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Fiber dimension and durability are recognized as important features in influencing the development of pulmonary carcinogenic and fibrogenic
effects. Using a short-term inhalation bioassay, we have studied pulmonary deposition and clearance patterns and evaluated and compared the pul-
monary toxicity of two previously tested reference materials, an inhaled organic fiber, Kevlar para-aramid fibrils, and an inorganic fiber, wollastonite.
Rats were exposed for 5 days to aerosols of Kevlar fibrils (900-1344 f/cc; 9-11 mg/m3) or wollastonite fibers (800 f/cc; 115 mg/m3). The lungs of
exposed rats were digested to quantify dose, fiber dimensional changes over time, and clearance kinetics. The results showed that inhaled wollas-
tonite fibers were cleared rapidly with a retention half-time of <1 week. Mean fiber lengths decreased from 11 pm to 6 pm over a 1-month period,
and fiber diameters increased from 0.5 pm to 1.0 pm in the same time. Fiber clearance studies with Kevlar showed a transient increase in the num-
bers of retained fibrils at 1 week postexposure, with rapid clearance of fibers thereafter, and retention half-time of 30 days. A progressive decrease
in the mean lengths from 12.5 pm to 7.5 pm and mean diameters from 0.33 pm to 0.23 pm was recorded 6 months after exposure to inhaled Kevlar
fibrils. The percentages of fibers >15 pm in length decreased from 30% immediately after exposure to 5% after 6 months; the percentages of fibers
in the 4 to 7 pm range increased from 25 to 55% in the same period. These data suggest that both inhaled Kevlar and wollastonite fibers have low
durability in the lungs of exposed rats, and this may be responsible for the measured differences in toxicity between Kevlar and wollastonite on the
one hand, and durable dusts such as silica or crocidolite asbestos fibers on the other. - Environ Health Perspect 102(Suppl 5):151-157 (1994)
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Introduction
Fiber dimensional characteristics and bio-
persistence are two of the most important
factors in the development of fiber-induced
lung disease. Several studies have shown
that long, thin, durable fibers are more
toxic in vitro and in vivo than short, thin
fibers (1). A Syrian hamster embryo (SHE)
in vitro cell system was used to compare
normal glass fibers measuring 15 pm with a
similar preparation of milled fibers, 2 pm
in length (2). The longer glass fibers
were cytotoxic to SHE cells and increased
the transforming frequency, but the
effects disappeared after milling. In con-
trast, both long and short crocidolite
asbestos fibers were toxic to macrophages
in vitro via an oxidant and iron-dependent
mechanism (3).
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In vivo studies have also demonstrated a
dependence upon fiber length to induce
pulmonary pathological effects. When long
and short sample preparations of either
fiberglass or asbestos were instilled into the
lungs of guinea pigs, long fibers of either
type produced severe pulmonary fibrosis,
while the shorter sample preparations pro-
duced no significant effects (4). In a series
of experiments using inhalation exposures,
rats were exposed for 1 year to aerosols of
specially prepared "short" amosite or
chrysotile asbestos fibers <5 pm in length,
and the pulmonary fiber-induced effects
were compared with preparations of long
amosite or chrysotile asbestos fibers,
>20 pm long, at similar gravimetric con-
centrations. One-third of rats exposed to
the "long" amosite fibers developed pul-
monary tumors or mesotheliomas, and vir-
tually all animals had pulmonary fibrosis.
In contrast, the shorter fiber-types pro-
duced no significant pulmonary effects
(5). Similar results were reported in the
chrysotile study. Following a 1-year inhala-
tion exposure, the long-fiber chrysotile
produced a 3-fold increase in the numbers
of pulmonary tumors and six times more
advanced interstitial fibrosis, compared to
the effects produced by the shorter fibers
(6). In contrast to these results, cytotoxic
effects were observed following repeated

injections of short crocidolite fibers into
the peritoneal cavities of mice, when
the clearance of these fiber-types was
prevented (3).

