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Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on
the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and
subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidyl-
choline and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered
in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual
enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following
hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids,
thyroid hormone, estrogen, prolactin, cyclic AMP, B-adrenergic and cholinergic agonists, prostaglandins
and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered.
Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed.

Introduction

The alveoli of the lung are lined with a highly
surface-active, phospholipid-rich material, pulmonary
surfactant, which prevents their collapse on expiration.
The existence of surfactant was first suggested by von
Neergard (1) in 1929 but it was not until some 30 years
later that its presence was actually demonstrated when
Pattle (2) showed that remarkably stable bubbles could
be squeezed from a lung cut under water and Clements
(3,4) showed that lung extracts lowered the surface
tension at an air-water interface. In 1959 Avery and
Mead (5) demonstrated its clinical importance when
they found that the lungs of infants who died from the
respiratory distress syndrome (RDS) were deficient in
surfactant. In the ensuing years the composition and
biosynthesis of surfactant has been extensively studied.
Since it is now recognized that RDS is a developmental
disorder due to immature lungs there has been consider-
able interest in the control of fetal lung maturation and
in the mechanism of surfactant synthesis and secretion
as well as in the acceleration of these processes. There
has also been interst in surfactant changes in adult lung
disease and in the influence of toxic agents on surfactant.

Surfactant is essential for normal lung function in
both newborn and adult mammals. Without sufficient
surfactant the alveoli would collapse on expiration and
this would lead to impaired gas exhange. The surfactant
system may be particularly susceptible to pulmonary
toxicants. Damage to surfactant or impairment of its
production may have a deleterious effect on lung func-
tion and may even be incompatible with life. Although
the effects of pulmonary toxicants on surfactant bio-
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chemistry have not been systematically examined, there
is abundant evidence that many such agents do alter the
system. However, these agents may not necessarily act
directly on the surfactant system but rather affect it
secondary to effects on specific lung cells. This paper
reviews what is known of surfactant biochemistry and
biosynthesis to provide a basis for elucidating possible
sites of toxicant action on this vital pulmonary system.

The history of the discovery of surfactant and its
relationship to RDS has been detailed in an intriguing
review by Comroe (6-8). There are also other excellent
reviews on the physiochemical (9,10), biosynthetic
(11-13) and developmental (14 -16) aspects of surfactant.

Composition of Surfactant

The in vivo composition of functional surfactant is
unknown. Surfactant for in vitro study can be obtained
by endotracheal lavage with saline followed by differen-
tial centrifugation (17). Harwood et al. (18) examined
such material from rats, rabbits, oxen and sheep. All
were highly surface-active and consisted of lipid (79-90%
by weight) and protein (28-18%) with only a trace of
carbohydrate. Surface-active material from dog lung
has a similar composition (19).

Lipids from rabbit lung lavage consist of 80 to 90%
phospholipids, 10% glycolipids and 5% neutral lipids
(20). Phosphatidylcholine (PC) is by far the most
abundant phospholipid. It accounts for 86% of the total
phospholipid (20). Over half of the PC is disaturated
(21-23) and palmitic acid accounts for 90% of the satu-
rated fatty acids (24). Dipalmitoyl-PC is, therefore, a
major component of pulmonary surfactant. Phospha-
tidylglycerol is the second most abundant phospholipid
in surfactant. It accounts for 6 to 11% of the total
(20,25-29). Surfactant characteristically contains very
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little phosphatidylethanolamine and sphingomyelin—
phospholipids which are present in appreciable quantity
in lung tissue (20). Phosphatidylinositol, phospha-
tidylserine and lyso-PC are also only very minor
components of surfactant (20). The glycolipids in
lung lavage have been little studied. Recently Slomiany
et al. (30,31) reported structures for sulfated and
neutral glyceroglucolipids from rabbit lung lavage. The
neutral lipids consist of free fatty acids, acylglycerols,
cholesterol and cholesterol esters (18,19,27).

