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Chemicals Associated with Site-Specific
Neoplasia in 1394 Long-Term
Carcinogenesis Experiments in Laboratory
Rodents
by James Huff,* Joseph Cirvello,*
Joseph Haseman,* and John Bucher*

The carcinogenicity data base used for this paper originated in the late 1960s by the National Cancer
Institute and since 1978 has been continued and made more comprehensive by the National Toxicology
Program. The extensive files contain among other sets of information detailed pathology data on more
than 400 long-term (most often 24 month) chemical carcinogenesis studies, comprised of nearly 1600
individual experiments having at least 10 million tissue sections that have been evaluated for toxicity and
carcinogenicity. Using the current data set of 379 studies made up of 1394 experiments, we have compiled
listings of chemicals having like carcinogenic target sites for each of the 34 organs or systems for which
histopathology diagnoses have been recorded routinely. The most common tumor site is the liver (15% of
all experiments), followed in rank order by: lung, hematopoietic system and kidneys, mammary glands,
forestomach, thyroid glands, Zymbal glands, urinary bladder, skin and uterus/cervix, and circulatory
system and adrenal glands. These compilations are most useful for maintaining a historic perspective
when evaluating the carcinogenicity of contemporary experiments. Equally important, the chemical-
tumor-organ connection permits an evaluation of how well chemically induced cancers in a particular
organ in one sex or species will predict or correlate with the other sex or species. Using liver cancers as
an example, the overall interspecies concordance is 80%. Likewise target site predictions can be made for
chemicals selected for study that may be similar to those already evaluated; thereby experimental protocols
could be adjusted to allow, for example, more extensive pathology on preselected target organs (i.e., serial
sections of the kidney). Further from these observations, one could decide to use two strains of mice to
evaluate a short-chain chlorinated aliphatic compound or to study a human carcinogen in a sex-species
known to develop chemically induced tumors in the same site observed in humans. Structural classes of
chemicals having a propensity for certain organs can be easily identified from these data. Sex-species
responders to particular induced cancers become clearly evident, such as in the ovary of female mice or
in the kidney of male rats.

Introduction
Evaluating chemicals in laboratory rodents remains

the cornerstone for identifying those chemicals most
likely to cause cancer in humans (1-6). In the absence
of adequate data from human experience and epide-
miological investigations, long-term studies in labora-
tory animals are the best method currently available
for evaluating and identifying potential carcinogenic
hazards to public health (for example 1,2,4-12).

Since 1918 when Yamagiwa and Ichikawa (13) first
exposed laboratory animals to chemicals for the purpose
of detecting chemical carcinogens, and the era of ex-
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perimental carcinogenesis can be said to have had its
beginning (14), much has been learned about the rele-
vance of these findings for possible effects in humans
(1,2,4,15,16). Likewise, an enormous amount of knowl-
edge has been gained over the years concerning the
design, conduct, evaluation, and interpretation of the
data collected from these carcinogenesis studies (17-23).
The major public health value of these long-tern chem-
ical carcinogenesis experiments is to allow better risk
assessment (24) and risk management decisions (25,26)
to be made for reducing, preventing, or eliminating ex-
posures to those chemicals identified as constituting real
risks to humans (27-29).
A valuable characteristic of our program and the ex-

tensive collection of experimental chemical carcinogen-
esis information is that the data we evaluate come from
our own experiments; that is, we design the protocols,
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oversee conduct of these studies, validate the experi-
mental results, evaluate the data, present the findings
and conclusions before nongovernmental panels of ex-
perts; print the collections of "raw" data together with
detailed literature reviews, evaluations, interpreta-
tions, and conclusions in a series of technical reports;
and publish the essence in scientific journals (3,30). An-
other program uniqueness stems from our decision not
to make overall or combinational evaluations for a chem-
ical; that is, we separately evaluate and report levels
of evidence for each experimental grouping or cohort:
male rats, female rats, male mice, and female mice are
the usual makeup ofthe experimental cells for each long-
term chemical carcinogenesis study (31-34).

This paper provides the site-specific neoplastic results
from 1394 individual experiments in rodents exposed
separately in 379 chemical carcinogenesis studies. The
carcinogenicity evaluations given in this paper are based
on established criteria (33,34) with the primary empha-
sis for interpreting long-term experiments in laboratory
animals being centered on site-specific tumor analyses
and comparisons (35).
The carcinogenicity data base used for this paper orig-

inated in the late 1960s by the National Cancer Institute
(NCI) and since 1978 has been continued and made more
comprehensive by the National Toxicology Program
(NTP). The extensive files contain among other sets of
information detailed pathology diagnoses on at least 10
million tissue sections that have been evaluated for non-
neoplastic and neoplastic lesions (16); these are stored
in the NTP Archives and are available on-location for
independent study. Using the current and collective
data set, we have compiled listings of chemicals having
like carcinogenic target sites for each of the 34 organs
or systems for which histopathology diagnoses have
been recorded routinely. These data form the basis of
this paper.

Materials and Methods
The chemical carcinogenesis data given in this paper

come from the NCI and NTP Technical Reports Series
(3,15,23,30), and include those data, results, and con-
clusions that have been peer reviewed in public meet-
ings through June 1991. In total, the data base used for
this paper comes from 379 long-term chemical carcin-
ogenesis studies involving 1394 sex-species experi-
ments.- These toxicology studies are typically carried
out using both sexes of two species of rodents divided
randomly into sets of 50 to 60 animals per control and
exposure groups; two or three exposure concentrations
are graduated down from a top level, a level of exposure
selected to show some minimal yet obvious chemical-
associated toxicity that should not compromise unduly
the animals normal well-being or growth and survival
(3,11,17-20,23,36,37).
The species most often used by the NCI and NTP are

the inbred Fischer 344 rat and the hybrid B6C3F1 (C3H
x C57B16) mouse. Duration of exposure is generally 2
years (or about % the life span of these rodent species);

animals are assessed for visible lesions during necropsy,
and prescribed tissues and organs are evaluated micro-
scopically. These diagnoses are substantiated and peer
reviewed (38,39). The data are tabulated with appro-
priate tumor combinations (40-42), and statistical com-
parisons are made which adjust for possible differences
in survival between groups (43). The collated findings
are evaluated, subjected to extensive audits (44,45),
interpreted, and presented in public meetings to a non-
government peer review panel of experts in chemical
carcinogenesis (3,23).
Each experimental grouping (that is, male rats, fe-

male rats, male mice, and female mice) is given an over-
all level of evidence of carcinogenicity (or "carcinogenic
activity") selected from five categories: two positive lev-
els (clear evidence and some evidence), one uncertain
(equivocal evidence), one for no observed response (no
evidence), and one for seriously flawed experiments (in-
adequate experiment) (34).
For each experiment, the results given in this paper

reflect the original evaluations given in the individual
Technical Reports (30,41). The chemically associated
neoplastic observations have been grouped according to
the organs or systems affected. For completeness, a
chemical has been included if the neoplastic response
was positively caused by the exposure or if the neo-
plastic effect was equivocally related to exposure (some-
times referred to as "may have been related"). These
differences are clearly indicated. Moreover, a "yes" or
"no" indication is given to show whether a particular
tumor response was the only neoplastic effect caused
by that chemical. To allow comprehensiveness, chemi-
cals have been listed that did not induce any increases
in cancers.

Selected Experimental Results
The data selected for these analyses are divided into

a series of tables. Table 1 contains the basic data-set,
listing by organ or system the chemicals judged to cause
tumors at that site. If evaluated by the NTP for mu-
tagenesis in Salmonella, the results are given; no at-
tempt has been made to supplement either the organ
and tissue sites of carcinogenicity or mutagenicity data
from the literature. Other information listed in Table 1
includes the Technical Report numbers (Tr No.), routes
of exposure, the level of evidence for each experimental
unit (male rats, female rats, male mice, and female mice)
with the group in which an effect occurred at this site
shown in parentheses, tumors that show marginal in-
creases, and whether other sites are affected. To make
the chemical data set complete, the end section of this
table lists those chemicals that were evaluated as not
causing any increases of tumors at any site (128 chem-
icals or 465 experiments).
The data given in Table 1 permit an evaluation ofhow

well a target site in one sex mimics or predicts for the
same response in the other sex of that species, or for
the same sex in the other species. Using the liver as a
specific example of organ-to-organ correspondence be-

(text continues on page 261)
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Table 1. Organs/systems and associated chemicals exhibiting induced neoplasia observed in 379 chemical carcinogenesis
studies involving 1394 sex-species experiments (1976-1991).

Levels of evidence Myhv
TR ~~~~~~~~~~~~~~~~~~~~~ofcarciniogeniciya May have bteTR ocaineniy8 been relatedb Other'

Nod Chemical SALe RUT' MR9 FR MM FM (sex species) sites
ADRENAL GLAND h

021 ALDRIN - F E (E ) p N Y
318 AMPICILLIN TRIHYDRATE - G (EE) NE NE NE Y
363 BROMOETHANE (ETHYL BROMIDE) - I (SE) EE EE CE Y
305 CHLORINATED PARAFFINS: C23, 43% CHLORINE - G NE (EE) CE EE Y
351 P-CHLOROANILINE HYDROCHLORIDE -,+,+W G CE (EE) SE NE (MR) Y
075 CHLOROBENZILATE -,-,- F (E )(E) P P Y
085 4-CHLORO-M-PHENYLENEDIAMINE + F (P ) N N P Y
405 C.I. ACID RED 114 + W CE CE (MR) (FR) Y
285 C.I. BASIC RED 9 MONOHYDROCHLORIDE + F CE CE CE (CE) Y
206 1,2-DIBROMO-3-CHLOROPROPANE + I P (P ) P P Y
319 1,4-DICHLOROBENZENE (P-DICHLOROBENZENE) - G CE NE CE CE (MM) Y
402 FURAN - G CE CE (CE) (CE) Y
361 HEXACHLOROETHANE -,- G CE NE (MR) y
330 4-HEXYLRESORCINOL -,- G NE NE (EE) NE Y
332 2-MERCAPTOBENZOTHIAZOLE ?- G (SE) (SE) NE EE Y
248 4,4'-METHYLENEDIANILINE DIHYDROCHLORIDE +,+ W P P (P ) P Y
313 MIREX - F (CE) CE Y
315 OXYTETRACYCLINE HYDROCHLORIDE - F (EE) EE NE NE Y
070 PARATHION +W,- F (E ) (E ) N N N
349 PENTACHLOROPHENOL, DOWICIDE EC-7 - F (CE) (CE) Y
349 PENTACHLOROPHENOL, TECHNICAL - F (CE) SE Y
240 PROPYL GALLATE - F (E ) N E N Y
193 RESERPINE - F (P )N P P Y
364 RHODAMINE 6G - F EE (EE) NE NE Y
033 TETRACHLORVINPHOS - F N (P ) P P Y
074 1,1,2-TRICHLOROETHANE -,- G N N (P )(P) Y
274 TRIS(2-ETHYLHEXYL)PHOSPHATE - G (EE) NE NE SE Y
303 4-VINYLCYCLOHEXENE -,- G IS IS IS CE (FM) Y

Nunber of ChemicaLs = 28 TOTALS 14 10 7 5

BONE
049 ACRONYCINE J (P ) P IS IS Y
341 NITROFURANTOIN +,++ SE NE NE CE (MR) Y
393 SODIUM FLUORIDE - W (EE) NE NE NE N

Number of Chemicals = 3 TOTALS 3 0 0 0

BRAIN
088 1,2,3-BENZOTRIAZOLE +W F (E ) (E ) N E Y
363 BROMOETHANE (ETHYL BROMIDE) -,+ I SE (EE) EE CE (MR) Y
288 1,3-BUTADIENE + I CE CE (MM) Y
346 CHLOROETHANE + I EE (EE) IS CE Y
397 C.I. DIRECT BLUE 15 - W CE CE (MJi) Y
372 3,3'-DIMETHOXYBENZIDINE DIHYDROCHLORIDE +,+,+ W CE CE (MR) Y
390 3,3'-DIMETHYLBENZIDINE DIHYDROCHLORIDE + W CE CE (MR) (FR) Y
355 DIPHENHYDRAMINE HYDROCHLORIDE - F (EE) EE NE NE Y
356 FUROSEMIDE - F (EE) NE NE SE Y
374 GLYCIDOL +,+ G (CE) (CE) CE CE Y
019 PROCARBAZINE HYDROCHLORIDE - J (P ) (P ) (P )(P) Y

Number of Chemicals = 11 TOTALS 9 6 2 1

aLevels of evidence are (these designations reflect changes in classification scheme over time): P, positive evidence of carcinogenicity; CE, clear
evidence; SE, some evidence; E or EE, equivocal evidence; N or NE, no evidence; IS, inadequate experiment. Blank space under an animal group
indicates NO experiment was conducted for that chemical. bSex-specific groups that show a marginal increase for this tumor site. cIndicates whether
other site-specific cancers were induced; Y, yes; N, no. dNCI or NTP Technical Report number. eSalmonella typhimurium results: +, positive;
+W, weakly positive; ?, inconclusive; -, negative. fRoute of exposure: F, feed; G, gavage; I, inhalation; W, drinking water; J, injection; S, sldn
application. gSex and species: MR, male rats; FR, female rats; MM, male mice; FM, female mice. h( ), the sex-species animal group in which a
carcinogenic response was chemically induced in that particular organ or system. 'Totals include positive and equivocal or may have been related
responses; under each sex-species column = number of chemicals for that tumor.