Fiber clearance studies following short-
term exposures either to inhaled chrysotile
or crocidolite asbestos fibers in rats, have
been reported, in which fibers were recov-
ered from digested lung tissue and analyzed
for dimensional changes at several postex-
posure times. Following exposure to croci-
dolite, there was a progressive increase in
mean fiber length over time postexposure,
but no significant change in the mean
diameter of fibers retained in the lung (7).
In the chrysotile-exposed rats, there was a
similar progressive increase in mean fiber
length but a significant reduction in mean
fiber diameter (8). It appeared that the
longer fibers of chrysotile and crocidolite
were selectively retained in the lungs of
exposed rats, whereas longitudinal splitting,
with a corresponding decrease in mean
fiber diameter, occurred only with the
chrysotile asbestos fibers. These results
have been supported by the results of a 2-
year intratracheal instillation/fiber clear-
ance study, wherein the lung clearance of
short crocidolite fibers was slow and the
numbers of crocidolite fibers longer than
5 pm did not decrease over a period of one
year. In contrast, the numbers of retained
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Table 1. Kevla r and wollastonite fiber exposure data and inhaled dose.

Duration of MMAD (8g), Mean gravimetric Mean fiber dose, Number of retained Count median Count median
Fiber type exposure, days um concentration, mg/m3 f/cc fibers, f/g DLTa length, pm diameter, pm

Wollastonite 5 4.3 (2.2) 59 123 ND ND ND
5 2.6 (2.0) 114 835 1.3 x 105 ND ND

Kevlar
Experiment lb

5 4.5 (2.7) 4.4 1073 3.16 xl06 9.9 0.3
5 3.4(2.7) 8.5 1344 3.5x 106 9.9 0.3

Experiment 2c
5 3.2(2.9) 2.9 613 1.4x106 10.0 0.3
5 4.7 (3.2) 11.1 877 1.3 x 106 10.0 0.3

abAbbreviations: MMAD, mass median aerodynamic diameter; bg, standard geometric deviation; ND, not determined. Number of retained fibers/gram dry lung tissue. b Used for BAL,
cell-labeling and fiber clearance/retention studies. c Used for fiber clearance/retention studies.

chrysotile fibers >5 jim in length increased
continuously over a 2-year period, due pri-
marily to longitudinal splitting of the
fibers.

The current studies were developed to
elucidate pulmonary clearance patterns and
to evaluate the pulmonary toxicity of a

selected organic fiber, Kevlar para-aramid,
and wollastonite, an inorganic fiber, rela-
tive to other reference materials, using a
short-term inhalation bioassay. The results
indicate that the low durability of these
fiber types may be responsible for the

Table 2. Pulmonary inflammation and cell labeling responses in Kevlar and wollastonite-exposed rats.

Time after 5-day exposure 0 hr 24 hr 1 week 1 month 3 months
Numbers of lavaged granulocytes
Control 8.0x103 7.8x103 7.0x103 7.3x103 8.6x103
Wollastonite 1.3 x105 9.2 x1048 3.0 x 106a 3.0 x 104 1.2 x 104
Kevlar 4.1 x105" 4.4x 10Oa 3.3x 1058 2.6x 104 8.7x 103

Pulmonary cell labeling: % of labeled terminal bronchiolar cells
Control 1.0 ± 0.1 0.9 ± 0.03
Wollastonite 1.4± 0.1 0.9 ± 0.03
Control 0.8±0.2 0.9± 0.1 1.1 ±0.1
Kevlar 2.3 ± 0.4a 1.3 ± 0.1 1.2 ± 0.1

Pulmonary cell labeling: % of labeled pulmonary parenchymal cells
Control 1.0 ± 0.1 0.8 ± 0.1
Wollastonite 1.1 ± 0.1 0.8 ± 0.02
Control 1.0 ± 0.1 1.1 ± 0.2 1.1 ± 0.1
Kevlar 1.4 ± 0.2 1.1 ± 0.6 1.0 +-.

