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A wide range of toxicity test methods is used or is being developed for assessing the impact of
endocrine-active compounds (EACs) on human health. Interpretation of these data and their
quantitative use in human and ecologic risk assessment will be enhanced by the availability of
mechanistically based dose-response (MBDR) models to assist low-dose, interspecies, and in vitro
to in vivo extrapolations. A quantitative dose-response modeling work group examined the state of
the art for developing MBDR models for EACs and the near-term needs to develop, validate, and
apply these models for risk assessments. Major aspects of this report relate to current status of
these models, the objectives/goals in MBDR model development for EACs, low-dose extrapolation
issues, regulatory inertia impeding acceptance of these approaches, and resource/data needs to
accelerate model development and model acceptance by the research and the regulatory
community. Key words: endocrine-active compounds, endocrine disruptors, linkage models
mechanistic dose-response modeling, pharmacodynamics, pharmacokinetics, risk assessment
extrapolations. - Environ Health Perspect 1 07(suppl 4):631-638 (1999).
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The potential for various compounds to alter
endocrine system function has received increas-
ing public attention in the United States [e.g.,
Food Quality Protection Act, 1996 (1), Safe
Drinking Water Act Amendments of 1996
(2)] and in other countries throughout the
world. The recognition of this potential toxic-
ity has led to debate about the ability of cur-
rent testing methods to identify endocrine
system effects throughout the full gamut of
life stages. New screening assays and test pro-
tocols for reproductive and developmental
toxicity have been developed and others are
currently being evaluated (3). In addition, a
large number of new mechanistic test systems
have been developed to evaluate interactions
of endocrine-related compounds with specific
hormone receptors. Together, these efforts
will provide more comprehensive characteriza-
tion of the potential hazards posed by expo-
sure to these compounds. Coordinate with
development of these new tools for hazard
identification and new mechanistic tests is a
need to create a set of refined dose-response
assessment tools that use as much of this new
data as possible (4).

A workshop was held in May 1998 in
which several subgroups focused on approaches
for characterizing the effects of endocrine-active
compounds (EACs) on human health at envi-
ronmental exposure levels. One work group
addressed issues related to development of
mechanistically based dose-response (MBDR)
models for EACs, emphasizing the potential

role of mechanistic models in improving the
scientific foundations of dose-response assess-
ments for EACs. This report is the product of
that work group.

Dose-Response Models
Currently, default dose-response assessment
approaches differ for cancer and noncancer
end points. Default carcinogen risk assess-
ments assume that all doses of a carcinogenic
compound carry some degree of risk (5).
Noncancer end points, including reproductive
and developmental toxicity, have traditionally
been regulated by assuming that these responses
have a threshold. No observed adverse effect
levels obtained from toxicity tests are adjusted
by the application of uncertainty factors to
derive reference doses or reference concentra-
tions. The reference concentration methodol-
ogy (6) for inhaled compounds includes
defaults to calculate doses of inhaled com-
pounds in specific regions of the respiratory
tract. The newly proposed U.S. Environmental
Protection Agency guidelines for carcinogen
risk assessment emphasize the role of mode of
action and tissue dosimetry (i.e., mechanistic
data) in supporting departure from the linear
cancer defaults. Consideration of both dosime-
try and mode of action is essential in producing
dose-response assessments that make maximal
use of available data and reduce uncertainties.

Quantitative dose-response models for
toxicology relate adverse response outcome
with exposure duration and intensity. These

include empirical models that derive model
parameters from fitting response data, models
that incorporate limited mechanistic informa-
tion, and finally, models that include expo-
sure, dosimetry, tissue interactions, mode of
action, and biologic responses in an integrated
and more quantitative fashion. These latter
models, explicitly incorporating mode of
action and tissue dosimetry data, are referred
to here as MBDR models. This summary of
the dose-response work group provides back-
ground information regarding mechanistic
models for EACs. It stresses the potential for
these models to improve the precision of risk
estimates below the range of sensitivity in cur-
rent test methods (usually at the 5-10% inci-
dence levels or at the 5-10% increase in a
continuous measure of response) and to reduce
uncertainties in risk assessments with EACs.

Empirical Dose-Response
Models in Risk Assessment
Parameters derived from fitting empirical
models to response data do not necessarily
have specific biologic meaning or bear one-
to-one relationships with particular biochem-
ical or molecular parameters. Nonetheless,
these empirical approaches are still important
for assessing the range of response behaviors
associated with exposure to these compounds
(7). Empirical models are especially useful if
they are capable of describing a wide range of
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Figure 1. Schematic of the modular components of a mechanistic model. BBDR, biologically based dose response.

curve shapes, provide a measure of a potency
of response, and are useful for assessing time-
dependent aspects of the test system. The
benchmark dose methodology (8-10) applied
to noncancer end points and discussed in
the revised carcinogen guidelines (5) is an
example of this dass of model structures.