(Continued on next page)
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Table 1. (continued)

Levels of evidence May have
TR of carcinogenicitya been relatedb Otherc
Nod Chemical SAL" RUT' MR9 FR MM FM (sex species) sites

CIRCULATORY SYSTEM
(HEMANGIOMA/HEMANGIOSARCOMA)

233 2-BIPHENYLAMINE HYDROCHLORIDE +,+ F N N (E ) (P) N
288 1,3-BUTADIENE + I (CE) (CE) Y
189 P-CHLOROANILINE -,+,+W F E N (E ) (E ) Y
187 5-CHLORO-O-TOLUIDINE -,-,- F N N (P ) (P ) Y
165 4-CHLORO-O-TOLUIDINE HYDROCHLORIDE -,? F N N (P ) (P ) N
100 CUPFERRON + F (P )(P )(P )(P) Y
086 1,2-DIBROMOETHANE + G (P ) P P P Y
210 1,2-DIBROMOETHANE + I (P ) (P ) P (P ) Y
123 2,7-DICHLORODIBENZO-P-DIOXIN - F N N (E ) N Y
066 1,1-DICHLOROETHANE - G N (E ) N E Y
055 1,2-DICHLOROETHANE + G (P ) P P P Y
029 2-METHYL-1-NITROANTHRAQUINONE + F P P (P ) (P ) Y
181 MICHLER'S KETONE + F P P (P ) P Y
107 5-NITRO-O-TOLUIDINE + F N N (P ) (P ) Y
251 2,4- & 2,6-TOLUENE DIISOCYANATE + G P P N (P ) Y
153 0-TOLUIDINE HYDROCHLORIDE -,+ F P P (P )P Y

Number of Chemicals = 16 TOTALS 4 3 11 10

CLITORAL GLAND
334 2-AMINO-5-NITROPHENOL + G SE NE NE NE (FR) Y
405 C.I. ACID RED 114 + W CE (CE) Y
397 C.I. DIRECT BLUE 15 - w CE (CE) Y
084 2,4-DIAMINOANISOLE SULFATE + F P (P ) P P Y
372 3,3'-DIMETHOXYBENZIDINE DIHYDROCHLORIDE +,+,+ W CE (CE) Y
390 3,3'-DIMETHYLBENZIDINE DIHYDROCHLORIDE + W CE (CE) Y
374 GLYCIDOL +,+ G CE (CE) CE CE Y
368 NALIDIXIC ACID - F CE (CE) EE NE Y
143 1,5-NAPHTHALENEDIAMINE + F N (P ) P P Y
118 5-NITROACENAPHTHENE + F P (P ) N P Y
127 5-NITRO-O-ANISIDINE + F P (P ) E P Y

Number of Chemicals = 11 TOTALS 0 11 0 0

EPIDIDYMIS
374 GLYCIDOL +,+ G CE CE (CE) CE Y

Number of ChemicaLs = 1 TOTALS 0 0 1 0

ESOPHAGUS
010 DICHLORVOS + F N N N N (MM) (FM) N
316 DIMETHYLVINYL CHLORIDE (DMVC) -,+ G (CE) (CE) CE CE Y

Number of ChemicaLs = 2 TOTALS 1 1 1 1

FORESTOMACH
073 ALLYL CHLORIDE
378 BENZALDEHYDE
370 BENZOFURAN
250 BENZYL ACETATE
239 BIS(2-CHLORO-1-METHYLETHYL) ETHER
288 1,3-BUTADIENE
300 3-CHLORO-2-METHYLPROPENE
095 3-CHLOROMETHYLPYRIDINE HYDROCHLORIDE
063 4-CHLORO-O-PHENYLENEDIAMINE
222 C.I. DISPERSE YELLOW 3
100 CUPFERRON
242 DIALLYL PHTHALATE
028 1,2-DIBROMO-3-CHLOROPROPANE
086 1,2-DIBROMOETHANE
055 1,2-DICHLOROETHANE
269 1,3-DICHLOROPROPENE (TELONE II)
342 DICHLORVOS
257 DIGLYCIDYL RESORCINOL ETHER (DGRE)
354 DIMETHOXANE
360 N,N-DIMETHYLANILINE
287 DIMETHYL HYDROGEN PHOSPHITE
316 DIMETHYLVINYL CHLORIDE (DMVC)
059 ESTRADIOL MUSTARD

+W, +5 +

+wD -, -

+

- +
+

+W,

G
G
G
G
G
G
G
GF

F
F
G
G
G
G
G
G
G
G
G
G
G
G

N N (E )
NE NE (SE)
NE SE (CE)
EE NE (SE)

p
(CE)

(CE) (CE) (CE)
(P ) (E ) (P )
(P ) (P ) P
P N N

(P ) (P ) P
(E )

(P ) (P ) (P )
(P ) (P ) (P )
(P) P P
(CE) (SE) IS
SE EE (SE)
(P ) (P ) (P )
NE NE (EE)
SE NE NE
(CE) (EE) NE
(CE) (CE) (CE)
N N (P )

(E )
(SE)
(CE)
(SE)
p
(CE)
(CE)
(P )
p
p
p

(E )
(P )
(P )
p
(CE)
(CE)
(P )
NE
(EE)
NE
(CE)
(P )

(MR)

N
N
y
y

(FM) Y
y
N
N
y
y
y
y
y
y
y
y
y
N
N
y
y
y
y
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Table 1. (continued)

251

Levels of evidence May have
TR of carcinogenicitya been relatedb Otherc
Nod Chemical SALe RUT' MR9 FR MM FM (sex species) sites

259 ETHYL ACRYLATE +W,-,- G (P ) (P ) (P ) (P ) N
382 FURFURAL ?,- G SE NE CE SE (FM) Y
374 GLYCIDOL +,+ G (CE) (CE) (CE) CE Y
340 IODINATED GLYCEROL + G SE NE NE SE (FM) Y
140 PIVALOLACTONE G (P )(P ) N N N
115 SULFALLATE + F (P )P P P Y
399 TITANOCENE DICHLORIDE + G (EE) (EE) N
034 TRIFLURALIN +W F N N N (P ) Y
076 TRIS(2,3-DIBROMOPROPYL) PHOSPHATE F P P (P ) (P ) Y

Number of Chemicals FORESTOMACH = 32 TOTALS 17 14 18 22

GLANDULAR STOMACH
091 CLONITRALID F N (E ) IS N Y
374 GLYCIDOL +,+ G CE (CE) CE CE Y

Nunber of Chemicals = 2 TOTALS 0 2 0 0

HARDERIAN GLAND
289 BENZENE - G CE CE (CE) CE Y
100 CUPFERRON + F P P P (P) Y
326 ETHYLENE OXIDE I (CE) (CE) Y
152 ETHYL TELLURAC -,- F E N (E ) (E ) Y
374 GLYCIDOL +,+ G CE CE (CE) (CE) Y
330 4-HEXYLRESORCINOL -,- G NE NE (EE) NE Y
340 IODINATED GLYCEROL + G SE NE NE (SE) Y
352 N-METHYLOLACRYLAMIDE - G NE NE (CE) (CE) Y
205 4,4'-OXYDIANILINE + F P P (P ) (P ) Y
391 TRIS(2-CHLOROETHYL) PHOSPHATE - G CE CE EE (EE) Y

Number of Chemicals = 10 TOTALS 0 0 7 8

HEART
288 1,3-BUTADIENE + I (CE) (CE) Y
059 ESTRADIOL MUSTARD G N N (P )(P) Y
060 PHENESTERIN -,- G N P (P ) (P ) Y

Number of Chemicals = 3 TOTALS 0 0 3 3

HEMATOPOIETIC SYSTEM
(LEUKEMIA/LYMPHOMA)

ACETAMINOPHEN (4-HYDROXYACETANILIDE)
ALLYL ISOVALERATE
2-AMINOANTHRAQUINONE
2-AMINO-5-NITROTHIAZOLE
11-AMINOUNDECANOIC ACID
AMPICILLIN TRIHYDRATE
5-AZACYTIDINE
BENZENE
BISPHENOL A
1,3-BUTADIENE
BUTYL BENZYL PHTHALATE
CHLORAMINATED WATER
CHLORINATED PARAFFINS: C12, 60% CHLORINE
CHLORINATED PARAFFINS: C23, 43% CHLORINE
CHLORINATED WATER
C.I. ACID RED 114
C.I. BASIC RED 9 MONOHYDROCHLORIDE
C.I. DIRECT BLUE 15
C.I. DISPERSE YELLOW 3
C.I. VAT YELLOW 4
DIALLYL PHTHALATE
DIALLYL PHTHALATE
2,4-DIAMINOTOLUENE
2,7-DICHLORODIBENZO-P-DIOXIN
DICHLORVOS
3,31-DIMETHOXYBENZIDINE-4,4'-DIISOCYANATE
3,3'-DIMETHYLBENZIDINE DIHYDROCHLORIDE
DIMETHYL METHYLPHOSPHONATE
DIMETHYL MORPHOLINOPHOSPHORAMIDATE
ESTRADIOL MUSTARD
ETHYLENE OXIDE
FURAN

- F NE (EE) NE
- G (P )N N
+ F P IS P
+ F (P )N N
- F P N (E)
- G (EE) NE NE
+ J IS IS IS
- G CE CE (CE)

F (E )N N
+ I (CE)

F IS (P ) N
W NE (EE) NE

- G CE CE CE
- G NE EE (CE)

W NE (EE) NE
+ W CE CE
+ F CE CE CE
- W CE CE
+ F P N N

F N N (P)
G (E)

-, - G NE (EE)
+ F P P N
- F N N (E)
+ G (SE) EE SE
+ F (P )(P ) N
+ W CE CE
- G SE NE IS

G (SE) (SE) NE
G N N (P)
I CE
G (CE) (CE) CE

394
253
144
053
216
318
042
289
215
288
213
392
308
305
392
405
285
397
222
134
242
284
162
123
342
128
390
323
298
059
326
402

NE
(P )
(P )
N
N
NE

(P )
(CE)
N
(CE)
N
NE
CE
EE
NE

CE

p
N
E

p
N
CE
N

NE
NE
(P )
(CE)
CE

(MR)

(FR)

(MR) (FR)

N
N
y
N
y
y
N
y
N
y
N
N
y
y
N
y

(FM) Y
y

(FM) Y
N
y
N

(FM) Y
y
y
y
y
y
N
y
y
y

( FR)
(MR)

(Continued on neext page)
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Table 1. (continued)

Levels of evidence
of carcinogenicity

Chemical SALe RUT' MR9 FR MM FM

374 GLYCIDOL
366 HYDROQUINONE
078 ICRF-159
018 IPD (3,31-IMINOBIS-1-PROPANOL DIMETHANESULF
340 IODINATED GLYCEROL
291 ISOPHORONE
032 ISOPHOSPHAMIDE
039 LASIOCARPINE
332 2-MERCAPTOBENZOTHIAZOLE
248 4,4'-METHYLENEDIANILINE DIHYDROCHLORIDE
313 MIREX
060 PHENESTERIN
019 PROCARBAZINE HYDROCHLORIDE
240 PROPYL GALLATE
311 TETRACHLOROETHYLENE
155 2,4,6-TRICHLOROPHENOL
058 TRIS(AZIRIDINYL)-PHOSPHINE SULFIDE
391 TRIS(2-CHLOROETHYL) PHOSPHATE

Number of ChemicaLs = 50

G
G
J
J

+ G
G
J

+ F
G

+1+ W

F
G
J
F
I
F

+ J
G

TOTALS

CE
SE
N
E
(SE)
SE
N
p
(SE)
p
CE
N

(P )
E
(CE)
(P )
(P )
CE

18

(CE)
(SE)
p
E
NE
NE
p

(P )
SE
p
(CE)
p

(P )
N
(SE)
N
p
CE

18

CE
NE
N

(E )
NE
(EE)
N

NE
p

(P )
(P )
(E )
CE
p

(P )
EE

14

CE
SE
(P )
(E )
SE
NE

(P )

EE
(P )

(P )
(P )
N
CE
p

(P )
EE

17

y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
Y

(MR) (FR) Y

INTESTINE
038 AROCLOR 1254 - F (E ) (E ) Y
295 ASBESTOS, CHRYSOTILE(IR) F (SE) NE N
321 BROMODICHLOROMETHANE - G (CE) (CE) CE CE Y
015 CAPTAN + F N N (P )(P) N
405 C.I. ACID RED 114 + W CE (CE) Y
397 C.I. DIRECT BLUE 15 - W (CE) (CE) Y
372 3,31-DIMETHOXYBENZIDINE DIHYDROCHLORIDE +,+,+ W (CE) (CE) Y
390 3,3'-DIMETHYLBENZIDINE DIHYDROCHLORIDE + W (CE) (CE) Y
374 GLYCIDOL +,+ G (CE) CE CE CE Y
099 PHENAZOPYRIDINE HYDROCHLORIDE ? F (P ) (P ) N P Y
005 PROFLAVIN HYDROCHLORIDE F (E ) N E E Y
047 4,4'-THIODIANILINE + F (P ) P P P Y
350 TRIBROMOMETHANE ?, -,? G (SE) (CE) NE NE N

Number of Chemicals = 13 TOTALS 11 8 1 1

KIDNEY
111 1-AMINO-2-METHYLANTHRAQUINONE
339 2-AMINO-4-NITROPHENOL
089 O-ANISIDINE HYDROCHLORIDE
067 ASPIRIN, PHENACETIN, AND CAFFEINE
370 BENZOFURAN
321 BROMODICHLOROMETHANE
308 CHLORINATED PARAFFINS: C12, 60% CHLORINE
041 CHLOROTHALONIL
335 C.I. ACID ORANGE 3
411 C.I. PIGMENT RED 23
196 CINNAMYL ANTHRANILATE
401 2,4-DIAMINOPHENOL DIHYDROCHLORIDE
319 1,4-DICHLOROBENZENE (P-DICHLOROBENZENE)
323 DIMETHYL METHYLPHOSPHONATE
382 FURFURAL
356 FUROSEMIDE
252 GERANYL ACETATE
361 HEXACHLOROETHANE
366 HYDROQUINONE
291 ISOPHORONE
347 D-LIMONENE
359 8-METHOXYPSORALEN
369 ALPHA-METHYLBENZYL ALCOHOL
348 METHYLDOPA SESQUIHYDRATE
313 MIREX
266 MONURON
006 NITRILOTRIACETIC ACID (NTA)
006 NITRILOTRIACETIC ACID TRISODIUM MONOHYDRATE
006 NITRILOTRIACETIC ACID TRISODIUM MONOHYDRATE
341 NITROFURANTOIN
358 OCHRATOXIN A
367 PHENYLBUTAZONE
333 N-PHENYL-2-NAPHTHYLAMINE