,not determined. ap< 0.05.

Table 3. Kevlar and wollastonite fiber dimensional and lung clearance data.

Calculated mass
Time after Mean length, Mean diameter, concentration, pg/g

5-day exposure Fiber type pm pm lung tissue

Ohr Kevlar 12.5 ± 2 0.33 ± 0.03 21.4
Wollastonite 11.2 ± 3.9 0.53 ± 0.32 63.5

72hr Kevlar 11.1 ± 5 0.30 ± 0.06
Wollastonite

1 week Kevlar
Wollastonite 6.9 ± 2.5 0.68 ± 0.35 20.5

1 month Kevlar 9.0 ± 2 0.295 ± 0.04 10.1
Wollastonite 6.0 ± 1.2 0.95 ± 0.3 4.9

3 months Kevlar 8.1 ± 2 0.27 ± 0.09 5.6
Wollastonite

6 months Kevlar 7.45± 3 0.23 ± 0.02 2.7
Wollastonite

,not determined.

observed transient pulmonary inflamma-
tory effects.

Materials and Methods
General Experimental Design
Groups of 8-week-old male Crl:CD BR
rats (Charles River Breeding Laboratories,
Kingston, NY) were exposed 6 hr/day for 5
days to aerosols of Kevlar in concentrations
ranging from 877 to 1344 f/cc (9-11
mg/m3), or to wollastonite fibers at 835
f/cc (114 mg/m3). Following exposure,
groups of 3 to 4 animals and aged-matched
controls were evaluated at 0, 24, or 72 hr,
1 week, 1, 3, or 6 months postexposure.
Additional groups of three to four ani-
mals/time point were used for lung diges-
tion studies.

Fiber Preparations
Ultrafine respirable-sized Kevlar para-
aramid fibrils (DuPont Fibers, E. I. du
Pont de Nemours, Willmington, DE), pre-
pared for a 2-year inhalation study (11),
were utilized for this study. A preparation
of Wollastonite NYAD-G fibers (NYCO,
Willsboro, NY), measured using scanning
electron microscopy (SEM), had diameters
ranging from 0.2 to 3.0 pm.
Inhalation EFxposure
Dust generation techniques for Kevlar and
wollastonite exposures have been described
in detail elsewhere (12,13). Atmospheres
of Kevlar fibrils or wollastonite fibers were
generated with a K-tron bin feeder (K-tron
Co., Glasboro, NJ) equipped with twin
screws. Baffles were inserted into the gen-
eration apparatus and increased the res-
pirability of the sample. Fibrils or fibers
were metered into a plastic funnel con-
nected to a cyclone where high-pressure air
transferred the test material into a microjet
apparatus. Chamber concentrations were
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maintained by controlling the dust-feed
rate into the generation apparatus or by
varying the air-flow rate. The methods for
determining gravimetric concentrations,
particle/fiber size and fiber numbers have
been previously described (12,13).
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Pulmonary Lavage
Bronchoalveolar lavage procedures (14)
were repeated five times or until 50 ml of
fluid was collected. Lavage fluids recovered
from control and dust-exposed rats were
centrifuged at 250g, and the supernatant
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Figure 1. Pulmonary biomarkers in lavage fluids of Kevlar-exposed rats. Alkaline phosphatase, protein, lactate dehydro-
genase (LDH), and N-acetyl-p-glucosaminidase (NAG) values in BAL fluids of rats exposed to Kevlar fibrils. Values given
are expressed as percent response (± SD) of corresponding control values. Transient increases in BAL protein, alkaline
phosphatases, NAG, and LDH levels were measured through 1 week following 5-day exposure to Kevlar fibrils, but were
not different from controls after 1 week of recovery.
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Figure 2 Pulmonary biomarkers in lavage fluids of wollastonite-exposed rats. Alkaline phosphatase, protein, and lactate
dehydrogenase values in BAL fluids of rats exposed to wollastonite fibers. Values given are expressed as percent response
(± SD) of corresponding control values. Transient increases in BAL protein and LDH levels were measured through 1 week
following 5-day exposure to wollastonite fibers, but were not different from controls after 1 week of recovery.

