
Supporting Methods

For data evaluation we followed the methods of statistical data analysis as described in

detail in ref. 10. The posterior probability p(model | data, I ) that a model is able to fit the

experimental data, given some initial information I on the model parameters is given by

p(model | data, I) =
p(data |model, I)× p(model | I)

p(data | I)
[2]

where p(data |model,I) gives the likelihood function (e.g., least squares) that the data fit the

model, p(model | I) describes the prior probability that the model is valid, and p(data | I)

gives the probability that a certain data set can be measured given I. The prior probability

describes our state of knowledge or ignorance on the problem (e.g., positiveness of model

parameters).

In general, a model may contain several parameters ai, i = 1, . . . n, of which some (al, l =

1, . . .m) are of interest and others, so called nuisance parameters (ak, k = m + 1, . . . n), are

not. By integrating the probability distribution over the nuisance parameters, a process

called marginalization, one obtains a new probability distribution that depends only on the

relevant parameters:

p({al}) =

∫ +∞

−∞
. . .

∫ +∞

−∞
p({ai})dam+1 . . . dan . [3]

The best estimates of these parameters and their uncertainties are then obtained in the usual

way: They are given by the parameter values at the maximum of p({al}) and the inverse of

the covariance matrix at that point,

[σ2]ij = −[{∇∇ log[p({al})]}−1]ij . [4]

In our particular case the detector signal I(ν, d) at a certain frequency, ν, and a water

layer thickness, d, is described by

I(d, ν) = I0, ν exp(−α(ν)d) + C [5]

where I0, ν , α(ν), d, and C correspond to the terahertz signal without probe, the absorption

coefficient of the probe, the layer thickness of the probe, and the detector offset, respectively.

Only α is of interest, so I0, ν and C may be treated as nuisance parameters. Because

the model above is linear in both nuisance parameters, the integration can be performed

analytically.
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A summary of all absorption coefficients with their error bars which were determined

following this approach at a frequency of 80 cm−1 is shown in Fig. 6. In total, > 100

measurements were carried out over a frequency range from 73 to 91 cm−1.

Equ. 2 may now be used to quantitatively compare how well different models with e.g., a

different number of parameters describe a certain data set. It is clear that a larger number

of parameters will give a better fit in the least-squares sense. However, are these just fitting

parameters or do the additional parameters contain new information?

Consider two models A and B that are used to describe a given data set. The ratio of

the posterior probabilities that the models fit the data is given by

p(A|D, I)

p(B|D, I)
=

p(D|A, I)

p(D|B, I)
× p(A|I)

p(B|I)
. [6]

Under the assumptions that we can estimate a reasonable parameter range for λ

λmin ≤ λ ≤ λmax, [7]

that we have no a priori knowledge on λ so that the according prior is uniform between

λmin and λmax and zero elsewhere and that the probability distribution

p(D|λ,B, I) = p(D|λ0, B, I)× exp(−(λ− λ0)
2

2δλ2
) [8]

is well approximated by a Gaussian probability distribution function, we can use marginal-

ization to finally get

p(A|D, I)

p(B|D, I)
=

p(A|I)

p(B|I)
× p(D|A, I)

p(D|λ0, B, I)
× λmax − λmin

δλ
√

2π
. [9]

This equation can be easily generalized to cases of several variables.

In our particular case we want to compare the two-component model A with parameters

{ai} and the three-component model B with parameters {bi}, including two additional pa-

rameters, the effective radius rsolv and the absorption coefficient αsolv of the solvation shell,

with our measurements of the overall absorption coefficient versus frequency. Because the

different measurements are statistically independent,

p(A|D, I) ∝
N∏

i=1

exp(−(Di − A({ak})i)
2

σ2
i

), [10]

where Di is the ith data point, and A({ak})i and σi are the corresponding model value and

measurement uncertainty, respectively. A similar equation holds for model B. The best fit

parameters for both models are given by the sets of parameter values {ak,0} and {bk,0}.
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For the comparison of the two component and three component models presented in

this paper we used an uncertainty range 0 cm−1 ≤ αsolv ≤ 1,000 cm−1 for the absorption

coefficient of the solvation shell and 0 Å ≤ rsolv ≤ 20 Å for its radius. The probability ratio

is then given by

p(B|D, I)

p(A|D, I)
= exp(−[

N∑
i=1

(Di −B({bk,0})i)
2

σ2
i

−
N∑

i=1

(Di − A({ak,0})i)
2

σ2
i

])×

αsolv, max − αsolv, min

δαsolv

√
2π

× rsolv, max − rsolv, min

δrsolv

√
2π

.

[11]

The average probability ratio of three-component model versus the two-component model

at the investigated frequencies is 7.5× 1014.

[10] Sivia, D. (1996) Data Analysis: A Bayesian Tutorial (Clarendon Press, Oxford).
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