+ F (P ) P N
G (SE) NE NE
F (P ) P P
F N (E ) N

- G NE (SE) CE
G (CE) (CE) (CE)

- G (CE) CE CE
- F (P ) (P ) N
+ G NE (CE) NE
+ F (EE) NE NE
- F (P ) N P
+ G NE NE (SE)
- G (CE) NE CE
- G (SE) NE IS
?,- G SE NE CE
- F (EE) NE NE
- G N N N
-,- G (CE) NE

- G (SE) SE NE
G (SE) NE EE

- G (CE) NE NE
+ G (CE) NE
- G (SE) NE NE

F NE NE (EE)
- F (CE) CE
- F (CE) NE NE
- F (P) P (P)
- F (P) (P )
- F (E )E N

F (SE) NE NE
G (CE) (CE)
G (EE) (SE) SE

- F NE NE NE

252

TR
Nod

May have
been relatedb
(sex species)

Other4
sites

p
NE
p
N
CE
CE
CE
N
NE
NE
p
NE
CE
NE
SE
SE
N

SE
NE
NE

NE
NE

NE
(P )

N
CE

NE
(EE)

(MR)

y
N
y
y
y
y
y
N
N
N
y
N
y
y

(MM) Y
y
y
y
y
y
N
y
N
N
y
y
y
y
y
y
y
y
N

(FR)



CHEMICALS AND SITE-SPECIFIC NEOPLASIA

Table 1. (continued)

Levels of evidence May have
TR of carcinogenicitya been relatedb OtherC
Nod Chemical SAL" RUT' MR9 FR MM FM (sex species) sites
409 QUERCETIN + F (SE) NE N
311 TETRACHLOROETHYLENE - I (CE) SE CE CE Y
391 TRIS(2-CHLOROETHYL) PHOSPHATE - G (CE) (CE) (EE) EE Y
076 TRIS(2,3-DIBROMOPROPYL) PHOSPHATE + F (P ) (P ) (P ) P Y

Number of Chemicals = 37 TOTALS 30 11 7 2

LIVER
021 ALDRIN
144 2-AMINOANTHRAQUINONE
093 3-AMINO-9-ETHYLCARBAZOLE HCL
111 1-AMINO-2-METHYLANTHRAQUINONE
216 11-AMINOUNDECANOIC ACID
038 AROCLOR 1254
370 BENZOFURAN
250 BENZYL ACETATE
239 BIS(2-CHLORO-1-METHYLETHYL) ETHER
321 BROMODICHLOROMETHANE
288 1,3-BUTADIENE
025 CHLORAMBEN
008 CHLORDANE (ANALYTICAL GRADE)
304 CHLORENDIC ACID
308 CHLORINATED PARAFFINS: C12, 60% CHLORINE
305 CHLORINATED PARAFFINS: C23, 43% CHLORINE
351 P-CHLOROANILINE HYDROCHLORIDE
261 CHLOROBENZENE
075 CHLOROBENZILATE
282 CHLORODIBROMOMETHANE
346 CHLOROETHANE
085 4-CHLORO-M-PHENYLENEDIAMINE
063 4-CHLORO-O-PHENYLENEDIAMINE
187 5-CHLORO-O-TOLUIDINE
405 C.I. ACID RED 114
285 C.I. BASIC RED 9 MONOHYDROCHLORIDE
108 C.I. DIRECT BLACK 38
108 C.I. DIRECT BLUE 6
397 C.I. DIRECT BLUE 15
108 C.I. DIRECT BROWN 95
299 C.I. DISPERSE BLUE 1
222 C.I. DISPERSE YELLOW 3
226 C.I. SOLVENT YELLOW 14
196 CINNAMYL ANTHRANILATE
142 P-CRESIDINE
100 CUPFERRON
083 DAMINOZIDE
225 D & C RED NO. 9
309 DECABROMODIPHENYL OXIDE
162 2,4-DIAMINOTOLUENE
086 1,2-DIBROMOETHANE
319 1,4-DICHLOROBENZENE (P-DICHLOROBENZENE)
123 2,7-DICHLORODIBENZO-P-DIOXIN
131 P,P'-DICHLORODIPHENOLDICHLOROETHYLENE
219 2,6-DICHLORO-P-PHENYLENEDIAMINE
263 1,2-DICHLOROPROPANE (PROPYLENE DICHLORIDE)
269 1,3-DICHLOROPROPENE (TELONE II)
090 DICOFOL
021 DIELDRIN
212 DI(2-ETHYLHEXYL)ADIPATE
217 DI(2-ETHYLHEXYL) PHTHALATE
156 DI(P-ETHYLPHENYL)DICHLOROETHANE
372 3,3'-DIMETHOXYBENZIDINE DIHYDROCHLORIDE
390 3,3'-DIMETHYLBENZIDINE DIHYDROCHLORIDE
080 1,4-DIOXANE
132 2,5-DITHIOBIUREA
388 ETHYLENE THIOUREA (ETU)
223 EUGENOL
195 FLUOMETURON
402 FURAN
382 FURFURAL
374 GLYCIDOL
271 HC BLUE 1
281 HC RED 3

+U,+
++

+W

W, +,+

+W

+

+ , +

+

+W

+

+

+,+

+U

+

+,+

+U,+
+

+,+,

+

,+U

7-

+,+

+

F E
F (P)
F (P)
F (P)
F (P)
F (E)
G NE
G EE
G
G CE
I
F N
F N
F (CE)
G (CE)
G NE
G CE
G (E)
F E
G NE
I EE
F P
F P
F N
W (CE)
F (CE)
F (P)
F (P)
W (CE)
F N
F CE
F (P)
F (P)
F P
F (P)
F (P)
F N
F (P)
F (SE)
F (P)
G P
G CE
F N
F N
F N
G NE
G (CE)
F N
F N
F N
F (P)
F N
W (CE)
W (CE)
W P
F N
F CE
F N
F N
G (CE)
G (SE)
G CE
F (EE)
G NE

E
IS

(P )
(P )
N

(E )
SE
NE

CE

N
N
(CE)
(CE)
EE
EE
N
E
NE
EE
N
p
N
(CE)
CE

(P )
(P )
(CE)
(P )
CE
N

(P )
N
p

(P )
p

(E )
(SE)
(P )
(P )
NE
N
N
N
EE
SE
N
N
N

(P )
N
(CE)
(CE)
(P )
N
CE
N
N
(CE)
NE
CE
SE
NE

(P ) N
(P ) (P )
(P ) (P )
N (P)
E N

(CE) (CE)
(SE) (SE)
(P ) P
CE (CE)
CE (CE)

(E ) (P )
(P ) (P )
(CE) NE
(CE) (CE)
CE (EE)
(SE) NE
N N

(P ) (P )
(EE) (SE)
IS CE
N (P)

(P ) (P )
(P ) (P )

(CE) (CE)

(EE) NE
N (P )
N N

(P ) (P )
P (P )
P (P )

(E ) N
N N
(EE) NE
N (P )
P P
(CE) (CE)
(E ) N
(P ) (P )
(P ) (P )
(SE) (SE)
IS CE

(P ) N
(E ) N
(P ) (P )
(P ) (P )
N (E )

(P )
N
(CE)
(E )
(E )
(CE)
(CE)
(CE)
(CE)
(EE)

(P )
(E )
(CE)
(E )
N
(CE)
(SE)
CE
(CE)
IS

y
y
y
y
y
y
y
y
y
y
y
N
N
y
y
y
y
N
y
N

(FM) Y
y
y
y
y
y
N
N
y
N
y
y
N
y
y
y
y
y
y
y
y
y
y
N
N
y
y
N
N
N
N
N
y
y
y
N
y
N
N
y
y
y
y
N

(Continued on next page)
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254 HUFF ET AL.

Table 1. (continued)

Levels of evidence May have
TR of carcinogenicitya been relatedb Otherc
Nod Chemical SALe RUT' MR9 FR MM FM (sex species) sites

HEPTACHLOR
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN
HEXACHLOROETHANE
HYDRAZOBENZENE
HYDROCHLOROTHIAZIDE
HYDROQUINONE
ISOPHORONE
LASIOCARPINE
2-MERCAPTOBENZOTHIAZOLE
METHYL CARBAMATE
4,4'-METHYLENEBIS(N,N-DIMETHYL)BENZENAMINE
METHYLENE CHLORIDE
4,4'-METHYLENEDIANILINE DIHYDROCHLORIDE
2-METHYL-1-NITROANTHRAQUINONE
N-METHYLOLACRYLAMIDE
MICHLER'S KETONE
MIREX
MONURON
1,5-NAPHTHALENEDIAMINE
NITHIAZIDE
5-NITROACENAPHTHENE
3-NITRO-P-ACETOPHENETIDE
5-NITRO-0-ANISIDINE
6-NITROBENZIMIDAZOLE
NITROFEN
NITROFEN
2-NITRO-P-PHENYLENEDIAMINE
3-NITROPROPIONIC ACID
P-NITROSODIPHENYLAMINE
5-NITRO-O-TOLUIDINE
4,4'-OXYDIANILINE
PENTACHLOROPHENOL, DOWICIDE EC-7
PENTACHLOROPHENOL, TECHNICAL
PHENAZOPYRIDINE HYDROCHLORIDE
PHENYLBUTAZONE
PICLORAM
PIPERONYL SULFOXIDE
POLYBROMINATED BIPHENYL MIX (FF1)
PROBENECID
PROFLAVIN HYDROCHLORIDE
SELENIUM SULFIDE
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN
1,1,2,2-TETRACHLOROETHANE
TETRACHLOROETHYLENE
TETRACHLOROETHYLENE
TETRACHLORVINPHOS
4,4'-THIODIANILINE
2,4- & 2,6-TOLUENE DIISOCYANATE
0-TOLUIDINE HYDROCHLORIDE
TOXAPHENE
1,1,2-TRICHLOROETHANE
TRICHLOROETHYLENE
TRICHLOROETHYLENE
2,4,6-TRICHLOROPHENOL
TRIFLURALIN
2,4,5-TRIMETHYLANILINE
TRIS(2,3-DIBROMOPROPYL) PHOSPHATE
TRIS(2-ETHYLHEXYL)PHOSPHATE
2,6-XYLIDINE
ZEARALENONE

Number of Chemicals = 124

F
G
G

1- F
F
G
G

+ F
G
G

+ F

+ F
+,- I
+ F
- F

F
F

+ F
+ F
+ F
+ F

F

F
+ FF

F
+ F

+W F
+ F
- F

FF

F

F
F
G
F
F
G
G

F

G
G

+ F
+ G
-+ F
+ F

,-G
G
G
F

+ F
+ F

F
G

+W,+W F
F

TOTALS

LUNG
289 BENZENE
370 BENZOFURAN
088 1,2,3-BENZOTRIAZOLE
239 BIS(2-CHLORO-1-METHYLETHYL) ETHER

363 BROMOETHANE (ETHYL BROMIDE)
288 1,3-BUTADIENE

+W
+W,+,+

G
G
F

G
I

CE CE
NE SE
E E

SE (EE)

(CE) (CE)
(CE) (CE)
N (E )

(P ) (P )
(EE) CE
(CE) (CE)

y
y
y
y

(MR) Y

y

009
198
068
092
357
366
291
039
332
328
186
306
248
029
352
181
313
266
143
146
118
133
127
117
184
026
169
052
190
107
205
349
349
099
367
023
124
244
395
005
194
209
027
013
311
033
047
251
153
037
074
002
243
155
034
160
076
274
278
235

N E
(E ) (P
N N
(P ) (P
NE NE
SE SE
SE NE
(P ) (P
SE SE
(CE) (CE)
P P
SE CE
(P ) P
(P ) (P
NE NE
(P ) (P
(CE) (CE)
(CE) NE
N P
N P
P P
N N
P P
N N
N N
IS P
N N

(E ) N
(P ) N
N N

(P ) (P

P P
EE SE
N (E
N N

(P ) (P
NE NE
E N
(P ) (P
P (P

(E ) N
IS IS
CE SE
N P

(P ) P
P (P
P P
E E
N N
N N
IS N
P N
N N

(P ) (P
P P
EE NE
P P
N N

44 36

(P ) (P )
(P ) (P )
(P ) (P )
N (P)
(EE) NE
NE (SE)
(EE) NE

NE (EE)
NE NE

(E ) (P )
(CE) (CE)
(P ) (P )
P P
(CE) (CE)
P (P)

NE NE
P (P)

(P ) (E )
N (P)
(P ) N
(E ) (P )
(P ) (P )
(P ) (P )
(P ) (P )
N (P)
N N

(P ) N
(P ) (P )
(P ) (P )
(CE) (CE)
(CE) (SE)
N (P)
(SE) NE
N N

(P ) N
(P ) (P )
NE (SE)

(E ) (E )
N (P)

(P ) (P )
(P ) (P )
(P ) (P )
(CE) (CE)
(P ) (P )
(P ) (P )
N (P)
P (P)