Other useful attributes of empirical mod-
els would include their ability to describe
background information, including prior
exposure, background incidence, heterogene-
ity, and variability, and to permit extrapola-
tion to other groups of chemicals. Usually
these empirical models are tailored to specific
data sets. The accumulation of information
from these independent quantitative analyses
permits the integration of multiple responses,
comparisons of potency, and the cataloging of
the shapes of response curves that need to be
evaluated in more detailed mechanism-based
modeling. With limited information regard-
ing the biologic system, it would be possible
to create hybrid models that induded specific
biologic parameters such as protein or recep-
tor binding affinity constants, enzyme activi-
ties, or receptor number (11-14). These
biologic parameters would be embedded
within the otherwise empirical model. Other
approaches that consider the pharmacology
of ligand-receptor signaling have also
received attention from the pharmacology
community (15).

Goals and Expectations for
Mechanistic Models for
Endocrine-Active Compounds
General Characristics
More comprehensive mechanistic models are
designed to include descriptions of both
pharmacokinetics, especially the time course
for distribution of compounds to target
tissues, and pharmacodynamics, i.e., the
interactions between compounds and target
tissues. Biochemical linking models connect
the pharmacokinetic and pharmacodynamic
models. The linking models specify the
manner in which the chemical alters critical

biochemical processes and initiates the series
of steps leading to toxicity. Thus, a more
complete mechanistic model for EACs
should consist of a number of modular ele-
ments, e.g., a pharmacokinetic module, a
linkage module for receptor-based interac-
tions, and a module for tissue response
(Figure 1). Obviously, the parameters in
these models are expected to correspond with
specific biochemical, physiologic, and
anatomic characteristics of the test system
and test compound.

The advantage of a modular structure is
to show clearly the manner in which data
from multiple studies and disciplines
become tightly integrated into the overall
MBDR model. The goal in pursuing devel-
opment of these integrated models is to
gain insight from the quantitative mecha-
nistic analysis of responses in animals to
predict exposure outcomes for the health
of human and wildlife populations. In this
regard, inclusion of population characteris-
tics such as genetic variability may be
essential for ensuring that these mechanis-
tic models become more useful for risk
assessment. MBDR models with these gen-
eral characteristics are intended to play
specific roles in chemical risk assessment.
Five of the more important roles are
a) understanding the expected shape of the
response curve based on biologic principles;
b) understanding differences in response for
structurally related compounds, different
genders, strains, organ systems, life stages,
and animal species; c) applying better extrap-
olations for specific exposure situations in
exposed human populations; d) accounting
for nonlinearities in pharmacokinetics and
pharmacodynamics; and e) accounting for
genetic variability and other factors that
contribute to differential sensitivities
among subpopulations.

Although MBDR models attempt to cap-
ture the salient features of a given process
and/or effect, they are always simplifications
of the real world. Nonetheless, even sim-
plistic mechanistic models may be useful in

summarizing information, generating
hypotheses, challenging scientific knowledge,
and clarifying the key issues to consider
when extrapolating across routes, across
species, to lower exposures, and across differ-
ent ages (16-18). In their initial stages,
MBDR models are designed to explain lim-
ited sets of data and are limited in the con-
clusions they can support. They have to be
modified as new information becomes avail-
able, as interest in a given effect is increased
by either scientific curiosity or regulatory
scrutiny, and most especially, as our under-
standing of basic endocrinology and biology
advances. The molecular biology revolution
of the past 20 years has provided a broad
new set of tools for analyzing molecular sig-
naling and cellular control processes. The
insights and data arising from use of these
biologic techniques will provide continuing
challenges for refining and extending MBDR
models at all levels of structural organization.
In MBDR models the normal biology should
be described quantitatively and then the
impact of the xenobiotic examined as a
perturbation of the normal state.

Models ofEndocrine System Function
Endocrine organs secrete hormones that
travel throughout the body, affecting distant
target cells (endocrine), neighboring cells
(paracrine), and cells of origin (autocrine).
These hormones control processes involved
in maintaining normal development and
function of the organism. The molecular
machinery of the target organs transduces the
hormonal signals to create biologic responses.
EACs have the potential to alter these signal-
ing, recognition, and transduction processes,
leading to mild perturbations, altered bio-
logic function, or overt toxicity. MBDR
models of endocrine function eventually
include all these molecular characteristics, as
well as information on the distribution of the
key hormones to active tissues, hormone syn-
thesis and metabolism, hormone binding to
plasma proteins, interactions of multiple
receptor isoforms (e.g., estrogen receptors a
and P) and physiologic interactions that serve
to maintain homeostasis. Key aspects of these
processes include receptor synthesis, recy-
cling, and degradation; tissue-specific regula-
tion and activation of receptors during
different life stages; and control of enzymes
that synthesize or metabolize ligands.
Homeostasis in adult organisms is regulated
by important feedback controls for many
endocrine processes. In addition, an impor-
tant aspect of modeling in the endocrine
system is consideration of multiple time-
dependent phenomena. These behaviors
include dynamics of organism development,
circadian rhythms, puberty, estrous or men-
strual cycles, and reproductive senescence
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and aging. In these life stages, the coordina-
tion and timing of sequential events by a vari-
ety of receptors and natural ligands organizes
a set of events that evolves over time.