was removed and concentrated for bio-
chemical studies. The cell pellet was resus-
pended in Eagles Minimal Essential
Medium (Eagles MEM F-I1; pH 7.2,
GIBCO, Grand Island, NY) supplemented
with penicillin and streptomycin. The
methods of quantitation of cell numbers,
viabilities and differential counts have been
previously described (15).

Biochemical Assays on
Bronchoalveolar Lavage Fluid
Lavage fluids from the first two washes
were centrifuged and the supernatant con-
centrated 10-fold in an Amicon concentra-
tor (cut-off mw=10,000). All biochemical
assays were performed on concentrated
bronchoalveolar lavage (BAL) fluids at
30°C, using a semiautomated clinical
chemical analyzer (Encore II, Baker
Instruments, Allentown PA). Lactate dehy-
drogenase (LDH), alkaline phosphatase
(ALP), and N-acetyl-13-glucosaminidase
(NAG) were measured using commercially
available reagent kits (Baker Instruments,
Allentown, PA, for LDH and ALP;
Boehringer Mannheim Biochemica,
Indianapolis, IN, for NAG). Lavage fluid
protein was measured using a commercially
available reagent kit based on Coomassie
Blue dye binding (QuanTtest, Quanti-
metrix, Hawthorne, CA). Statistical meth-
ods have been previously reported (15).
For statistical analysis of the biochemical
data, a one-way analysis of variance
(ANOVA) and Bartlett's test were calcu-
lated for each sampling time. Statistical
analyses for fiber dimensions and 5-bromo-
2'deoxyuridine (BrdU) cell labeling were
carried out using Student's t-test.

Pulmonary Celi-Laheling Studies
BrdU cell labeling (12) was designed to
measure the effects of Kevlar or wollas-
tonite fiber inhalation on airway and lung
parenchymal cell turnover in exposed rats.
Groups of Kevlar fiber-exposed rats and
controls were pulsed immediately after
exposure and one week or one month later
with an intraperitoneal injection of BrdU
dissolved in a 0.5 N sodium bicarbonate
buffer solution at a dose of 100 mg/kg
body weight. Groups of wollastonite-
exposed rats and controls were similarly
pulsed. The animals were sacrificed 2 hr
later by pentobarbital injection. It has been
shown that the single intraperitoneal pulse
leads to efficient and sufficient labeling
in the peripheral lung to differentiate
significant differences between exposure
groups (12).
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NO. FIBERS
PER GRAM 2X10 ----- 613 fibers/cc

-0--- 877 fibers/cc
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RECOVERY PERIOD AFTER 5-DAY EXPO

were counted. Three animals per Kevlar
exposure group/time period and four per
wollastonite group/time period were mea-
sured in this manner and recorded. Fiber
dimensional analysis was carried out by
random selection by SEM of fibers >4 pm
in length. Fiber mass concentrations were
calculated using the formula of mass =
volume x density.
Results
The Kevlar and wollastonite studies were
carried out at several exposure concentra-
tions and for several time periods. Only the
data from the 5-day, high-exposure con-
centrations will be reported here.

Chamber Atmosphere Analysis
24w The exposure generation data for

aerosolized Kevlar fibrils and wollastonite
ISURE fibers are summarized in Table 1.

Figure 3. Clearance of fibers from Kevlar-exposed rat lungs following a 5-day exposure. Values given are mean numbers
of fibers/gram of lung tissue ± SD. Clearance studies demonstrated a transient increase in the numbers of retained
Kevlar fibrils at 1 week postexposure, with rapid clearance of fibers thereafter. The lung retention half-time was 30 days
(Table 3). From Warheit et al. (12); reprinted with permission.