(P ) (P )
(P ) (P )
(P ) (P )
(P ) (P )
(P ) (P )
N (P)

(E ) (P )
P (P)
NE (SE)

P (P)

74 83

y
N
N
y
N
y
y
y
y
N
y
y
y
y
y
y
y
y
y
y
y
N
y
N
N
y
N
y
N
y
y
y
y
y
y
N
N
N
N
y
y
y
N
N
y
y
y
y
y
y
y
N
N
y
y
y
y
y
y
y
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CHEMICALS AND SITE-SPECIFIC NEOPLASIA

Table 1. (continued)

Levels of evidence
of carcinogenicitya

SALe RUT' MR9 FR MM FM
TR
Nod Chemical

CHLORENDIC ACID
C.I. ACID RED 114
C.I. DISPERSE BLUE 1
1,2-DIBROM0-3-CHLOROPROPANE
1,2-DIBROMOETHANE
1,2-DIBROMOETHANE
1,2-DICHLOROETHANE
1,3-DICHLOROPROPENE (TELONE II)
3,3'-DIMETHYLBENZIDINE DIHYDROCHLORIDE
DINETHYL HYDROGEN PHOSPHITE
DINETHYL TEREPHTHALATE
DIPHENHYDRAMINE HYDROCHLORIDE
1,2-EPOXYBUTANE
ESTRADIOL MUSTARD
ETHYLENE OXIDE
GLYCIDOL
HC BLUE 1
8-METHOXYPSORALEN
METHYLENE CHLORIDE
N-METHYLOLACRYLAMIDE
NAPHTHALENE
1,5-NAPHTHALENEDIAMINE
5-NITROACENAPHTHENE
PHENESTERIN
PROCARBAZINE HYDROCHLORIDE
SELENIUM SULFIDE
STYRENE
SULFALLATE
TETRANITROMETHANE
TRIFLURALIN
2,4,5-TRIMETHYLANILINE
TRIS(2,3-DIBROMOPROPYL) PHOSPHATE
4-VINYL-1-CYCLOHEXENE DIEPOXIDE
ZIRAM

Number of Chemicals = 40

F

+ w
+ F
+ I
+ G
+ I
+ G
+ G
+ w

+W,? G
F
F

+ I
G
I

+,+ G
+ F
+ G

+,- I

G
I

+ F
+ F

G
J

+ G
G

+ F
+ I
+W F
+ F

F
+ S
+ F

TOTALS

CE CE CE NE
CE (CE)
CE CE (EE) NE
P P (P )(P)
P P (P )(P)
P (P ) (P )(P)
P P (P )(P)
CE SE IS (CE)
(CE) (CE)
(CE) (EE) NE NE
N N (E) N
(EE) EE NE NE
(CE) EE NE NE
N N (P )(P)

(CE) (CE)
CE CE (CE) CE
EE (SE) CE CE
CE NE
SE CE (CE) (CE)
NE NE (CE) (CE)

NE (SE)
N P P (P)
(P )(P ) N P
N P (P )(P)
P P (P )(P)
p p N (P)
N N (E) N
P P (P) P
(CE) (CE) (CE) (CE)
N N N (P)
P (P ) E P
P P (P )(P)
CE CE CE CE
P N N (E)

10 9 22 24

MAMMARY GLAND
ACRONYCINE
BENZENE
1,3-BUTADIENE
2-CHLOROACETOPHENONE (CN)
C.I. ACID RED 114
C.I. BASIC RED 9 MONOHYDROCHLORIDE
CLONITRALID
CYTEMBENA
2,4-DIAMINOTOLUENE
1,2-DIBROMO-3-CHLOROPROPANE
1,2-DIBROMOETHANE
1,1-DICHLOROETHANE
1,2-DICHLOROETHANE
1,2-DICHLOROPROPANE (PROPYLENE DICHLORIDE)
DICHLORVOS
3,3'-DIMETHOXYBENZIDINE DIHYDROCHLORIDE
3,3'-DIMETHYLBENZIDINE DIHYDROCHLORIDE
2,4-DINITROTOLUENE
ETHYLENE OXIDE
FUROSEMIDE
GLYCIDOL
HYDRAZOBENZENE
ISOPHOSPHAMIDE
METHYLENE CHLORIDE
NITHIAZIDE
5-NITROACENAPHTHENE
NITROFURAZONE
OCHRATOXIN A
PHENESTERIN
PROCARBAZINE HYDROCHLORIDE
RESERPINE
SULFALLATE
2,4- & 2,6-TOLUENE DIISOCYANATE
0-TOLUIDINE HYDROCHLORIDE

Number of Chemicats = 34

J
G

+ I
I

+ w
+ F

F
+ J
+ F
+ G
+ I

G

+ G
+W,+W G
+ G
+,+,1+ w
+ w
+ F

I
F

+,+ G
+ F

J
., - I

+ F
+ F
+ F

G

G
J

F

+ F
+ G

F

TOTALS

P (P ) IS IS
CE CE CE (CE)

CE (CE)
NE (EE) NE NE
CE CE
CE CE CE CE
N (E) IS N
P (P) N N
P (P) N p
P (P) P P
P (P) P (P)
N (E) N E
P (P) P (P)
NE (EE) SE SE
SE (EE) SE CE
CE (CE)
CE (CE)
P (P ) N N

CE (CE)
EE NE NE (SE)

(CE) (CE) CE (CE)
P (P) N p
N (P) N P
(SE) (CE) CE CE
N (P) P E
P (P) N P
EE (CE) NE CE
CE (CE)
N (P) P P

(P )(P) P P
P N P (P)
P (P) P (P)
P (P) N p
P (P) P P

3 29 0 9

(Continued on next page)

304
405
299
206
086
210
055
269
390
287
121
355
329
059
326
374
271
359
306
352
410
143
118
060
019
194
185
115
386
034
160
076
362
238

May have
been relatedb
(sex species)

(MR)
(MR)

(MR)

Other4
sites

y
y
y
y
y
y
y
y
y
y
N
y
y
y
y
y
y
y
y
y
N
y
y
y
y
y
N
y
N
y
y
y

(FM) Y
y

049
289
288
379
405
285
091
207
162
028
210
066
055
263
342
372
390
054
326
356
374
092
032
306
146
118
337
358
060
019
193
115
251
153

(FR)
(FR)

y
y
y
N
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
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Table 1. (continued)

Levels of evidence May have
TR of carcinogenicity8 been relatedb Other'
Nod Chemical SAL! RUT' MR9 FR MM FM (sex species) sites

MESOTHELIUM (ABDOMINAL CAVITY/TUNICA VAGINALIS)
049 ACRONYCINE J (P )(P) IS IS Y
207 CYTEMBENA + J (P )P N N Y
210 1,2-DIBROMOETHANE + I (P ) P P P Y
372 3,3'-DIMETHOXYBENZIDINE DIHYDROCHLORIDE +,+,+ W (CE) CE Y
390 3,3'-DIMETHYLBENZIDINE DIHYDROCHLORIDE + W (CE) CE Y
152 ETHYL TELLURAC -,- F (E ) N E E Y
374 GLYCIDOL +,+ G (CE) CE CE CE Y
018 IPD (3,3'-IMINOBIS-1-PROPANOL DIMETHANESULF J (E ) (E ) E E Y
337 NITROFURAZONE + F (EE) CE NE CE Y
072 PHENOXYBENZAMINE HYDROCHLORIDE + J (P ) (P ) (P ) (P ) N
153 0-TOLUIDINE HYDROCHLORIDE -,+ F (P )P P P Y

Number of Chemicals = 11 TOTALS 11 3 1 1

NASAL CAVITY
376 ALLYL GLYCIDYL ETHER + I (EE) NE (SE) (EE) N
142 P-CRESIDINE + F (P ) (P ) P P Y
206 1,2-DIBROMO-3-CHLOROPROPANE + I (P ) (P ) (P ) (P ) Y
210 1,2-DIBROMOETHANE + I (P ) (P ) P (P ) Y
316 DIMETHYLVINYL CHLORIDE (DMVC) -,+ G (CE) (CE) CE CE Y
080 1,4-DIOXANE -,-,- W (P ) (P ) P P Y
329 1,2-EPOXYBUTANE + I (CE) (EE) NE NE Y
340 IODINATED GLYCEROL + G SE NE NE SE (MR) Y
267 1,2-PROPYLENE OXIDE +,+,+ I (SE) (SE) (CE) (CE) N
278 2,6-XYLIDINE -,+W,+W F (P ) (P ) Y

Number of Chemicals = 10 TOTALS 10 8 3 4

ORAL CAVITY
289 BENZENE - G (CE) (CE) CE CE Y
405 C.I. ACID RED 114 + W CE (CE) (MR) Y
397 C.I. DIRECT BLUE 15 - W (CE) (CE) Y
206 1,2-DIBROMO-3-CHLOROPROPANE + I (P ) (P ) P P Y
372 3,31-DIMETHOXYBENZIDINE DIHYDROCHLORIDE +,+,+ W (CE) (CE) Y
390 3,3'-DIMETHYLBENZIDINE DIHYDROCHLORIDE + W (CE) (CE) Y
316 DIMETHYLVINYL CHLORIDE (DMVC) -,+ G (CE) (CE) CE CE Y
374 GLYCIDOL +,+ G CE (CE) CE CE Y

Number of Chemicats = 8 TOTALS 7 8 0 0

OVARY
289 BENZENE - G CE CE CE (CE) Y
288 1,3-BUTADIENE + I CE (CE) Y
352 N-METHYLOLACRYLAMIDE - G NE NE CE (CE) Y
118 5-NITROACENAPHTHENE + F P P N (P ) Y
341 NITROFURANTOIN +,+,+ F SE NE NE (CE) Y
337 NITROFURAZONE + F EE CE NE (CE) Y
303 4-VINYLCYCLOHEXENE -,- G IS IS IS (CE) Y
362 4-VINYL-1-CYCLOHEXENE DIEPOXIDE + S CE CE CE (CE) Y

Number of Chemicals = 8 TOTALS 0 0 0 8

PANCREAS
334 2-AMINO-5-NITROPHENOL
069 AZINPHOSMETHYL
250 BENZYL ACETATE
304 CHLORENDIC ACID
299 C.I. DISPERSE BLUE 1
196 CINNAMYL ANTHRANILATE
342 DICHLORVOS
331 MALONALDEHYDE, SODIUM SALT
332 2-MERCAPTOBENZOTHIAZOLE
026 NITROFEN
052 3-NITROPROPIONIC ACID
240 PROPYL GALLATE
345 ROXARSONE
251 2,4- & 2,6-TOLUENE DIISOCYANATE

Number of ChemicaLs = 14

+w

?,-

G
F
G
F
F
F
G
G
G
F
G
F
F
G

TOTALS

(SE)
(E )
(EE)
(CE)
(CE)
(P )
(SE)
CE
(SE)
IS

(E )
(E )
(EE)
(P )

13

NE
N
NE
CE
CE
N
(EE)
CE
SE
(P )
N
N
NE
(P )

3

NE NE
N N
SE SE
CE NE
EE NE
P P
SE CE
NE NE
NE EE
P P
N N
E N
NE NE
N P

0 0

y
y
y
y
y
y
y
y
y
y
y
y
N
y

(MR)



CHEMICALS AND SITE-SPECIFIC NEOPLASIA

Table 1. (continued)

Levels of evidence May have
TR of carcinogenicitya been relatedb Otherc
Nod Chemical SALe RUTf MR9 FR MM FM (sex species) sites

PARATHYROID GLAND
320 ROTENONE - F (EE) NE NE NE N

Number of Chemicals = 1 TOTALS 1 0 0 0

PITUITARY GLAND
355 DIPHENHYDRAMINE HYDROCHLORIDE - F EE (EE) NE NE Y
388 ETHYLENE THIOUREA (ETU) -,+W F CE CE (CE) (CE) Y
340 IODINATED GLYCEROL + G SE NE NE (SE) Y
332 2-MERCAPTOBENZOTHIAZOLE ?, - G SE (SE) NE EE Y
315 OXYTETRACYCLINE HYDROCHLORIDE - F EE (EE) NE NE Y
235 ZEARALENONE - F N N (P ) (P ) Y

Number of Chemicals = 6 TOTALS 0 3 2 3

PREPUTIAL GLAND
334 2-AMINO-5-NITROPHENOL + G SE NE NE NE (MR) Y
116 P-ANISIDINE HYDROCHLORIDE -,+,+ F (E ) N N N N
289 BENZENE - G CE CE (CE) CE -Y
288 1,3-BUTADIENE + I CE CE (MM) y
304 CHLORENDIC ACID - F CE CE CE NE (MR) Y
397 C.I. DIRECT BLUE 15 - W (CE) CE Y
084 2,4-DIAMINOANISOLE SULFATE + F (P ) P P P Y
372 3,3'-DIMETHOXYBENZIDINE DIHYDROCHLORIDE +,+,+ W (CE) CE Y
390 3,3'-DIMETHYLBENZIDINE DIHYDROCHLORIDE + W (CE) CE Y
316 DIMETHYLVINYL CHLORIDE (DMVC) -,+ G CE CE (CE) CE Y
291 ISOPHORONE - G (SE) NE EE NE Y
332 2-MERCAPTOBENZOTHIAZOLE ?,- G (SE) SE NE EE Y
368 NALIDIXIC ACID - F (CE) CE EE NE Y
337 NITROFURAZONE + F (EE) CE NE CE Y
240 PROPYL GALLATE - F (E ) N E N Y
058 TRIS(AZIRIDINYL)-PHOSPHINE SULFIDE + J P P (P ) P Y