Once the normal endocrinology has been
considered in a model for effects of EACs,
inclusion of the major biologic processes
affected by individual EACs and their
metabolites becomes the key focus of the next
stage of modeling. This concept of the char-
acterization of the major steps deserves special
emphasis in regard to an evolving under-
standing of signal transduction pathways,
including gene transcription, translation, and
posttranslational modification and regulation.
It would be difficult or impossible to account
for the behavior of all these factors in any
contemporary model. However, identifying
and modeling the essential characteristics that
account for the potency of exogenous com-
pounds in the mechanistic description may be
sufficient to significantly improve the scien-
tific credibility of current risk assessments.
Many biologic factors may contribute to the
major potency-determining steps in a process,
and the specific step involved may vary for
different exposure situations. Among the fac-
tors that may have to be considered are tim-
ing of exposure, amplification of multistep
cascades, multiple receptor isoform interac-
tions, and the presence of tissue-specific
accessory proteins, such as co-activators and
co-repressors.

When empirical models are applied to
multiple data sets, there is no reason to expect
consistency in the estimates of parameters
across different experiments. With MBDR
models, there should be consistency in values
of specific parameters. Although receptor
number varies across age, gender, and species
and is affected by cycling and circadian
rhythms, basic parameters such as receptor
number, affinities, and metabolic characteris-
tics should be similar as long as the same age,
gender, tissue, and species of animal are used
for studies. In this fashion, MBDR models
have the ability to synthesize a broad range of
scientific observation into a coherent descrip-
tion of normal and altered biologic states. As
such, these models reflect the present state of
knowledge about EAC toxicity and provide a
quantitative organization of prevailing, domi-
nant hypotheses regarding the modes of
action of hormones and EACs on endocrine-
regulated processes. The ability to create
quantitative hypotheses of the mode of action
and the use of these hypotheses to design
critical experiments for their verification are
simply the applications of the scientific
method to problems in toxicology and risk
assessment. One of the strongest arguments
for expanding the use of MBDR models in
EAC risk assessments is that they allow
development of testable hypotheses related to

mode of action and to the shape of the
dose-response curve at low doses.

Endocrine systems and the impact of
EACs on these systems appear to be readily
amenable to MBDR modeling techniques.
Much is known about the regulation of organ
system function by natural hormones and
about the interactions among various
endocrine systems. This body of information
can be combined with data on the perturba-
tions of the endocrine system by specific
classes of EACs to develop comprehensive
and testable hypotheses. It is important to
realize that these organized mechanistic mod-
els are a first-step hypothesis compilation.
Optimally, these models should be used in
experimental design in confirming or refuting
the original hypothesis and for risk assess-
ments based on the most plausible prevailing
perception of modes of action. To accumu-
late appropriate data for improving the bio-
logic basis of risk assessment with these
EACs, special effort is necessary to develop
protocols that simultaneously fulfill specific
data needs for modeling and specific data
needs for regulatory testing requirements.

Model Evaluation
The ability to organize and explain a broad
array of diverse scientific findings is a primary
goal of mechanistic modeling and is a key
component for achieving broad scientific
acceptance. A difficulty in gaining acceptance
for these models occurs because of the very
requirement that the models organize and
integrate such a wide variety of experimental
data. These ambitious structures may ade-
quately describe the majority of studies but
fail to match all observed results. It will be
necessary to use a broad array of scientific evi-
dence in characterizing and assessing the suc-
cess of mechanistic models. The degree of
emphasis to be placed on particular studies
and the congruence of the model with the
observed results will depend on both statistical
issues and scientific judgment.

In many situations, it has been difficult to
characterize how scientific judgment affects a
regulatory decision because of the inability to
express quantitatively the different risk esti-
mates derived from differing assumptions
regarding modes of action for xenobiotics.
MBDR modeling uses diverse expertise to
determine key biologic aspects of a model
such as causal linkages between exposure
changes and biologic effect. The explicit artic-
ulation of the mechanistic assumptions in
these models shows their impact on the risk
predictions. Thus, the process of risk assess-
ment becomes more transparent (objective)
and the ability to test these assumptions
(challenging the model and/or validating its
use) is greatly enhanced. The integration and
analysis of hypotheses can provide a more

explicit incorporation of scientific judgment
into the process of evaluating the impact of
specific mechanistic assumptions in risk assess-
ments. The coupling of modeling results with
elicitation of expert judgment has been con-
sidered a potential tool for achieving consen-
sus in the use of mechanistic data and
mechanistic models in risk assessment.