Recovery ofKevlar or Wollastonite
Fibers from Digested Lung Thssue
To recover Kevlar fibers from the lungs of
exposed rats, the fixed lung tissue was
digested in an 11% KOH solution (in
ethanol and water; pH>14) and poured
into a grinding tube. Wollastonite-exposed
lungs were digested with a 5.25%
hypochlorite (bleach) solution (pH 10.6).
All samples were then ground and incu-
bated in a shaking water bath at 600C for 4
hr. Following incubation, the samples were
sonicated, vacuum-filtered onto Millipore
filters (pore size = 0.20 pm or 0.45 pm),
and placed in an oven overnight. The fil-

ters were then mounted and prepared
either for phase contrast light microscopy
(PCOM: for counting), or for scanning
electron microscopy (SEM: for fiber
dimensional analysis). It has been demon-
strated that these techniques did not affect
the dimensions of the retained fibers
(16,17).

The numbers of fibers/area of filter
were counted by PCOM using the
National Institutes for Occupational Safety
and Health (NIOSH) 7400B counting
method (NIOSH Manual of Analytical
Methods). Only fibers with an aspect ratio
of 3:1 (length:width), and >5 pm in length

Analyses of Celiular Constituents in
BAL
Exposures to Kevlar fibrils did not alter the
total numbers of cells recovered by lung
lavage; increased numbers of cells were
recovered 1 week post exposure from the
lungs of wollastonite-exposed rats but the
number of cells returned to control levels
after one month. The viability of cells
recovered in exposed or control rats was
greater than 94% at all time periods.

Cell differential analyses of lavaged cells
recovered from the lungs of exposed rats
demonstrated that fiber inhalation pro-
duced an early but transient pulmonary
inflammatory response, as evidenced by
increased numbers of neutrophils in BAL
fluids (Table 2). This effect was measured
through a 1-week postexposure period but
was short-lived, since neutrophil numbers

a

Figure 4. Scanning electron micrographs of Kevlar fibrils (arrows) recovered from the digested lungs of an exposed rat: (A), immediately after a 5-day exposure; (B), 3-months postex-
posure. Rat lungs were digested with a KOH solution.
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Figure 5. Clearance of fibers from wollastonite-exposed rat lungs following a 5-day exposure. Values given are mean
numbers of fibers/gram of lung tissue ± SD. Clearance studies demonstrated a rapid decrease in the numbers of retained
fibers postexposure, with an estimated clearance half-time of 1 to 2 weeks.

were not significantly different from
control values after 1 month or at any
later time.

Enzyme and Protein Analyses in
BAL Fluiids
Transient increases in BAL LDH, protein,
alkaline phosphatase and NAG values were
measured in the rats exposed to fibers for 5
days. However, no significant increases in

these parameters were measured after one
week (Figures 1,2).

Cell-labeling Studies and
Histopathogy
No significant differences in the labeling
index of lung parenchymal cells were
detected between Kevlar or wollastonite-
exposed rats and their corresponding con-
trols at any time period (Table 2).

Increased BrdU-labeling of terminal bron-
chiolar cells in Kevlar-exposed rats was
measured immediately after exposure.
However, no significant differences were
observed later, indicating that this effect
was transient. Histopathologic analysis at 3
months postexposure indicated that neither
fiber produced pulmonary lesions.

Fiber Clearance Studies
Clearance studies demonstrated a transient
increase in the numbers of retained Kevlar
fibrils at 1 week postexposure, with rapid
clearance of fibers thereafter (Figure 3).
The retention half-time was <30 days
(Table 3). Mean fiber lengths and diame-
ters decreased progressively with time over
a 6-month postexposure period. Mean
fiber lengths decreased from 12.5 pm to
7.5 pm and mean fiber diameters, from
0.33 pm to 0.23 pm (Table 3) (Figure
4A,B). Wollastonite fibers were cleared
rapidly from the lungs of exposed animals
with a retention half-time of <1 week
(Figure 5). Mean fiber lengths decreased
from 11 pm to 6 pm over a 1-month
period, but mean fiber diameters increased
from 0.5 to 1.0 pm (Table 3) (Figure
6A,B).