Number of Chemicals = 16 TOTALS 12 0 4 0

SEMINAL VESICLE
193 RESERPINE - F P N (P )P Y

Number of Chemicals = 1 TOTALS 0 0 1 0

SKIN
093 3-AMINO-9-ETHYLCARBAZOLE HCL + F (P ) P P P Y
289 BENZENE - G (CE) CE CE CE Y
346 CHLOROETHANE + I (EE) EE IS CE Y
405 C.I. ACID RED 114 + W (CE) (CE) Y
285 C.I. BASIC RED 9 MONOHYDROCHLORIDE + F (CE) CE CE CE Y
397 C.I. DIRECT BLUE 15 - W (CE) (CE) Y
084 2,4-DIAMINOANISOLE SULFATE + F (P ) P P P Y
310 DIESEL FUEL MARINE - S (EE) (EE) N
372 3,3'-DIMETHOXYBENZIDINE DIHYDROCHLORIDE +,+,+ W (CE) (CE) Y
128 3,3'-DIMETHOXYBENZIDINE-4,4'-DIISOCYANATE + F (P ) P N N Y
390 3,31-DIMETHYLBENZIDINE DIHYDROCHLORIDE + W (CE) (CE) Y
054 2,4-DINITROTOLUENE + F (P ) P N N Y
103 FENTHION -,+W F N N (E ) N N
252 GERANYL ACETATE - G N N N N (MR) Y
374 GLYCIDOL +,+ G (CE) CE (CE) (CE) Y
146 NITHIAZIDE + F N (P )P E Y
127 5-NITRO-O-ANISIDINE + F (P ) P E P Y
337 NITROFURAZONE + F (EE) CE NE CE Y
364 RHODAMINE 6G - F (EE) EE NE NE Y
058 TRIS(AZIRIDINYL)-PHOSPHINE SULFIDE + J (P ) (P ) (P ) P Y
362 4-VINYL-1-CYCLOHEXENE DIEPOXIDE + S (CE) (CE) (CE) (CE) Y

Number of Chemicals = 21 TOTALS 18 7 5 3

SPLEEN
130 ANILINE HYDROCHLORIDE
154 AZOBENZENE
189 P-CHLOROANILINE
351 P-CHLOROANILINE HYDROCHLORIDE
225 D & C RED NO. 9

- I+ I+W
- + +w
+W

F (P ) (P ) N N
F (P ) (P ) N N
F (E ) N E E
G (CE) (EE) (SE) NE
F (P ) E N N

N
N
y
y
y

(Continued on next page)
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Table 1. (continued)

Levels of evidence May have
TR of carcinogenicitya been relatedb Otherc
Nod Chemical SALe RUTf MR9 FR MM FM (sex species) sites

360 N,N-DIMETHYLANILINE - G (SE) NE NE EE Y
349 PENTACHLOROPHENOL, DOWICIDE EC-7 F CE (CE) Y
349 PENTACHLOROPHENOL, TECHNICAL - F CE (SE) Y
016 PHOSPHAMIDON + F (E ) E N N Y
020 4,4'-SULFONYLDIANILINE (DAPSONE) - F (P ) N N N N
153 0-TOLUIDINE HYDROCHLORIDE -,+ F (P )(P) P P Y

Number of Chemicals = 11 TOTALS 9 4 1 2

SUBCUTANEOUS TISSUE
234 ALLYL ISOTHIOCYANATE +W,- G P (E ) N N Y
285 C.I. BASIC RED 9 MONOHYDROCHLORIDE + F (CE) (CE) CE CE Y
210 1,2-DIBROMOETHANE + I P P P (P ) Y
055 1,2-DICHLOROETHANE + G (P ) P P P Y
374 GLYCIDOL +,+ G CE CE CE (CE) Y
018 IPD (3,3'-IMINOBIS-1-PROPANOL DIMETHANESULF J E E (E ) (E ) Y
291 ISOPHORONE - G SE NE (EE) NE Y
359 8-METHOXYPSORALEN + G CE NE (MR) Y
029 2-METHYL-1-NITROANTHRAQUINONE + F (P ) (P ) P P Y
368 NALIDIXIC ACID - F CE CE (EE) NE Y
341 NITROFURANTOIN +,+,+ F SE NE NE CE (MR) Y
201 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN - S (E ) (P ) N
251 2,4- & 2,6-TOLUENE DIISOCYANATE + G (P ) (P ) N P Y
153 0-TOLUIDINE HYDROCHLORIDE -,+ F (P )P P P Y
081 TRIMETHYLPHOSPHATE + G (P ) N N P Y
278 2,6-XYLIDINE -,+W,+W F P P (MR) (FR) Y

Number of Chemicals = 16 TOTALS 9 5 4 4

THYROID GLAND
021 ALDRIN - F (E )(E) P N Y
112 3-AMINO-4-ETHOXYACETANILIDE + F N N (P ) N N
089 O-ANISIDINE HYDROCHLORIDE ?,+,+ F (P )P P P Y
069 AZINPHOSMETHYL +W,+ F (E ) N N N Y
308 CHLORINATED PARAFFINS: C12, 60% CHLORINE - G CE (CE) CE (CE) Y
285 C.I. BASIC RED 9 MONOHYDROCHLORIDE + F (CE) (CE) CE CE Y
309 DECABROMODIPHENYL OXIDE - F SE SE (EE) NE Y
084 2,4-DIAMINOANISOLE SULFATE + F (P ) (P ) (P ) (P ) Y
149 N,N'-DIETHYLTHIOUREA - F (P ) (P ) N N N
388 ETHYLENE THIOUREA (ETU) -,+W F (CE) (CE) (CE) (CE) Y
374 GLYCIDOL +,+ G (CE) (CE) CE CE Y
271 HC BLUE 1 + F EE SE CE CE (MM) Y
009 HEPTACHLOR -,- F N (E )P P Y
340 IODINATED GLYCEROL + G (SE) NE NE SE Y
331 MALONALDEHYDE, SODIUM SALT - G (CE) (CE) NE NE Y
186 4,41-METHYLENEBIS(N,N-DIMETHYL)BENZENAMINE + F (P ) (P ) E P Y
248 4,4'-METHYLENEDIANILINE DIHYDROCHLORIDE +,+ W (P ) (P ) (P ) (P ) Y
143 1,5-NAPHTHALENEDIAMINE + F N P (P ) (P ) Y
205 4,4'-OXYDIANILINE + F (P ) (P ) P (P ) Y
016 PHOSPHAMIDON + F E (E ) N N Y
231 STANNOUS CHLORIDE - F (E ) N N N N
209 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN - G (P ) P P (P ) Y
131 TETRACHLORODIPHENYLETHANE - F (E ) N N N N
033 TETRACHLORVINPHOS - F N (P ) P P Y
047 4,4'-THIODIANILINE + F (P ) (P ) (P ) (P ) Y
037 TOXAPHENE + F (E )(E) P P Y
129 TRIMETHYLTHIOUREA - F N (P ) N N N
391 TRIS(2-CHLOROETHYL) PHOSPHATE - G CE CE EE EE (MR) (FR) Y
238 ZIRAM + F (P )N N E Y

Number of Chemicals = 29 TOTALS 20 18 8 8

URETER
006 NITRILOTRIACETIC ACID (NTA) - F (P ) P P P Y
006 NITRILOTRIACETIC ACID TRISODIUM MONOHYDRATE - F (P ) (P ) Y

Number of Chemicals = 2 TOTALS 2 1 0 0

URINARY BLADDER
234 ALLYL ISOTHIOCYANATE
094 4-AMINO-2-NITROPHENOL

+W, - G (P ) E N N
+ F (P ) (E ) N N

y
N



CHEMICALS AND SITE-SPECIFIC NEOPLASIA

Table 1. (continued)

Levels of evidence
of carcinogenicitya

SALe RUT' MR9 FR MM FM

216 11-AMINOUNDECANOIC ACID
089 O-ANISIDINE HYDROCHLORIDE
067 ASPIRIN, PHENACETIN, AND CAFFEINE
179 P-BENZOQUINONE DIOXIME
063 4-CHLORO-O-PHENYLENEDIAMINE
299 C.I. DISPERSE BLUE 1
105 M-CRESIDINE
142 P-CRESIDINE
269 1,3-DICHLOROPROPENE (TELONE II)
374 GLYCIDOL
245 MELAMINE
006 NITRILOTRIACETIC ACID (NTA)
006 NITRILOTRIACETIC ACID TRISODIUM MONOHYDRATE
006 NITRILOTRIACETIC ACID TRISODIUM MONOHYDRATE
164 N-NITROSODIPHENYLAMINE
153 0-TOLUIDINE HYDROCHLORIDE

7+I+

+I+
+

+,+

Number of Chemicals = 18

F
F
F
F
F
F
G
F
G
G
F
F
F
F
F
F

TOTALS

(P) N E N
(P ) (P ) (P ) (P )
N (E) N N
N (P) N N

(P )(P) P P
(CE) (CE) EE NE
(P )(P) IS N
(P ) (P ) (P ) (P )
CE SE IS (CE)
CE CE (CE) CE
(P) N N N
P (P) P P
P (P)
E (E) N N
(P )(P) N N
P (P) P P

10 13 3 3

UTERUS/CERVIX
093 3-AMINO-9-ETHYLCARBAZOLE HCL
363 BROMOETHANE (ETHYL BROMIDE)
346 CHLOROETHANE
083 DAMINOZIDE
066 1,1-DICHLOROETHANE
055 1,2-DICHLOROETHANE
372 3,3'-DIMETHOXYBENZIDINE DIHYDROCHLORIDE
128 3,3'-DIMETHOXYBENZIDINE-4,4'-DIISOCYANATE
326 ETHYLENE OXIDE
374 GLYCIDOL
078 ICRF-159
032 ISOPHOSPHAMIDE
143 1,5-NAPHTHALENEDIAMINE
019 PROCARBAZINE HYDROCHLORIDE
047 4,4'-THIODIANILINE
081 TRIMETHYLPHOSPHATE

Number of Chemicals = 16

+ F

+ I
F
G

+ G
+,+1+ W
+ F

I
+,+ G

J
J

+ F
-J

+ F
+ G

TOTALS

P (P ) P P
SE EE EE (CE)
EE EE IS (CE)
N (P ) E N
N E N (E )
P P P (P )
CE (CE)
P (P ) N N

CE (CE)
CE CE CE (CE)
N (P ) N P
N (P ) N P
N (P ) P P
P P P (P )
P (P ) P P
P N N (P )

0 8 0 8

ZYMBAL GLAND
093 3-AMINO-9-ETHYLCARBAZOLE HCL
289 BENZENE
288 1,3-BUTADIENE
405 C.I. ACID RED 114
285 C.I. BASIC RED 9 MONOHYDROCHLORIDE
397 C.I. DIRECT BLUE 15
100 CUPFERRON
084 2,4-DIAMINOANISOLE SULFATE
372 3,31-DIMETHOXYBENZIDINE DIHYDROCHLORIDE
128 3,3'-DIMETHOXYBENZIDINE-4,4'-DIISOCYANATE
390 3,31-DIMETHYLBENZIDINE DIHYDROCHLORIDE
374 GLYCIDOL
092 HYDRAZOBENZENE
359 8-METHOXYPSORALEN
118 5-NITROACENAPHTHENE
127 5-NITRO-O-ANISIDINE
365 PENTAERYTHRITOL TETRANITRATE
047 4,41-THIODIANILINE
057 BETA-THIOGUANIDINE DEOXYRIBOSIDE
058 TRIS(AZIRIDINYL)-PHOSPHINE SULFIDE

Number of Chemicats = 20

+,,

+,

+

F
G

I

w
F
w
F
F
w
F
w
G
F
G
F
F
F
F
J
J

TOTALS

(P ) (P ) P P
(CE) (CE) (CE) (CE)

CE CE
(CE) (CE)
(CE) (CE) CE CE
(CE) (CE)
P (P) P (P)

(P ) (P) P P
(CE) (CE)
(P ) (P ) N N
(CE) (CE)
(CE) CE CE CE
(P ) P N P
(CE) NE
(P )(P) N P
(P )(P) E P
(EE) (EE) NE NE
(P )(P) P P
(E )(P) IS IS
(P )(P) P P

18 16 2 2

NO SITE
ACETOHEXAMIDE
AGAR
ALDICARB
DL-AMPHETAMINE SULFATE
ANILAZINE
O-ANTHRANILIC ACID
ASBESTOS, AMOSITE

F N N N N
F N N N N
F N N N N
F NE NE NE NE
F N N N N
F N N N N
F N N

N
N
N
N
N
N
N

(Continued on next page)

TR
Nod Chemical

May have
been relatedb
(sex species)

Otherc
sites

y
y
y
N
y
y
N
y
y
y
N
y
y
y
N
y

y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y

y
y

(MM) Y
y
y
y
y
y
y
y
y
y
y
y
y
y
N
y
N
y

050
230
136
387
104
036
279
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Table 1. (continued)