Mechanistic models, by their nature,
attempt to describe in mathematical detail the
processes involved in generating an adverse
health effect from an environmental expo-
sure. This has several clear advantages. First,
when data are available on interindividual
variation in response to any element of the
process, this information can be directly
incorporated into the use of the model for
prediction using various population-oriented
methods (19,20). Second, mechanistic mod-
eling provides the potential for generalizing
results from one chemical to other agents. For
example, key components of a model, such as
the mechanism for stimulation of follicle
growth and ova release by follicle-stimulating
hormone and luteinizing hormone, once
characterized, can be used in models for other
environmental agents that affect the same
mechanisms. Additionally, once models have
been developed for prototypical agents in a
class of chemical agents, structure-activity
relationships can be used to determine phar-
macokinetic model parameters for other con-
generic compounds (21,22) or binding
parameters for other chemicals with similar
biologic activity (23,24). More simple appli-
cations of mechanistic data may provide
reduction in experimental costs, i.e., using
existing models to estimate toxic potency on
the basis of alterations in key parameters.
Predictive models may find use in prioritizing
compounds for testing. High-exposure com-
pounds that are predicted to have high
potency would be candidates for immediate
testing. Streamlined approaches become pos-
sible when the components of the model
describe mechanisms that can be clearly iden-
tified as parts of the cascade of events leading
to toxicity for other agents.

Risk Assessment Applications
MBDR modeling can provide scientific
support for the shape of the dose-response
curve in the low-dose (or low-incidence)
region. A representation of the potential role
of biomarkers and mechanistic models in
extending the region of dose where confident
extrapolations are possible is shown in Figure 2.

Mechanistic studies can be used to
determine elements of the system that give rise
to the shape of the dose-response curve below
the range of observation of overt toxic effects,
e.g., the studies that evaluated the shape of the
protein induction curve for CYPlAl by
dioxin at doses much below those that caused
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overt toxicity (25). Carefully designed
experiments and quantitative organization of
the experimental data into a model should pro-
vide a more precise determination of the
expected risks at different exposure levels.
More generally, the development of mechanis-
tic models can actually provide support for the
relationship between responses and biomarkers
at most levels of exposure.

Mechanistic modeling has other uses in
addition to dose-response assessment. These
models have been used to identify data gaps
in our understanding of the toxicity of EACs
and to identify key experiments to fill these
gaps. In addition, by locating the critical ele-
ments governing the potential potency of an
agent for a given effect, mechanistic model-
ing aids in identifying useful short-term,
cost-effective testing strategies that directly
contribute to the prediction of risks and
strengthen the level of evidence needed to
determine if a hazard exists. Optimally, sev-
eral mechanistic models with differing
underlying biologic mechanisms can be
compared against various data sets to dis-
criminate between competing mechanisms
(25). Experimental simulations with these
competing models prior to acquisition of
new data can identify the parameters with
the greatest impact on model predictions.
These parameters should be investigated ini-
tially to provide the greatest ability to dis-
criminate between competing hypotheses.
With EACs, this could involve comparing
models, assuming receptor agonist activity,
antagonist activity, or mixed activities before
deciding on a specific experimental design to
test the predictions.

Additionally, mechanistic models offer a
logical framework in which to link exposure
assessment and dose-response modeling.
Extrapolation issues, when properly considered
prior to developing a mechanistic model, can
be more readily addressed. These include

cross-species, cross-organ, cross-route, and
cross-compound extrapolations. Specific data
will be required for these model extrapolations;
however, the amount of experimentation
should be considerably less than required in
the initial model development. Furthermore,
issues associated with exposure to multiple
agents working additively or synergistically
can be addressed through model simulations
that are followed by targeted experimentation
to verify and/or refine these assumptions.

Other uses are in improving design of
toxicity tests and creating modules useful for
multiple chemicals. Regulatory agencies
require that the chemical industry generate
specific types of data on many compounds.
Mechanistic models could greatly improve
the value of these mandated toxicity testing
results for risk assessment. This interaction,
however, would only be possible if there were
more flexibility in establishing protocols for
toxicity testing. In addition, experimentation
with prototype endogenous hormones (e.g.,
estradiol, testosterone) could provide infor-
mation helpful in predicting the response to
many other compounds with similar activi-
ties. Such generic, natural hormone models
would include modules containing pharma-
cokinetics, receptor interaction, and tissue-
response portions. This information would be
important for future studies with agonist/
antagonists of these native hormones.

