related these metabolic activities to lung cancer susceptibility.
Increased ability to metabolize agents such as debrisoquine is
conjectured to indicate increased cancer susceptibility because
heterogenity in drug metabolism may associate with heteroge-
neity in cancer susceptibility. (For example, the drug metabolism
pathway may play a role in carcinogenesis metabolism, either by
deactivating a carcinogen or by activating a proto-carcinogen into
a carcinogen.) Debrisoquine metabolism is polymorphic in
humans: most individuals receiving the drug rapidly excrete
large amounts ofdebrisoquine metabolite (39); these individuals
are "extensive metabolizers" (EM). Some individuals excrete
reduced amounts ofthe metabolite or excrete the drug almost un-
changed. They are "intermediate" (IM) or "poor" metabolizers
(PM), respectively (5). These polymorphisms lead to T=3
genetic categories for study.
An initial question of interest is whether the intermediate or

poor metabolizers truly constitute two distinct genetic classes
with respect to their lung cancer susceptibility. That is, is collap-
sibility evidenced between PM and IM? To study this question,
Caporaso et al. (38) reported the case-control data shown in
Table 2. Since the logistic model is applicable to this retrospec-
tive sampling scenario (37), we consider the prospective form
in Equation I to model the genetic effects. As suggested above,
collapsibility ofPM and IM categories corresponds to equality
of main effects parameters: Ho:ca=a=2. To test this hypothesis,
a GLIM (21) analysis of these data yields a 1 dfLR statistic of
0.178. No significant departure is evidenced, and we conclude
that the data support the contention that PM and IM metabolizers
exhibit similar susceptibilities to lung cancer.
Caporaso et al. (38) also reported data on the potential inter-

action of genetic susceptibility (as evidenced by debrisoquine
phenotype) and environmental factors, such as asbestos exposure
(Table 3). Notice that the data reflect the previous recognition of
PM/IM collapsibility. Referring now to the two-way model from
Equation 2, no interaction between debrisoquine phenotype and
asbestos exposure corresponds to testing Ho: mI,=O. The LR
statistic for this significance test is 1.609, on 1 df. The correspon-
ding P-value is 0.205. No evidence is seen for a significant in-
teraction between the genetic and environmnetal factors.

Data Truncation
In some settings, the experimental end point may involve the

number of occurrences of some phenomenon, such as the
number of tumors seen in a certain organ of an experimental
animal (40) or the number ofcells in a tissue or culture respon-
ding to a chemical stimulus (41). Denote the random variable
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associated with this discrete-valued response by U. Ifthe obser-
ving mechanism or technique is such that only the occurrence of
a non-null state is recorded (e.g., "no tumors" versus "some
tumors"), the data will be truncated into a dichotomous response.
The observed variable becomes

Y=rl if U>O
0 difU= O

a binary variate with probability ofresponsep=Pr[U>O]. Sobel
and Elashoff (42) have referred to this sampling scheme as
(binomial) "group testing"; also see Chen and Swallow (43).
When interest centers on the nonresponse, Pr[Y=O], the data are
often referred to as "Hansen frequencies" (44), based on ap-
plications of E. W. Hansen's work in the behavioral sciences
(45).
This sort of data truncation could occur in a susceptibility

study, where multiple tumors occur in each individual, but on-
ly the presence or absence of the cancer is noted. Thus, for the
kth individual in the ith genetic category or group, one observes
Yik as the indicator of individual tumorigenic response. In this
truncation scenario one often takes the Uik as independently
distributed Poisson random variates, with per-group means
following the one-way model jt+ai (i=O,...,T-1). Thus a new
generalized linear model forpi is induced:

Pi = PrUU >O] = 1 - Pr[U =O] =

1-exp{ - a}).

The result is a complementary log regression equation:

-log{1 -Pi) = A + ai * (3)

This construction, based on Poisson occurrence rates, was
discussed in detail by Cochran (46), who had in mind applica-
tion to bacterial concentrations in suspension and the planning
ofdilution experiments. He suggested that the concept was fairly
well known, starting with the work ofMcCrady (47) on the con-
centration oforganisms in liquids.

In general, if a set of explanatory variables, X,... ,XE, are
associated with Y, a generalized linear model could be fit under
this data truncation using the complementary log regression with
linear predictor

° + (01x1 + ... + (I)EXE.

The c parameters are unknown regression coefficients, fit via
maximum likelihood.
Odds ratios under the complementary log model are somewhat

different from the simple forms encountered under the logistic
model in Equation 1. For the simple one-way model from Equa-
tion 3, one has

Vi = exp {al} - e-

1 - e-s

(il T-1). Point estimates and large-sample standard errors

under Equation 3 are still available for ^6, using maximum
likelihood. Also, the null effect model

Ho: V1 = V2 =*-=VT-1 1

again corresponds to

Ho: al = .* = CtT-1= 0

departures from Ho continue to suggest susceptibility among the
T groups.
The complementary log model shares with the logistic model

the characteristic that increased cancer susceptibility, evidenced
when Oti>1, occurs if and only if a1 >0. Thus, tests of the in-
dividual null susceptibility hypothesis Ho:#1=1 against the one-
sided alternative HI: Oi >1 are again available by testing the sign
of ai, in similar fashion to the logistic model. Hypothesis testing
extensions to global, one-sided departures are also available
(24).

Example 1 (continued)

To illustrate use of the complementary log model from Equa-
tion 3, consider again the K-ras-2/lung tumor susceptibility data
described earlier. For the inbred recombinant mice studied in
that experiment, it is common to observe multiple lung
neoplasms per mouse (4). Reporting the data as dichotomous
outcomes therefore involves a U-p Ydata truncation ofthe form
considered herein. The complementary log formulation
becomes a viable model candidate for quantitative assessment of
the cancer susceptibility.
Applying a complementary log model to these data gives an

ML estimate of the regression parameter as &1=1.792, with
se(&1) = 0.9895. A Wald test ofthe no-susceptibility hypothesis
Ho:a=0 yields a test statistic ofZ = 1.81, with one-sidedp-value
equal to 0.035. Again, increased susceptibility is evidenced,
although with slightly lesser significance than that exhibited with
the logistic analysis. (The call for larger sample sizes remains
valid, and is perhaps in greater evidence here.) Additional
similarity is seen with the ML estimate of the odds ratio, con-
structed from theML estimate ofa1 . Under the complementary
log formulation, 0, = 11.003 for these data, an almost in-
distinguishable change from the logistic estimate reported above.

Thanks are due to Joseph K. Haseman, David G. Hoel, Jack A. Taylor, Clarice
R. Weinberg, and Takashi Yanagawa for their helpful comments and support dur-
ing the preparation of this manuscript.
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