Chemical

ASBESTOS, CHRYSOTILE(SR)
ASBESTOS, CROCIDOLITE
ASBESTOS, TREMOLITE
L-ASCORBIC ACID
BENZOIN
BENZYL ALCOHOL
BIS(2-CHLORO-1-METHYLETHYL) ETHER
BORIC ACID
BUTYLATED HYDROXYTOLUENE
N-BUTYL CHLORIDE
CALCIUM CYANAMIDE
CAPROLACTAM
CARBROMAL
D-CARVONE
CHLORINATED TRISODIUM PHOSPHATE
4-(CHLOROACETYL)ACETANILIDE
O-CHLOROBENZALMALON NITRILE (CS)
2-CHLOROETHANOL (ETHYLENE CHLOROHYDRIN)
2-CHLOROETHYLTRIMETHYLAMMONIUM CHLORIDE
2-CHLOROMETHYLPYRIDINE HYDROCHLORIDE
2-CHLORO-P-PHENYLENEDIAMINE SULFATE
CHLOROPICRIN
3-CHLORO-P-TOLUIDINE
CHLORPHENIRAMINE MALEATE
CHLORPROPAMIDE
C.I. ACID ORANGE 10
C.I. ACID RED 14
COUMAPHOS
DIARYLANILIDE YELLOW
DIAZINON
DIBENZO-P-DIOXIN
DIBUTYLTIN DIACETATE
1 ,2-DICHLOROBENZENE (O-DICHLOROBENZENE)
DICHLORODIPHENYLTRICHLOROETHANE (DDT)
2,4-DICHLOROPHENOL
DICHLORVOS
N,N'-DICYCLOHEXYLTHIOUREA
DIELDRIN
DIMETHOATE
2,4-DIMETHOXYANILINE HYDROCHLORIDE
DIOXATHION
ENDOSULFAN
ENDRIN
EPHEDRINE SULFATE
ERYTHROMYCIN STEARATE
ETHIONAMIDE
FD & C YELLOW NO. 6
FORMULATED FENAMINOSULF
GERANYL ACETATE
GUAR GUM
GUM ARABIC
HC BLUE 2
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN
HEXACHLOROPHENE
8-HYDROXYQUINOLINE
IODOFORM
LEAD DIMETHYLDITHIOCARBAMATE
LINDANE
LITHOCHOLIC ACID
LOCUST BEAN GUM
MALAOXON
MALATHION
MALATHION
D-MANNITOL
DL-MENTHOL
METHOXYCHLOR
METHYL BROMIDE
METHYL METHACRYLATE
METHYL PARATHION
MEXACARBATE
MONOCHLOROACETIC ACID

SALe

Levels of evidence
of carcinogenicitya

RUT' MR9 FR MM FM

F NE NE
F N N
F N N

+W, - F N N
I,-,+W F N N

- G NE NE
+W,+,+ G N N

F

- F N N
-, - G NE NE
+W,? F N N
- F N N

F N N
G

+W G IS IS
+ F N N
.,

NE NE

+,+,+ S NE NE
F N N

+ G N N
+ F N N
+,+ G IS IS
-,+W F N N
- G NE NE
- F N N
- F N N
- F N N
- F N N
- F N N
- F N N

F N N
- F N IS
- G N N
- F N N
- F NE NE
- F N N
- F N N
- F N N
+,+ F N N
+ F N N
+ F N N
- F IS N
- F N N
- F NE NE
- F NE NE
- F N N
- F N N
+ F N N
- G N N
- F N N
- F N N
+ F NE NE

S

- F N N
+ F NE NE
+,+ G N N
+ F N N
- F N N
- G N N
- F N N
- F N N
- F N N
- F N N

F N N
- F N N

F N N
+ I

- , - I NE NE
+ F N N

F N N
- G NE NE

260

May have
been relatedb
(sex species)

TR
Nod

295
280
277
247
204
343
191
324
150
312
163
214
173
381
294
177
377
275
158
178
113
065
145
317
045
211
220
096
030
137
122
183
255
131
353
010
056
022
004
171
125
062
012
307
338
046
208
101
252
229
227
293
202
040
276
110
151
014
175
221
135
024
192
236
098
035
385
314
157
147
396

N N
N N
NE NE

NE NE
N N
NE NE
N N
N N
N N
NE NE
NE NE
N N
NE NE
NE NE
N N
N N
N N
N N
N N
NE NE
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
NE NE
N N
N N

N N
N N
N N
IS N
N N
NE NE
NE NE
N N
N N
N N
N N
N N
N N
NE NE
N N

NE NE
N N
N N
N N
N N
N N
N N
N N

N N
N N
N N
NE NE
NE NE
N N
N N
NE NE

Otherc
sites

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N



CHEMICALS AND SITE-SPECIFIC NEOPLASIA

Table 1. (continued)

Levels of evidence May have

TR of carcinogenicitya been relatedb Otherc
Nod Chemical SALe RUT' MR9 FR MM FM (sex species) sites

N-(1-NAPHTHYL)ETHYLENEDIAMINE DIHYDROCHLORI +
NAVY FUELS JP-5
4-NITROANTHRANILIC ACID +,+
1-NITRONAPHTHALENE +
4-NITRO-0-PHENYLENEDIAMINE +,+,+
BETA-NITROSTYRENE +W,,-
PENICILLIN VK
PENTACHLORONITROBENZENE
PENTACHLORONITROPENZENE
PHENFORMIN HYDROCHLORIDE
PHENOL
P-PHENYLENEDIAMINE DIHYDROCHLORIDE +

PHENYLEPHRINE HYDROCHLORIDE
1-PHENYL-3-METHYL-5-PYRAZOLONE -

O-PHENYLPHENOL +W,-
N-PHENYL-P-PHENYLENEDIAMINE
1-PHENYL-2-THIOUREA
PHOTODIELDRIN +

PHTHALAMIDE
PHTHALIC ANHYDRIDE
PIPERONYL BUTOXIDE
PROPYLENE +

PYRAZINAMIDE
PYRIMETHAMINE
RESORCINOL
SELENIUM SULFIDE +

SELSUN
SODIUM AZIDE +

SODIUM DIETHYLDITHIOCARBAMATE
SUCCINIC ANHYDRIDE -,-
SULFISOXAZOLE
3-SULFOLENE
TARA GUM
2,3,5,6-TETRACHLORO-4-NITROANISOLE -

TETRACYCLINE HYDROCHLORIDE
TETRAETHYLTHIURAM DISULFIDE
TETRAKIS(HYDROXYMETHYL)PHOSPHONIUM CHLORIDE -

TETRAKIS(HYDROXYMETHYL)PHOSPHONIUM SULFATE
TITANIUM DIOXIDE
TOLAZAMIDE ?
TOLBUTAMIDE
TOLUENE
2,6-TOLUENEDIAMINE DIHYDROCHLORIDE +

2,5-TOLUENEDIAMINE SULFATE +

TRICHLOROFLUOROMETHANE
TRIPHENYLTIN HYDROXIDE
TRISODIUM ETHYLENEDIAMINETETRAACETATE TRIHYD -

L-TRYPTOPHAN
VINYL TOLUENE
XYLENES (MIXED)

Number of Chemicals = 128

F
S

F
F

F
G

G

F
F
F
w

F
F

F
S

F
F

F

F
F
F

F

IF

G

S

S

G
F
G

G
G

F

F

F

F

G

G

F

F

F

F

F

G

F

F

F

G

TOTALS

N N N N
NE NE

N N N N
N N N N
N N N N
N N N N
NE NE NE NE
N N N N

NE NE
N N N N
N N N N
N N N N
NE NE NE NE
N N N N

NE NE
N N N N
N N N N
N N N N
N N N N
N N N N
N N N N
NE NE NE NE
N N N IS

N N IS N
NE NE NE NE

N N
N N

NE NE
N N N N
NE NE NE NE
N N N N
N N N N
N N N N
N N N N
NE NE NE NE
N N N N
NE NE NE NE
NE NE NE NE
N N N N
N N N N
N N N N
NE NE NE NE
N N N N
N N N N
IS IS N N
N N N N
N N N N
N N N N
NE NE NE NE
NE NE NE NE

115 115 117 118

tween sexes and species, of the 104 chemicals inducing
liver cancer, 87 were evaluated in studies that were
considered to be adequate in all respects in each of the
four sex-species experiments. From Table 1, 25 chem-
icals were carcinogenic to the liver in both rats and mice;
9 chemicals caused liver cancer only in rats; 53 caused
liver cancer only in mice; and in 226/313 studies, no
chemically related liver tumors were observed in either
rats or mice (see Tables 5-8 as well). This clearly sup-
ports the evidence that in the majority of our carcino-
genicity studies the liver does not show a carcinogenic
response from chemical exposure (that is, only 28% [87/
313] of these chemicals induced a carcinogenic response

of the liver in at least one sex of one species).
These data show a strong but not perfect statistical

correlation-among the chemicals causing liver cancer
in rats, 74% (25/34) also induced liver tumors in mice.
For chemicals not producing liver tumors in rats, the
proportion causing liver tumors in mice is 19% (53/279).
Thus, the overall interspecies concordance in liver car-
cinogenicity is 80% (251/313). Similar analyses have
been conducted for other organ sites and reveal that
the forestomach and the thyroid gland likewise show a
high interspecies correlation.

Moreover, the organ-system site listing of chemicals
can reveal other sex or species consistencies, as well as

168
310
109
064
180
170
336
061
325
007
203
174
322
141
301
082
148
017
161
159
120
272
048
077
403
197
199
389
172
373
138
102
224
114
344
166
296
296
097
051
031
371
200
126
106
139
011

071
375
327

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
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any correlations or lack of correspondence among the
chemicals in that particular grouping. For example, tu-
mors of the skin were induced largely in animals that
had been exposed to chemicals by other than the dermal
route. As importantly, one can observe easily how well

one species predicts or mimics the chemically induced
response in the other species. For 1,2-dibromoethane
three of the four experimental cells showed positive
responses in the circulatory system from inhalation ex-

posure while one of four showed the same response
using the gavage route of chemical administration. Bro-
modichloromethane caused tumors in the kidney in all
groups except for the female mice; obviously, most
chemicals causing cancer in the kidney do not show
cross-sex or cross-species correspondence (46).
Another important observation is the apparent lack

of "sensitivity" of particular organ sites for showing
chemical-associated carcinogenicity. For example, in
only three instances has the heart responded to chemical
carcinogens, all in both sexes of mice, and all induced
other site-specific tumors as well. The parathyroid gland
has not been considered as a carcinogenic site for any
chemical, and rarely do tumors of this organ occur in
control animals (22). For rotenone the association of
adenomas of the parathyroid gland was decided to be
"equivocal evidence," whereby one adenoma was ob-
served in controls and four were found in the top ex-
posure group (75 ppm); no other possible carcinogenic
effects were detected in any of the eight sex-species
exposed groups. Tumors of the seminal vesicle were
found for only one chemical (reserpine) in male mice.
Osteosarcomas of the bone have been induced by only
one chemical (acronycine); two other chemicals showed
a marginal increase in this tumor type, all in male rats.

Table 2 presents a summary of the levels of evidence:
evaluations by chemical show that 198 of 379 chemicals
(or 52%) were considered carcinogenic in at least one of
the four experiments; an equally instructive view of the
overall carcinogenicity of these chemicals is shown by
the evaluations based on individual experiments,
whereby of the 1394 cases, 459 (or 33%) showed carcino-
genicity.
One qualitative way to categorize chemical carcino-

gens is to group them by the strength of the evidence
based simply on the number of positive experimental
cells across sexes and species. Consequently, we de-
veloped the data in Table 3 that qualitatively aggregate
the chemicals by the number of positive experiments.

In this way one begins to differentiate the 50% of chem-
icals causing cancer in experimental systems. These
data show that 43 of the 313 chemicals caused cancer in
each of the four experimental cells and 25 in the three
of four grouping. These two classes of chemicals com-
prise 22% of the total number evaluated in long-term
studies. The category of chemicals causing positive re-
sponses in two of the four experiments contains the
largest number of chemicals-56-compared to the
other three subsets with evidence of carcinogenicity.
Chemicals that caused tumors in only one of the exper-
iments equaled 38. For no evidence there were 151
chemicals.

Table 4 assesses the correlations between sexes and
species, and the findings are consistent with those re-

ported previously (47). The correlation of carcinogenic
responses between rats and mice is a reasonable 74%,
but certainly not perfect or as good as that between
sexes within a species (85-87%).

Table 5 contains a composite listing by site in alpha-
betical order of the numbers of chemicals showing in-
creases in tumors for both positive evidence and equiv-
ocal evidence categories. Table 6 lists in rank order
those organs or systems most often associated with
chemically induced tumors. These sites account for al-
most all the experiments showing a positive response,
and represent a sizeable number of the chemicals show-
ing positive effects.
The percentage of chemicals showing positive re-

sponses within each sex-species cell is approximately
similar, with the male mouse being the "least respon-
sive" of the four (Tables 5 and 6). Mice appear twice as
likely as do rats to show a positive effect in the liver.
The female rat responds more than the other sex-species
for chemically associated mammary tumors, whereas
the male leads with chemicals causing tumors of the
kidney (46) and of the pancreas (48). The forestomach
responses to chemical carcinogens is interesting in its
consistency across sex-species. While the urinary blad-
der and Zymbal gland cancers occur overwhelmingly in
the rat, the Harderian gland neoplasms have been lim-
ited to the mouse. The skin and subcutaneously asso-
ciated tumors seemed to be reserved primarily for the
rat, and more frequently the male rat. A carcinogenic
response of the clitoral gland was observed for ten
chemicals in female rats while none occurred in female
mice; conversely, in female mice the ovary showed car-

Table 2. Summary results from 379 carcinogenicity studies in rodents.

By experiment By chemical
Rats Mice

Study result Male Female Male Female Total Rats Mice Overall
Pbsitive 127 107 102 123 459 146 137 198
Equivocal 41 36 35 20 132 48 35 53
No evidence 183 211 204 205 803 162 178 128

Totals 351 354 341 348 1394 356 350 379
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Table 3. Carcinogenicity results for 313 chemical studies in rodents.a

Proportion of Rats Mice Number of studies
positive studies Male Female Male Female with these results %

4/4 + + + + 43
Subtotals 43 13.7

3/4 + + + - 1
+ + - + 11
+ - + + 7
_ + + + 6

Subtotals 25 8.0

2/4 + + - - 19
+ - + - 2
+ - - + 7

2
_ + _ + 3

+ + 23
Subtotals 56 17.9

1/4 + - - - 17
_ + _ - 4
_ _ + - 9
_ _ _ + 8

Subtotals 38 12.1

0/4 - - - - 151
Subtotals 151 48.2

Totals 313 100
a Includes only those long-term studies considered adequate in all four sex-species experiments.
Note: Equivocal evidence (or marginal) results are considered to be between a positive response and no evidence of a response; these results

are placed into the no evidence category.