Regulatory Acceptance
There is a degree of skepticism about the
willingness of regulatory bodies to make
decisions based on mechanistic models.
Sometimes these concerns are caused by the
unfamiliarity of regulators and many research
scientists with these modeling techniques. It
deserves emphasis that regulatory acceptance
of MBDR models should be secondary,
following broader acceptance of these
techniques by the scientific community.

Within the regulatory structures, there is
appreciation that current risk assessments
have many uncertainties. These uncertainties
often lead to legislation requesting new
mechanistic data. However, the new data are
only infrequently incorporated in the risk
assessment because the entire package of
results is still regarded as incomplete or
appears to have been collected in the absence
of a clear context for its use. MBDR models
are an important avenue for providing the
context for successful incorporation of various
new data.

Another concern has been that the use of
models may provide a level of confidence that
is not justified because of the uncertainties in
biologic knowledge. In practice, the reverse
appears true. These models define the individ-
ual parameters that comprise the overall
function of the endocrine system within an

organism. Each parameter in the model then
has associated variability and uncertainty,
together with uncertainty associated with the
choice of mode of action. Frequently, the mere
identification of the parameters in the models
and the appreciation of associated uncertainties
has provided an impression in the regulatory
cornmunity of an increased level of unlcertainty
when these models are proposed. This percep-
tion was voiced in the initial attempts to incor-
porate physiologically based pharmacokinetic
models in health risk assessments. However,
the perception is based on an inappropriate
comparison of MBDR approaches and default
risk assessment models. Default methods are
simply sets of experiential rules. Although the
risk assessments derived from application of
the default procedures may lack precision in
defining the true risk, there is no way to assess
inherent uncertainties in the default process.
The MBDR modeling approach does uncover
areas of uncertainty but explicitly defines
those areas that need the most attention in
assessing uncertainties.

In addition to risk assessment applica-
tions, mechanistic dose-response models
might also play a role in clinical diagnosis and
management of specific disease states. For
example, mechanistic models might be espe-
cially useful in assessing the degree of risk
associated with hormone imbalance in certain
human endocrinopathies. An important clini-
cal problem that might approached in this
way is hyperandrogenism in women.

Comparisons with Contemporary
Approaches
In their applications to risk assessment,
MBDR models should be compared and
contrasted with the current default assump-
tions. The hurdle for application of mecha-
nistic models and mechanistic data should
not be set so high as to disqualify all but the
most sophisticated and detailed of these
models from application in risk assessments.
Clearly, the utility of any quantitative model
will be derived from a clear articulation of
the reasons for constructing the model and
the range of detail that is successfully cap-
tured in the model structure. The level of
biologic detail in mechanistic models varies
depending on the present state of knowledge
of the normal biology and for the biology of
specific EACs. Although it is a laudable goal
to include all of the details of the expected
biologic interactions, this level of detail can-
not be provided at this time or in the foresee-
able future. Hence, procedures must be in
place to accept MBDR models as a means
of improving risk assessments as part of a
reiterative hypothesis-generating process,
where continuing changes in these models
may occur as our understanding of complex
biologic systems improves. No risk assessment
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should be regarded as the final word on a

compound, as long as toxicologic research
and toxicity testing continues to accumulate
new findings and data. Risk assessments and
MBDR models are simply recapitulations of
the state of the science for a compound at a

particular point in time.

Information and Data Needs
Many types of information could be organized
and included within structured mechanistic
models. Because of the breadth of studies that
could be completed, it is important to priori-
tize efforts and to remain focused on the most

pressing uncertainties and data needs. The
role of background hormone concentrations
in regulating and eliciting specific responses

needs to be included in these MBDR models
in order that estimates of risk above back-
ground can be evaluated. A challenge in
assessing normal function of the endocrine
system is in defining the range of normal
function and the perturbations of this range of
normal function that would be regarded as an

adverse response. This consideration is impor-
tant for individual responses and for responses

of populations. Thus, the inclusion of the
behavior of endogenous hormones serves as a

critical element of the overall model structure,

providing important perspective to the
perturbations caused by incremental increases
in agonists or antagonists. The discovery that
compounds serve as effectors for multiple
receptors, e.g., methoxychlor and its metabo-
lites display both estrogen-agonist and andro-
gen-antagonist activity, counsels some caution
in assigning single mechanisms of action to

compounds that have not been adequately
screened for interactions with these various
systems. In assessing data needs for MBDR
models, it is possible to focus on specifics in
minute detail, such as the presence of hor-
mone receptors in specific tissues with esti-
mates of binding constants, receptor number,
etc. Another approach is to broadly list the
characteristics that appear to be important in
constructing these mechanistic models in
order to identify critical response-limiting
parameters. In real-world applications, model
building, data accumulation, and model test-
ing and refinement will usually help guide dis-
cussion about the level of detail required for
use of the models in risk assessment.