Dipalmitoyl-PC and phosphatidylglycerol are charac-
teristic components of lung surfactant but they are not
exclusive markers for it by any means since they also
occur in other, nonsurfactant lung fractions. In addition
both disaturated PC (32) and phosphatidylglycerol (33)
also occur in other mammalian tissues, although usually
not as abundantly as in lung lavage.

Both dipalmitoyl-PC (20) and phosphatidylglycerol
(20,34) are highly surface-active. The precise nature of
surfactant in vivo, however, is unknown. It is unlikely to
be pure dipalmitoyl-PC because of its poor spreading
properties (35). Hildebran et al. (36) recently reported
that monolayers consisting of at least 90% dipalmitoyl-PC
with up to 10% cholesterol or monoenoic PC could
function as surfactant. Recently, Morley et al. (37)
reported that a mixture of 70% dipalmitoyl-PC and 30%
phosphatidylglycerol was an effective artificial sur-
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factant. A role for protein in surfactant has also been
suggested (38) although this has been recently disputed
(27,37). Clearly further work is needed to establish the
in vivo composition of surfactant. This is particularly
important in the development of an artificial surfactant
(37,89-41) which might be used in the treatment of
RDS in the newborn or possibly in adult conditions
where surfactant is altered.

Biosynthesis of the Major Lipids of
Surfactant

The pathways by which PC and phosphatidylglycerol
are synthesized are illustrated in Figure 1. This biosyn-
thetic scheme can be considered in four parts: synthesis
of phosphatidic acid from nonlipid precursors; synthesis
of PC from choline and phosphatidic acid; synthesis of
phosphatidylglycerol from phosphatidic acid and remod-
eling of the de novo-synthesized PC to form the
disaturated species.

Synthesis of Phosphatidic Acid

The first glycerophosphatide in the pathway, phospha-
tidic acid, is the product of acylation of 1-acylglycerol-
3-phosphate which, in turn, is formed from dihydroxy-
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acetone phosphate by either of two mechanisms: initial
reduction to glycerol-3-phosphate followed by acylation
or initial acylation followed by reduction. There is
evidence that both of these mechanisms are operative in
the lung (43,44). Mason (45) reported that the acyldihy-
droxyacetone phosphate pathway is responsible for
synthesis of approximately 60% of PC and phospha-
tidylglycerol in Type II cells isolated from rat lung.
There is evidence that dihydroxyacetone phosphate
acyltransferase and glycerophosphate acyltransferase
are the same enzyme (46). However, 1-acylglycero-
phosphate acyltransferase appears to be a separate
enzyme.

Glucose, glycerol and free fatty acids are incorpo-
rated into phospholipids at this stage of the biosynthetic
scheme. Glucose and glycogen are metabolized via the
glycolytic pathway to dihydroxyacetone phosphate or to
acetate and hence fatty acids. Glycerol is converted to
glycerol-3-phosphate by glycerol kinase, an enzyme
which is present in lung (47,48). Fatty acids may be
synthesized de novo by the lung or supplied by the
blood. Both sources appear to be important. Recent
data (49-52) suggest that fatty acids synthesized by the
lung are incorporated into de novo-synthesized PC and
phosphatidylglycerol while exogenous palmitate is incor-
porated into disaturated PC by remodeling of unsatu-
rated PC (see below).

De Novo Synthesis of Phosphatidylcholine

Choline is phosphorylated and transferred to CDP
(cytidine 5'-diphosphate) before reacting with diacyl-
glycerol to form PC. All four enzymes involved in this
section of the pathway have been reported to be
rate-regulatory in nonpulmonary systems (53-58). The
rate-limiting step in the lung is not yet known. A rate-
regulatory role for cholinephosphotransferase (CPT)
was suggested by the finding that this enzyme was
induced by glucocorticoids which stimulate PC synthe-
sis in the fetal lung (59). This observation has not, how-
ever, been consistently made by others (42,60). Johnston
and co-workers (61,62) and Brehier et al. (63) presented
evidence in favor of a rate-regulatory role for phospha-
tidate phosphatase (PAPase). However, in those studies,
aqueously dispersed phosphatidic acid was used as
substrate, and Casola and Possmayer (64) have sug-
gested that PAPase assayed with aqueously dispersed
rather than membrane-bound phosphatidic acid does
not reflect the activity of the enzyme involved in
phospholipid synthesis. Recent data suggest a rate-reg-
ulatory role for pulmonary cholinephosphate cytidylyl-
transferase (CP-CYT). The activity of this enzyme
increases either at the end of gestation or immedately
after birth (65-72), when there is a surge in surfactant
production. CP-CYT is also stimulated by glucocorti-
coids (60,65,73-75) and estrogen (74,76,77)—hormones
which stimulate lung PC synthesis.