Table 4. Intra- and inter-species concordance in carcinogenic responses in 379 chemical carcinogenicity studies in rodents.'

Observed response % Concordant (+ + or - -)

Comparison + + + - - + -- responses
Male rats vs. female rats 88 38 16 207 84.5 (295/349)
Male rats vs. male mice 54 54 40 169 70.3 (223/317)
Male rats vs. female mice 70 41 41 169 74.5 (239/321)
Female rats vs. male mice 53 38 42 185 74.8 (239/318)
Female rats vs. female mice 65 28 47 183 76.8 (248/323)
Male mice vs. female mice 88 14 31 206 86.7 (294/339)

Rats vs. mice 82 40 40 151 74.4 (233/313)
a Equivocal evidence (or marginal) results are considered to be between a positive response and no evidence of a response; these results were

placed into the no evidence category

cinogenic responses for eight chemicals whereas none
were found for the female rat.

Table 7 lists the most frequently occurring organ and
tissue sites for chemically induced cancers in rats, and
Table 8 contains the top 10 for mice. Separating the
species allows a better demonstration of the number of
unique chemicals per target site as well as to show the
consistency among the available target sites, especially
if one removes gender-related tumor sites.

Discussion and Conclusions
These site-specific tumor-chemical carcinogen com-

pilations (Table 1) are most useful for maintaining a
historic perspective when evaluating the carcinogenic-

ity of contemporary experiments. Equally important,
the chemical-tumor-organ connection permits an eval-
uation of how well chemically induced cancers in a par-
ticular organ in one sex or species will predict or cor-
relate with the other sex or species. Likewise, target
site predictions can be made for chemicals selected for
study that may be similar to those already evaluated;
thereby experimental protocols could be adjusted to al-
low for more extensive pathology on preselected target
organs (i.e., serial sections of the kidney). Further from
these observations, one could decide to use two strains
of mice to evaluate a short-chain chlorinated aliphatic
compound or to study a human carcinogen in a sex-
species known to develop chemically induced tumors in
the same site observed in humans.
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Table 5. Numbers of chemicals associated with site-specific neoplasia in rats and mice from 1394 long-term carcinogenesis
experiments.

Ratsa Micea Totalsb
Male Female Male Female

Site POS EE POS EE POS EE POS EE POS EE POS/EE
Adrenal gland 5 9 3 7 5 2 4 1 13 15 28
Bone 1 2 0 0 0 0 0 0 1 2 3
Brain 2 7 2 4 1 1 1 0 2 9 11
Circulatory system 4 0 2 1 8 3 9 1 13 4 16
Clitoral gland 0 0 10 1 0 0 0 0 10 1 11
Epididymis 0 0 0 0 1 0 0 0 1 0 1
Esophagus 1 0 1 0 0 1 0 1 1 1 2
Forestomach 15 2 11 3 15 3 16 6 23 11 32
Glandular stomach 0 0 1 1 0 0 0 0 1 1 2
Harderian gland 0 0 0 0 5 2 6 2 7 3 10
Heart 0 0 0 0 3 0 3 0 3 0 3
Hematopoietic system 12 6 10 8 8 6 13 4 29 21 50
Intestines 9 2 7 1 1 0 1 0 11 2 13
Kidney 25 5 9 2 4 3 1 1 29 10 37
Liver 38 6 32 4 58 16 75 8 104 31 124
Lung 5 5 7 2 18 4 21 3 30 12 40
Mammary gland 3 0 22 7 0 0 9 0 27 7 34
Mesothelium (abdomen) 8 3 2 1 1 0 1 0 8 3 11
Nasal cavity 8 2 7 1 3 0 3 1 9 3 10
Oral cavity 6 1 8 0 0 0 0 0 8 1 8
Ovary 0 0 0 0 0 0 8 0 8 0 8
Pancreas 7 6 2 1 0 0 0 0 8 7 14
Parathyroid gland 0 1 0 0 0 0 0 0 0 1 1
Pituitary gland 0 0 1 2 2 0 3 0 4 2 6
Preputial gland 7 5 0 0 3 1 0 0 10 6 16
Seminal vesicle 0 0 0 0 1 0 0 0 1 0 1
Skin 14 4 7 0 3 2 2 1 15 6 21
Spleen 7 2 3 1 1 0 2 0 9 3 11
Subcutaneous tissue 6 3 3 2 0 4 3 1 9 8 16
Thyroid gland 14 6 13 5 6 2 8 0 19 10 29
Ureter 2 0 1 0 0 0 0 0 2 0 2
Urinary bladder 10 0 10 3 3 0 3 0 16 3 18
Uterus/cerix 0 0 8 0 0 0 7 1 15 1 16
Zymbal gland 16 2 15 1 1 1 2 0 18 3 20

Totals 225 79 197 58 151 51 201 31
aPositive responses, and includes P, CE, and SE; EE, equivocal responses, and includes those that may have been related to chemical

exposure.
bNumber of individual chemicals that caused positive (POS), equivocal (EE), and either or both responses (POS/EE) in at least one sex of

one species.

Table 6. Organs/systems most frequently observed in rats and mice with chemically induced site-specific neoplasia from 379 long-term
chemical carcinogenesis studies.

% of 379 Rats Mice % of 1394
Organs/systems Chemicals chemicals Male Female Male Female Experiments experiments
1. Liver 104 27% 38 32 58 75 203 15%
2. Lung 30 8% 5 7 18 21 51 4%
3. Hematopoietic system 29 8% 12 10 8 13 43 3%

Kidney 29 8% 25 9 4 1 39 3%
4.Mammary gland 27 7% 3 22 0 9 34 2%
5. Forestomach 23 6% 15 11 15 16 57 4%
6.Thyroid gland 19 5% 14 13 6 8 41 3%
7. Zymbal gland 18 5% 16 15 1 2 34 2%
8. Urinary bladder 16 4% 10 10 3 3 26 2%
-9.Skin 15 4% 14 7 3 2 26 2%

Uterus/cervix 15 4% 0 8 0 7 15 1%
10. Circulatory system 13 3% 4 2 8 9 23 2%

Adrenal gland 13 3% 5 3 5 4 17 1%
Totals 161 149 129 170
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Table 7. Top 10 organs/systems most frequently observed in rats with chemically induced neoplasia from 379 long-term chemical
carcinogenesis studies.

Male rats Female rats Rats Unique

Site Chemicals Site Chemicals Composite sites Male Female chemicals
1. Liver 38 Liver 32 Livee 38 32 44
2. Kidney 25 Mammary gland 22 Kidney- 25 9 28
3. Zymbal gland 16 Zymbal gland 15 Mammary gland 3 22 22
4. Forestomach 15 Thyroid gland 13 Zymbal glands 16 15 18
5. Thyroid gland 14 Forestomach 11 Thyroid gland& 14 13 17
6. Skin 14 Urinary bladder 10 Hematopoietic systeme 12 10 17
7. Hematopoietic system 12 Clitoral gland 10 Forestomach5 15 11 15
8. Urinary bladder 10 Hematopoietic system 10 Skin 14 7 15
9. Intestines 9 Kidney 9 Urinary bladder 10 10 14

10. Nasal cavity 8 Uterus cervix 8 Clitoral gland 0 10 10
Oral cavity 8

'Occurs in top 10 in both male and female rats.

Table 8. Top 10 organs/systems most frequently observed in mice with chemically induced neoplasia from 379 long-term chemical
carcinogenesis studies.

Male mice Female mice Mice Unique
Site Chemicals Site Chemicals Composite sites Male Female chemicals

1. Liver 58 Liver 75 Liver" 58 75 86
2. Lung 18 Lung 21 Lunga 18 21 23
3. Forestomach 15 Forestomach 16 Forestomach5 15 16 17
4. Circulatory system 8 Hematopoietic system 13 Hematopoietic systemr 8 13 15
5. Hematopoietic system 8 Circulatory system 9 Circulatory system5 8 9 11
6. Thyroid gland 6 Mammary gland 9 Mammary gland 0 9 9
7. Harderian gland 5 Ovary 8 Thyroid glanda 6 8 9
8. Adrenal gland 5 Thyroid gland 8 Ovary 0 8 8
9. Kidney 4 Uterus/cervix 7 Harderian gland' 5 6 7

10. Five sites' 3 Harderian gland 6 Uterus/cervix 0 7 7
'Occurs in top 10 in both male and female mice.
'Heart, nasal cavity, preputial gland, skin, urinary bladder.

Comparing the sites of these chemically induced tu-
mors with those recorded for the human population in
the United States (Table 9) and worldwide (Table 10)
lends further support to the biological conservation
among these species. Of course, one has to recognize
"life-style" tumor differences such as melanoma of the
skin in U.S. females. Some may think it odd to compare
site-specific cancers observed in humans with those
found in chemically induced cancers in rodents, yet the
majority of cancers in humans have been considered to
be preventable and hence "environmentally caused."
Further, there is little evidence to suggest that any
tumor occurring in rodents or in humans does not have
some association with "chemical" causes, be it from the
diet or from specific chemicals.

In this paper on sites and types of tumors chemically
induced in rats and mice (Tables 6-8), five (hemato-
poietic system, lung, mammary gland, urinary bladder,
and uterus) of the most frequently observed tumor sites
are the same as those observed in the top 10 sites in
the human population of the U.S. (49); if one considers
the most common tumor types in the world population
(50) then rodents and humans correspond on 7 (adding
esophagus/stomach and liver) of 10. Those tumor sites
in rodents lacking "top 10" correlation in humans include
kidney (number 11 in the U.S.), thyroid gland, and Zym-

bal gland). (In this comparison rodent forestomach was
taken as associating with human esophagus.)
For all those chemicals or mixtures for which there

is evidence of carcinogenicity for humans and that have
been studied adequately in experimental animals, all
have been shown to cause cancer in a common site in
at least one animal species (4,27,28,51). For several
chemicals the evidence of carcinogenicity in experimen-
tal animals preceded evidence obtained from epide-
miological studies or case reports (1,4,52,53). For these
eight chemicals, the major organs showing positive car-
cinogenic responses in animals included: liver, lung,
mammary gland, and skin, each showing a positive re-
sponse for three of the eight chemicals. For all eight
human carcinogens first identified in animals, the organs
showing a positive effect in humans were the same as
those observed experimentally in either rats or mice or
both. Other organs in animals showing positive effects
from these eight chemicals included kidney, Zymbal
gland, urinary bladder, intestinal tract, nasal cavity,
ovary, lymphoma, pituitary gland, and cervix-vagina-
uterus.
The overall concordance in carcinogenic response be-

tween rats and mice agrees closely with previous esti-
mates (47,54), and tends to stay consistently in the
range of 75% (Table 4). Importantly, this value is almost
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Table 9. Top 12 most frequently observed site-specific cancers in humans in the United States for the 2-year period 1986-1987 (age-
adjusted rates per 100,000 population).a

A. Cancer incidence rates

Males and females Males Females
Site Rate Site Rate Site Rate

1. Breast 61.3 Prostate gland 94.2 Breast 112.1
2. Lung and bronchus 56.6 Lung and bronchus 82.0 Colon/rectum 41.7
3. Colon/rectum 49.8 Colon/rectum 61.2 Lung and bronchus 38.1
4. Prostate gland 38.2 Urinary bladder 32.4 Cervix uteri, corpus and uterus 30.0
5. Urinary bladder 18.1 Non-Hodgkin's lymphoma 17.1 Ovary 13.9
6. Cervix uteri, corpus and uterus 16.3 Oral and pharynx 16.4 Non-Hodgkin's lymphoma 11.0
7. Non-Hodgkin's lymphoma 13.8 Leukemia 13.0 Melanoma of skin 10.0
8. Melanoma of skin 11.2 Melanoma of skin 12.9 Pancreas 7.6
9. Oral and pharynx 10.9 Kidney 11.7 Urinary bladder 7.6

10. Leukemia 9.7 Stomach 10.6 Leukemia 7.4
11. Pancreas 8.8 Pancreas 10.6 Thyroid gland 6.1
12. Kidney 8.4 Larynx 8.2 Brain and nervous system 5.8

B. Cancer mortality rates

Males and females Males Females
Site Rate Site Rate Site Rate

1. Lung and bronchus 47.4 Lung and bronchus 74.5 Lung and bronchus 27.6
2. Colon/rectum 20.2 Colon/rectum 24.5 Breast 27.2
3. Breast 15.3 Prostate gland 24.4 Colon/rectum 16.8
4. Prostate gland 9.2 Pancreas 10.0 Ovary 7.7
5. Pancreas 8.4 Leukemia 8.3 Pancreas 7.2
6. Leukemia 6.3 Stomach 7.2 Cervix uteri, corpus and uterus 6.7
7. Non-Hodgkin's lymphoma 5.8 Non-Hodgkin's lymphoma 7.1 Leukemia 4.9
8. Stomach 4.9 Esophagus 5.8 Non-Hodgkin's lymphoma 4.8
9. Ovary 4.3 Urinary bladder 5.7 Brain and nervous system 3.3

10. Brain and nervous system 4.1 Brain and nervous system 4.9 Stomach 3.2
11. Kidney 3.4 Kidney 4.8 Multiple myeloma 2.4
12. Urinary bladder 3.3 Liver 3.7 Kidney 2.3

a Data from Ries et al. (49).