Current emphasis is on potential effects of
estrogenic, antiandrogenic, and thyroid-
mimetic compounds on human health.
Assessments for estrogenic compounds require
information on normal effects of estrogen

during different life stages (26,27). Modeling
studies with other endocrine systems include
androgen control of spermatogenesis (4) and
thyroid hormone-mediated control processes

(28). The estrogenic system has multiple
interactions with other hormonal regulatory
systems, and it might be that simpler systems
could be examined to develop strategies and
modeling techniques in more sparsely con-

nected hormonal systems. Blumenthal et al.
(29) reported on the development of a phar-
macokinetic model for the pineal hormone
melatonin. Androgen function in males is
also likely to be more tractable than the time-
dependent control of cycling and pregnancy

in females. A tabulation of some of the
characteristics of available MBDR models for
endocrine related toxicities appears in
Table 1.

The end points of interest with agonists
and antagonists of sex-steroid action are repro-

duction, development, immunologic func-
tion, neurologic, and neoplasia. Models for
reproduction and development are still in
their formative stages compared to risk models
for cancer. Despite some activities in mecha-
nistic models for developmental responses

(39), none of these models have been
organized to correlate the concentrations of

Table 1. Attributes of MBDR models including some used to describe endocrine-related processes.

Dosimetry modeling

Examples

Chloroform
Formaldehyde

Methylene chloride

Endocrine-related
physiologic
process models

Toxicants affecting
endocrine status

Melatonin

Testosterone regulation,
antiestrogen

Estrus cycle atrazine

5-Fluorouracil

TCDD-NIEHS

TCDD

Endocrine-related
physiologic effect
models

SAR models

Developmental models

Thyroid homeostasis
(e.g., thionamide)

Leydig cell regulation
(e.g., cimetidine,
linuron, procymidone)
QSAR

CH3HgCI and fetal
growth

ADME

PBPK
CFD/PBPK

PBPK

Natural hormone,
PBPK

Feedback (T),

PBPK model
Empirical model,

(E2) PK
Compartmental
PK model

PBPK

PBPK

NA

A

PBPK model for
CH3HgCI

Receptor/(ligand)
interactions Al

Metabolizing enzymes Cell
DNA-protein cross-links, Cytc
tissue CH20 to

GST-mediated metabolism, Pres
GSH metabolite po

Putative brain T-receptor, T-LF
testicular LH receptor

Putative hypothalamic LH s
E2-receptor

Enzyme inhibition Alte

Ah-receptor binding estradiol, Cell
metabolism EGF-receptor, Thyi
enzyme induction TSH

Ah-receptor, CYPlA1 Hep
protein induction ch.

TRH,TSH,T4,T3 TSH
(interruption of normal syl
inhibitory feedback di
mechanism)
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morphogens, including ligands and receptor
molecules, with the occurrence of specific
structural abnormalities. Models for devel-
opment need to consider feedback loops
and potentially include differential tran-
scriptional activities of individual agonists
for hormone receptors in different cell
types, in different regions of the embryo,
and at different times during gestation.
Models for developmental stages also have
the challenge of accounting for a dynamic
system where sensitivity of the tissue to the
hormone changes markedly over time (40).
Low-Dose Extrapolations with
Endocrine-Active Compounds
The default position in noncancer risk
assessments assumes a threshold, i.e., a dose
below which there are negligible risks. A com-
bination of empirical modeling and mecha-
nistic data has been marshaled to suggest that
there are certain developmental end points
for which thresholds are unlikely to occur
and others for which thresholds would not
be at all unexpected (41). There do appear
to be situations in which it would be realistic
to consider that there is a continuum of
responses (i.e., no threshold dose for the
observed effects) for added hormone agonists.
For instance, when the natural outcome in
adult reproductive system structure and func-
tion is determined by the in utero exposures
to natural hormones, the addition of exoge-
nous agonists should cause alterations in the
response incidence. This expectation is con-
sistent with additivity to background and
with results of studies of the effect of uterine
position on adult reproductive system
parameters in rodent species (42).

The influence of processes without clear
thresholds for risk assessment must still con-
sider the severity (adversity) of the responses.
Some effects, such as prostate size, represent
changes in specific phenotypic characteristics
that are themselves variable in the adult pop-
ulation. Risk assessment for these end points
will revolve around definitions of adversity.
The issues surrounding altered distribution
of normal characteristics in the population
are complex, requiring both technical input
about adversity and public policy input on
the level of tolerance for changes in these
distributions by the public.

Several end points for which thresholds
are uncertain were discussed in our delibera-
tions. These responses included changes in
androgen receptor number and prostate
weight in adult male mice following in utero
estrogen exposures (42) and turtle sex ratios
following egg painting with estrogens
(43,44). Other examples were also dis-
cussed, including fertility in a continuous
breeding study in females exposed to DES
in utero (45) and vaginal threads in female

mice exposed to dioxin in utero (46).
Although these effects appear consistent
with absence of threshold, they have not
been examined statistically to determine the
minimal threshold that would be consistent
with the data. Statistical analyses of this
kind would be informative and should be
performed routinely.