Most of the above studies have been carried out in
preparations of whole lung. It is possible that synthetic

rates are controlled differently in different cell types.
More precise information on the control of surfactant
PC synthesis will be obtained when such studies are
carried out on purified Type II cell preparations.
Incorporation of choline via the CDPcholine pathway
appears to be the major pathway for de novo PC
synthesis in the lung as in most other mammalian
systems. There were early reports that synthesis of PC
by triple N-methylation of phosphatidylethanolamine
was particularly important in the case of surfactant
(78-80). The initial basis for this was the mistaken
identification of phosphatidylglycerol as phosphatidyldi-
methylethanolamine (20,81,82). Further studies showed
that the methylation pathway is of no more than minor
significance in the synthesis of lung PC (13,83,84).

Synthesis of Phosphatidylglycerol

Phosphatidylglycerol is also synthesized from phos-
phatidic acid. Phosphatidate cytidylyltransferase cata-
lyzes the formation of the liponucleotide CDPdiacyl-
glycerol from phosphatidic acid and CTP (cytidine
5'-triphosphate). CDPdiacylglycerol then reacts with
glycerol-3-phosphate to form phosphatidylglycerophos-
phate which is rapidly dephosphorylated to phospha-
tidylglycerol. Inositol also reacts with CDPdiacyl-
glycerol to form phosphatidylinositol and there is recent
evidence from rabbit lung that the level of inositol may
control the relative rates of phosphatidylglycerol and
phosphatidylinositol synthesis (85).

Synthesis of Disaturated PC

Although earlier studies showed that lung disaturated
PC was not formed de novo but rather by remodeling
of de novo-synthesized 1-saturated-2-unsaturated-PC
(86,87), recent data (88-90) show that disaturated PC
can also be synthesized de novo. The relative contribu-
tion of these two mechanisms remains to be determined,
however.

In the remodeling mechanism, disaturated PC is
formed by deacylation of the unsaturated species and
subsequent reacylation of 1-saturated-2-lyso-PC (lyso-
lecithin). Deacylation is catalyzed by phospholipase A,
an enzyme which is present in lung (91,92). As illus-
trated in Figure 1, reacylation can occur by at least two
mechanisms—reacylation with acyl CoA, catalyzed by
lysolecithin acyltransferase, or transacylation, cata-
lyzed by lysolecithin: lysolecithin acyltransferase, in
which two molecules of lyso-PC react to form one
molecule each of PC and glycerophosphocholine. There
is evidence that both mechanisms operate in the lung
but the degree of their quantitative importance has been
controversial (93-99). Recently, however, it was re-
ported that in adult rat Type II cells the reacylation
mechanism is quantitatively more important than the
transacylation mechanism (52,100).
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In addition to deacylation of de novo-synthesized PC
by phospholipase A,, lyso-PC may also be derived from
the blood. Van Heusden et al. (101) recently reported
that, in the rat, bloodborne lyso-PC is incorporated into
pulmonary disaturated PC by the reacylation rather
than transacylation mechanism. A further source of
lyso-PC has recently been reported. Aarsman and van
den Bosch (102) reported de novo synthesis of lyso-PC
by rat lung microsomes from CDPcholine and mono-
acylglycerol in a reaction similar to that catalyzed by
CPT (Fig. 1). The quantitative significance of this
pathway is unknown.