certainly an underestimate of the true underlying in-
terspecies concordance, given the lack of sensitivity or
low power for detecting carcinogenic responses for
"weak" chemical carcinogens, co-carcinogens, or "pro-
moters." For example, Piegorsch et al. (55) demon-
strated that even if the underlying interspecies con-
cordance in a particular carcinogenic response for a
given set of chemicals is 100%, the maximum level of
observable concordance achievable for these chemicals
is only about 80%, largely because of the variability in
observed tumor responses that can occur by chance,
resulting in a small number of false negative (and false
positive) outcomes in one of the two species. This im-
portant revelation implies that the underlying correla-
tions in carcinogenic response between rats and mice is
clearly higher than commonly assumed or reported.
Thus, one might consider that the experimentally ob-
served concordance of 75% actually comes closer to a
true species correlation of 94%. Similarly, the under-
lying interspecies correlation in site-specific carcino-
genic responses is no doubt higher than would be ap-
parent from an evaluation of the observed associations
reported in Table 1.
The excellent correlation between genders within a

species led Huff et al. (2) to cautiously suggest a possible

alternative to the current design, whereby male F344
rats and female B6C3F1 mice could be used and this
modified (or reduced) protocol would have identified cor-
rectly (from simply a yes-or-no carcinogenicity-point-of-
view) 96% of the chemicals so far studied. This would
not have allowed the construction of the data in Table
3, however. Thus, this design could be best used either
as a carcinogenicity screen or as a model for studying
additional chemicals in a class where one already has a
good expectation about potential carcinogenicity.
The correlation of carcinogenic responses between

rats and mice should be considered quite good (74%),
and as mentioned is perhaps as close as one can get to
"perfection" under the conditions of these long-term
chemical carcinogenesis experiments (55). This overall
correspondence for rats and mice clearly supports the
decision ofthose in the research and regulatory agencies
who early on proposed and actually insisted that car-
cinogenicity studies must be conducted in both genders
of at least two species. We agree that both sexes of two
species of rodents should ordinarily continue to be part
of the core design strategy for identifying chemical car-
cinogens that may pose carcinogenic risk to humans
(20,56); yet, as mentioned above, there will be instances
whereby an alternative approach should be given due
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consideration. This may appear especially tempting
given that the observed correlation between sexes
within a species tends to be 85% or above.
Another set of correlation data comes from comparing

tumor incidence rates between those site-specific tu-
mors that occur in unexposed (or control) groups and
those that are considered to be caused by chemicals.
For F344 rats, there appears to be little or no corre-
lation between the tumor rates in control animals and
the frequency of site-specific chemically induced carci-
nogenic effects. Of the top 10 sites of carcinogenicity in
male rats (Table 7), all but two (thyroid gland and he-
matopoietic system) involve tumors with background
rates below 5%, and for most sites (forestomach, intes-
tines, kidney, nasal cavity, and urinary bladder) the
control rate is less than 1% (22,57). Three of the four
most frequently occurring tumors in control animals
(pheochromocytomas of the adrenal gland, adenomas of
the pituitary gland, and interstitial cell tumors of the
testes) are not among the frequent sites of chemical
carcinogenicity. For female rats the results are quite
similar: the most frequent tumor observed in control
groups is adenoma of the pituitary gland (22,57), which
has been considered to show chemically related effects
in only a single study (Table 1: 2-mercaptobenzothiazole;
two others showed marginal increases). In contrast,
chemically induced carcinogenicity is frequently ob-
served for uncommonly occurring tumors in the fore-
stomach, kidney, and urinary bladder (Table 7).
For B6C3F1 mice the results are different: the four

most common sites for observed tumors in control male
mice (liver, hematopoietic system [malignant lym-
phoma], lung, and circulatory system [hemangioma-he-
mangiosarcoma]) are among the five most frequent sites
of chemical carcinogenicity (Table 8). Female mice show
a similar pattern, although the relatively commonly oc-
curring tumors of the pituitary gland are not among the
top 10 tumor sites. Nevertheless, chemical carcinoge-
nicity is often observed in mice at sites having low back-
ground rates (57), most notably for the forestomach and
ovary.
As has been long known, the liver is the most frequent

site of chemically caused cancer in laboratory animals
(58): in our studies 27% (104/379) of the chemicals eval-
uated caused liver tumors, or in 15% (203/1394) of the
individual experiments (Table 6). However, what may
not be fully appreciated is the fact that the liver is the
most common site of chemically induced cancer for rats
as well as mice, an important factor when evaluating
the biological significance of these neoplasms. That is,
chemically related liver tumor effects in B6C3F1 mice
have been discounted by some investigators based in
large measure on the relatively high background rate
of these neoplasms [31% in male and 8% in female mice;
(57)]. However, there appears to be little biologic evi-
dence to support this view. Chemically induced liver
tumors are more common in female mice than in male
mice despite the lower control rate in female mice (Table
6). Further, liver cancers are relatively uncommon in

Fischer rats [< 1%; (22)], yet the liver remains the most
frequent site of chemical carcinogenicity in both species.
Thus, the liver is an important site of chemical carcin-
ogenesis in rodents, independent of background rate.
Comparing the correspondence between tumors of

the liver with tumors in other organs reveals that a
significant association exists for liver tumors in mice
and "any other site" tumors in rats. For example, if a
chemical produced liver cancer in mice, then that chem-
ical was twice as likely to be a carcinogen in the rat (49/
78, 63%) when compared with a chemical not causing
liver tumors in mice (73/235, 31%).
However, other site-specific tumors in mice are even

more predictive of chemical carcinogenesis in the rat.
If one divides the chemicals into three groups-1) those
chemicals not causing any carcinogenic effects in mice,
2) those chemicals causing carcinogenic responses in
mice only for the liver, and 3) those chemicals causing
carcinogenic effects in mice at sites other than the
liver-then a clear gradient of predictability becomes
obvious: 21% (40/191) of the chemicals not causing any
tumors in mice were carcinogenic in rats; 54% (26/48)
of the chemicals causing only liver tumors in mice were
also carcinogenic in rats, and 76% (56/74) of the chem-
icals causing cancer in mice at sites other than the liver
were likewise carcinogenic in rats.
The influence of the background control rate "inher-

ent" within a particular organ or system has little or no
biological impact on the actual "inherent" carcinoge-
nicity of a particular chemical substance. As noted, a
"high" background rate does not correspond with a high
frequency of chemically related carcinogenic effects.
For organs with very high background rates, however,
a chemically induced carcinogenic response is difficult
or impossible to detect because of the variable range of
"control" data and because the statistical and biological
limits may have been reached: for instance, the 64 to
98% control tumor incidence for interstitial cell tumors
of the testes in Fischer rats essentially precludes this
organ as a potential site for detecting a carcinogenic
effect. In no case has a chemical been judged to induce
this tumor type in this organ.
The findings from long-term chemical carcinogenicity

experiments are frequently the major stimulus for ini-
tiating the risk assessment process. The four stages are
hazard identification, dose-response assessment, expo-
sure assessment, and risk characterization (6,15,24-26).
Results from these long-term carcinogenesis experi-
ments form the basis for step 1 (and often provide input
for step 2) in the four-step process of assessing potential
risks to humans from exposure to a particular chemical.
Completion of these four steps may result eventually in
the activation of a more social, regulatory, and political
(risk versus benefit) risk management process for pro-
tecting public, environmental, and occupational health.
Of course one must evaluate all the available and rel-
evant scientific information before proposing or initi-
ating occupational or public policy.
The results of long-term chemical carcinogenesis
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studies and the evidence of carcinogenicity are used to
establish public health policies by local, state, and na-
tional and international governmental agencies (1). Pos-
itive carcinogenicity results in these experiments dem-
onstrate that a "chemical" is carcinogenic for laboratory
animals under the conditions of the study and in our
collective view (1-3,15,16,23,24,33,34) indicate that ex-
posure to the "chemical" should be regarded for prudent
public health and scientific purposes as being a likely
carcinogenic hazard to humans.
Using the experience of the International Agency for

Research on Cancer (IARC) over the last 20 years (1972
till now), they have been able to locate carcinogenicity
information on only 732 substances. In IARC Mono-
graphs Volumes 1-53, 55 "agents" are carcinogenic to
humans; 45 are probably carcinogenic to humans; 191
are possibly carcinogenic to humans; 440 cannot be clas-
sified as to their individual carcinogenicity to humans;
and 1 (caprolactam) is probably not carcinogenic to hu-
mans (51). Thus of these 732 agents, only 100 (or 14%)
are either known as carcinogenic to humans or are
strongly suspected ofbeing carcinogenic to humans. Us-
ing our qualitative data in Table 3, we estimate that
about 25% of chemicals evaluated by us would fit the
international definitions either 1) for those chemicals
with sufficient evidence of carcinogenicity in experi-
mental animals that would be regarded as if they were
carcinogenic to humans (52) or/and 2) for those chemicals
considered reasonably anticipated to be human carcin-
ogens (29).

Qualitative evaluations by chemical show that 52%
were considered carcinogenic in at least one of the four
experiments (Table 2). Another important view of the
overall carcinogenicity of these chemicals is shown by
the evaluations based on individual experiments: of the
1394 cases, 459 (or 33%) showed carcinogenicity. One
qualitative way to categorize chemical carcinogens is to
group them by the strength of the evidence, taking into
account the exposure concentrations, the number ofpos-
itive experimental cells across sexes and species (Table
3), the incidences and types of neoplastic responses, the
number of different organs or systems affected, and the
latency periods. This is certainly preferred over simply
counting and combining the numbers of chemicals caus-
ing single-site, single-sex, single-species carcinogens
(e.g., allyl isothiocyanate and d-limonene) with those
causing multiple tumor sites in multiple experiments
[e.g., benzene, glycidol, substituted benzidines, and
others (15)].
Some have interpreted the 50% number of "positives"

to claim that there are "too many rodent carcinogens"
(59,60), and thus that results of carcinogenicity ob-
served in these mammalian bioassays are irrelevent in
themselves and predict potential hazard to humans no
better than a "coin-toss." We and most others active in
the fields of chemical carcinogenesis and public health
find no scientific evidence to support this claim. In one
sense, the chemicals selected and evaluated so far rep-
resent those that for the most part were considered
likely of being carcinogenic, and one might have been

led to anticipate that a high proportion or even most of
the first 300 or so chemicals should indeed have induced
cancers in one or more of the experimental groups. This
did not happen, and thus active research efforts con-
tinue to look for or develop reliable methods to more
accurately predict carcinogenic responses in experi-
mental animals and in humans. The best predictive
method now available is the long-term chemical carcino-
genesis experiments using laboratory animals.
Examining the existing universe of chemicals that

may eventually represent potential carcinogenic haz-
ards to humans, Huff and Hoel (15) set forth an empir-
ical idea that the percentage of chemicals that one could
reasonably anticipate to meet the criteria as human car-
cinogens (27,29) would be substantially lower than cur-
rently believed or estimated. Using our data set alone
as an example, only 25% of the chemicals would fit these
categories.
The data in Table 3 reflect a qualitative aggregation

of chemicals by the number of positive experiments. In
this way one begins to better differentiate the 50% of
chemicals causing cancer in experimental systems.
Moreover, from the public health point of view, epi-
demiological studies could be considered for the 43
chemicals causing cancer in each of the four experi-
mental cells or for the 25 in the three of four grouping.
These two classes of chemicals comprise 22% of the
number evaluated by us in long-term carcinogenesis
studies. Moreover, chemicals "ranked" in this way could
allow regulatory and public health organizations the op-
portunity to direct their efforts toward those chemicals
having the greater "strength" of evidence.
Much is being said about the value of knowing the

mechanism of carcinogenic action before making public
health decisions. However, as most subscribe, mecha-
nism of action is not yet considered to be defined nearly
enough to become a significant factor in the evaluations
on a global or generic basis; but certainly all relevant
biologic information (oncogene activation and tumor
suppressor genes, pharmacology and pharmacokinetics,
DNA damage and repair, short- and mid-term assay
results, among others) should be considered when de-
ciding a particular level (classification or category) of
evidence of carcinogenicity (6,61,62). At present we are
unable to predict the eventual impact some or all of
these pieces of information would have on the relative
strength or weakness of a particular category of evi-
dence for chemically caused cancers. One of the most
important criteria for making these scientific judgments
is knowledgeable and objective scientific staff, most
preferably those with actual "hands-on" experience in
all or at least many of the stages of these studies to-
gether with historical knowledge to allow some consis-
tency or trends over time. A multidisciplinary group
approach for making these important evaluations-in-
cluding, at a minimum, toxicology, pathology, statistics,
cancer biology, pharmacology-pharmacokinetics, and
chemistry-appears to be most advantageous, and typ-
ically results in the closest one gets to scientific objec-
tivity (for a very subjective area). Subsequent public
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peer-review certainly goes a long way to support and
better guarantee objectivity.

This and other information taken together with the
strong evidence of correspondence between the chem-
icals identified as causing cancer in humans and in ex-
perimental animal models (4) support the public health
policy of continuing to use laboratory research and ex-
perimental findings as relevant for identifying potential
hazardous effects in humans (1,2).

Afterword
"This is a time of unprecedentedly rapid advances in

the biomedical sciences, including new insights into the
influence of the environment on human health. Whereas
the major causes of death in past centuries were mi-
crobial diseases, today's leading causes of death in the
industrialized world are constitutional, degenerative,
and neoplastic disorders that are rooted to a large de-
gree in environmental causes. Better understanding of
such environmental causes can be expected to enable
preventive measures that will yield enormous benefits
to human health" (63).

We appreciate the critical comments and suggestions made by Mi-
chael Elwell and Dan Morgan. The computer programming for this
data collection was accomplished by Gloria Nicholson and Michael
Rowley. We thank Beth Anderson for the Salmonella data and Sharon
Soward for overseeing the main data ifies. Also giving helpful as-
sistance in this effort were Donna Mayer and Debra Parrish.
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