Some of the molecular characteristics of
gene transcriptional control by hormones and
their receptors are expected to give rise to
highly nonlinear dose-response characteristics
due to positive feedback loops, receptor
autoregulation, phosphorylation cascades,
and control of enzymes involved in synthesis
of high-affinity ligands (47). These molecu-
lar behaviors can give rise to biologic
switches, i.e., to the ability to abruptly change
from one biologic condition to another over a
very small change in ligand concentration.
Examples appear to include estrogen receptor
autoregulation during vitellogenesis in some
fish and frog species (48) and thyroid
hormone receptor upregulation in frog
tadpoles during metamorphosis (49). Highly
nonlinear effects were also reported in proges-
terone-mediated maturation of Xenopus
oocytes, a response mediated via mitogenic-
activated protein kinase (50). Many of these
nonlinear switching mechanisms are expected
to produce nonlinear dose-response curves
for the action of native ligands. However, the
dose response for effects of exogenous com-
pounds, even when biologic switches are pre-
sent, still depends on the combination of
effects of the native ligand and perturbations
of the EAC on the specific biologic effect.

Another aspect of the debate surrounding
endocrine-active compounds is the concept of
pharmacokinetic thresholds. Even in cases in
which there is likely to be a linear dependence
of response on added hormone-mimetic xeno-
biotics, such as turtle sex determination, sto-
chastic principles determine the distribution
among competing binding sites, i.e., native
receptor, shell surface structures, nonreceptor
binding sites, etc., at low doses. Thus, not all
added hormone or xenobiotic would be avail-
able for receptor binding. In addition,
because many pharmacokinetic processes are
nonlinear, it would be simplistic to assume
that all EACs act additively.

Recommendations
* Make MBDR model development a

routine part of the risk assessment
process. The strongest recommendation
is that appropriate MBDR models be
developed in concert with accumulation
of data on mechanistic end points and
with data from new screening and toxic-
ity testing protocols. Improved hazard
identification methods alone will, in
isolation, do little to assess low-dose risk

situations. The use ofMBDR models will
provide perspective and context to hazard
identification studies and improve the
quantitative significance of these studies
in contemporary risk assessment. Other
reports from the workshop appearing in
different chapters in this monograph aid
in identifying specific topical areas for
pursuing compound-specific MBDR
models for toxic responses.
Organize and present contemporary exam-
ples. There are examples of mechanistic
models that have been incorporated into
risk assessment applications (Table 1).
Fairly complete mechanistic models for
dioxin include pharmacokinetics, gene
induction, cell proliferative responses,
and tumor formation (34-36,51). One
version of the dioxin mechanistic model
has been described in the dose-response
chapter of the dioxin reassessment (34).
A second model structure with similar
pharmacokinetic and gene induction
modules was based on different assump-
tions of the characteristics of cells at risk
for transformation in treated rats (52). On
a more limited basis, pharmacokinetic
modules have been used in risk cal-
culations with several halogenated hydro-
carbons. Linkage models have been
developed and proposed for risk assess-
ment use for cytotoxicity with chloroform
(30) and acrylic acid (53). A model has
been described that explains the effects of
serum binding on estrogen potency during
development (26). A more comprehensive
biologically based dose-response model
for developmental effects has recently been
completed using methylmercury as the
prototypical compound (39).

Mechanistic information has been
used in semiquantitative fashion for
responses such as thyroid carcinogenicity
(37). Although less effort has been
focused on mechanistic models of
endocrine system function, a number of
first-generation models have been pub-
lished in recent years (4,27-29).
Examples should be compiled and made
available in document form to indicate
the manner in which these models are
constructed and their potential applica-
tions. The availability of such a docu-
ment would aid in explanation of the
process of mechanistic modeling in risk
assessments and provide an opportunity
to learn from past efforts (Table 2).

* Select prototype compounds/mixtures
for model development. For a limited
number of case studies, mechanistic
model development should be pursued
to collect appropriate data for developing
each of the modular components in
the exposure, dose, linkage, response
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Table 2. Characteristics for selecting prototype com-
pounds for model development.