Discussion
The finding of increased numbers of
retained fibers at 1 week postexposure in
Kevlar-exposed rats may relate to fiber
shortening during the first week after expo-
sure. Mean fiber lengths recovered from
digested lung tissue decreased from
12.5 pm to 7.5 pm, over a 6-month post
exposure period, and mean fiber diameters,

Figure 6. Scanning electron micrographs of wollastonite fibers (arrows) recovered from the digested lungs of an exposed rat: (A), immediately after a 5-day exposure; (B), 1 month
postexposure. Rat lungs were digested with a hypochlorite solution.
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from 0.33 pm to 0.23 pm. These results
suggest that Keviar fibrils are shortened in
the lungs of exposed rats, indicating a dif-
ferent pulmonary clearance mechanism
from that associated with either chrysotile
or crocidolite asbestos; in both of these
fiber-types the mean lengths of inhaled
fibers was progressively increased (7,8).

The wollastonite clearance data pre-
sented here confirm the recently reported
results of studies using intratracheal instil-
lation methods of exposure (18). In that
study, the durability of instilled wollas-
tonite, crocidolite asbestos, and glass fibers
were evaluated in lung tissue from exposed
rats. The retention half-times for three wol-
lastonite samples were 10, 1 1, and 12 days.
The retention half-times for different glass
fiber samples ranged from 38 to 238 days;
and the clearance of crocidolite was
insignificant, with a half-time rate of 1000
days. When a correlation between durabil-
ity of fibers in the lung and carcinogenic
potency was sought in the intraperitoneal
test, the data supported the hypothesis that
long, thin, and durable fibers are capable of
inducing tumors.

Wollastonite fibers are composed pri-
marily of calcium silicates, which are solu-
ble in lung fluids and within cells.
Conceivably, the thinner calcium-contain-
ing wollastonite fibers were quickly solubi-
lized and cleared following inhalation,
while the thicker wollastonite "stumps"
(Figure 5B) were more difficult to clear
from the lung.

Fiber dimension and durability gener-
ally have been recognized as important fea-
tures in influencing the development of
carcinogenic and fibrogenic effects in the
lungs of exposed animals. Stanton et al.
(19) have proposed that fibers >10 pm in
length and <0.25 pm in diameter have the
greatest potential for producing lung
tumors. Similar conclusions can be drawn
from recent studies with silicon carbide
whiskers and fibers (20,21). Inhalation of
these durable materials produces severe
pulmonary fibrosis and lung tumors, while
nonfibrous silicon carbide particles are
regarded merely as nuisance dusts (22).
A short-term inhalation bioassay has

been developed to assess the potential for
inhaled particles or fibers to produce pul-

monary fibrosis. This screen has utilized a
series of biomarkers that may predict the
progression of fiber-induced pulmonary
injury following chronic exposures. In pre-
vious studies, the efficacy of this short-term
inhalation screen was tested by exposing
rats to several concentrations of various ref-
erence materials, including known fibro-
genic dusts such as ao-quartz silica (15) and
crocidolite asbestos (13), as well as materi-
als with minimal or moderate biological
activity such as titanium dioxide, carbonyl
iron particles (15), or carbon fibers (23).
Short-term exposure of rats to silica or cro-
cidolite asbestos produced sustained pul-
monary inflammatory responses. In
contrast, exposures to wollastonite or
Kevlar fibrils, which have low biopersis-
tence, produced only transient inflamma-
tory effects. In summary, short-term
inhalation of durable fibers produces sus-
tained pulmonary inflammatory effects
along with consistently elevated indicators
of cytotoxicity and consequent pulmonary
lesions, while only transitory effects are
produced by fibers of low biopersistence.
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