* Compound represents a human health concern
* Metabolism and the potency of metabolites are

understood
* Target tissue dose can be measured for

compound/metabolites
* Intermediate markers of response are available for

study
* Results are expected to be generalizable to other

compounds
* latency from exposure to response is relatively short
* A high penetrance rate for the effect can be achieved
* There is a relevant animal model to study
* Can make predictions of dose response for risk and

precursor states.
* Predictions verifiable from intermediate responses

and biomarkers.

cascade. Criteria for selecting these pro-
totype chemicals and responses must be
carefully considered. Among these crite-
ria are the broader applicability of indi-
vidual components, e.g., modules that
provide for the synthesis and elimination
of estrogen, progesterone, or testos-
terone. The influence of in utero estra-
diol exposure of males on adult prostatic
function should be an important case
study for examining the potential non-
monotonic dose-response curves for
EACs. Another potential case study for
assessing threshold behavior and the role
of nonlinear positive feedback loops in
dose-response relationships is tempera-
ture-dependent sex determination in
some reptiles (43).

Several other candidate responses/ com-
pounds were noted: estrogen exposure in
relation to mammary tissue neoplasia in
rats (54,55) and dopaminergic prolactine-
mia and amenorrhea. Other candidate
examples should also be identified based
on the deliberations of the other work
groups. These prototype examples should
be sketched out to indicate the connec-
tions of the modular portions to the more
complete model and data needs identified
based on the available data for each and
the ease with which the data can be used
in a quantitative fashion. The prototypes
should include a compound(s) with more
than one mode of action and examples
with mixtures of compounds with differ-
ent modes of action affecting a common
end point. A suggestion was provided of
the effects of a mixture of dioxin, dibutyl-
phthalate, and an androgen antagonist on
male reproduction. These compounds
appear to have very different modes of
action expressed as the same kind of func-
tional deficit. Alternatively, prototype
mixtures present in the environment could
be used (56).

* Foster intimate interdisciplinary commu-
nication. The ability to develop and utilize
these quantitative models requires new
team building between individuals with
training in such fields as toxicology,
endocrinology, pharmacokinetics, statis-
tics, and biomathematics. Appreciation for
the risk assessment process needs to be
broadly conveyed to groups collecting crit-
ical mechanistic data. In return, the
MBDR modelers need to be immersed in
the biological tools that provide the infor-
mation for successfully coordinating the
modular components.

* Promote education on multiple fronts.
Three education-based activities need to
move ahead in tandem. They are develop-
ment of case studies to demonstrate the
process, education of scientific community
and regulatory bodies with regard to the
application of these models, and introduc-
tion of quantitative mechanistic modeling
programs as a more routine part of curric-
ula in toxicology and risk assessment. This
latter recommendation is a long-term activ-
ity but important for ensuring an environ-
ment that encourages the introduction of
biologic data and mechanistic modeling in
quantitative dose-response assessments.

* Encourage development and use of mod-
ular components of mechanistic models.
To fully benefit from the use of MBDR
modeling in science and risk assessment,
there must be a forum for the review and
acceptance of mechanistic models and
their component parts. Critical, open peer
review will not only guarantee better mod-
els for risk assessment but will encourage
the use of components of these models in
the development of models for numerous
agents. The use of common modules for
multiple compounds, in turn, will simplify
the review task, improve the quality of risk
assessments, and encourage the further
development of mechanistic models.
Development of these models and modules
was a priority area for research identified in
the Endocrine Disruptor Work Group of
the Committee on Environmental and
Natural Resources (57).

* Develop funding resources to support
MBDR model development. If efforts to
create MBDR models as dose-response
assessment tools for EACs are to succeed,
modeling activities will have to be more
explicitly encouraged as an essential part
of the present initiative to expand the
toxicity databases for these compounds.
This support should come in the form of
funds specifically earmarked for model
development, training, and education.
With any attempt to provide these
resources, it must be recognized that the
skills to collect important data and

develop model structures for hypothesis
testing and risk assessment may well
reside in different locales. Attention must
be given to encouraging multidisciplinary
activities within single institutions and
multi-institutional activities for successful
completion of these types of modeling
initiatives.

Summary and Conclusions
MBDR models are promising tools for
improving risk assessments with EACs. The
technology and biology required to develop
these models is advancing rapidly, providing
many opportunities for model-building efforts
with diverse EACs. In the absence of these
MBDR models, the abundance of hazard
identification data being collected will serve to
indict specific EACs without providing insight
regarding the exposure conditions likely to
pose any significant level of risk in exposed
populations. The successful development of
these models requires close cooperation
between the modelers and the laboratories and
individuals collecting biologic data. In the
early stages of model building, emphasis
should be placed on prototypical compounds
and on endogenous hormones themselves.
Accurate dose-response models of endoge-
nous hormones and the processes controlled
and organized by these hormones are a neces-
sary prerequisite for understanding the pertur-
bations associated with EAC exposures. The
potential ofMBDR models will only be ful-
filled if resources are made available for model
building, along with the resources for toxicity
testing and mechanistic research. A series of
recommendations for expediting the develop-
ment and application of MBDR models
focuses on education, fiscal and data resources,
and creation of a library of examples of the
model-development process.
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