Another mechanism for synthesis of disaturated PC
from unsaturated PC was reported in rabbit lung (103).
In this mechanism free palmitic acid exchanges with the
oleoyl residue on 1-palmitoyl-2-oleoyl-PC to form di-
palmitoyl-PC. This mechanism was also reported in rat
lung lamellar bodies (104). The precise mechanism of
the reaction, however, is not known.

Cellular and Subcellular Site of
Surfactant Synthesis

There is substantial evidence that the Type II alveo-
lar epithelial cell is the source of surfactant (11,105). A
distinet morphological characteristic of Type II cells is
the presence of lamellar inclusion bodies. Isolated
lamellar bodies have been shown to be rich in phospho-
lipid the composition of which is very similar to that of
surfactant (106). Although there was early speculation
that surfactant was synthesized in lamellar bodies this
does not appear to be the case. Isolated lamellar bodies
have been shown to lack a number of enzymes necessary
for phospholipid synthesis (24,107,108). Surfactant PC
is synthesized in the endoplasmic reticulum and stored
in lamellar bodies prior to release to the alveolar
surface. Newly synthesized phospholipids may be trans-
ported from the site of synthesis to lamellar bodies by
phospholipid transfer proteins. Proteins with the ability
to transfer PC and phosphatidylglycerol have been
recently demonstrated in the lungs of several species
(109-114) and in Type II cells isolated from the rat
(115).

Development of the Surfactant
Systemduring Fetaland Neonatal Life

Phospholipid Content and Composition

The fetal lung produces surfactant in increasing
quantity towards the end of gestation. In the rabbit, as
shown in Table 1, there is a 10-fold increase in the
amount of PC and disaturated PC in lung lavage
between 27 and 31 (full term) days gestation. There is a
further increase of similar magnitude after birth. Dur-
ing the same period the composition of the phospholipids
in lung lavage also changes. PC increases while sphingo-
myelin decreases. This results in a dramatic increase in
the PC (lecithin)/sphingomyelin (L/S) ratio.

Since lung fluid contributes to amniotic fluid (117)
measurement of the L/S ratio in amniotic fluid can be
used to predict the degree of maturity of the human
fetal lung (118). This test is now widely carried out on
amniotic fluid obtained by amniocentesis and is used by
obstetricians to determine the optimum time for elec-
tive delivery (119,120). The phospholipids are usually
quantitated by densitometry, rather than by phospho-
rus assay as in Table 1, and under these conditions an
L/S ratio of 2 or greater is indicative of fetal lung
maturity (120). Measurement of amniotic fluid disat-
urated PC (120,121) as well as phosphatidylglycerol and
phosphatidylinositol (120) leads to even greater reliabil-
ity in the prediction of fetal lung maturation in normal
and complicated pregnancies (119,120). Human amni-
otic fluid phosphatidylinositol has been reported to
increase after about 30 weeks gestation and to decline
after 35 weeks while phosphatidylglycerol was reported
to increase after 35 weeks (122). Phosphatidylglycerol
was reported to be completely absent in lung effluent
from newborn infants with RDS (723). Hallman and
Gluck (124) also reported that phosphatidylglycerol was
present in very low amounts prior to term in fetal rabbit
lung lavage. In another study in the same species,
however, there was little developmental change in lung
lavage phosphatidylglycerol (71).

Lung tissue PC also increases during fetal develop-
ment although to a lesser extent than that of lavage. In

Table 1. Developmental changes in the phospholipid content and composition of rabbit lung lavage.?

Phospholipid content,
wng P/g lung (dry weight)

Phospholipid composition,
% of total lipid phosphorus

PC/sphingomyelin
Gestational age, days Total PC Disaturated PC PC Sphingomyelin ratio
27 2.6 1.3 29 38 0.8
29 7.4 34 50 11 5
31 25.4 13.4 68 7 10
+1 274 161 79 2.6 31
Adult 264 143 86 1.2 > 50

* These data are adapted from the literature (20,21,71,116).
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the rabbit (71,116) and rat (68) lung PC increases by
about 65% during the last 14% of gestation while
disaturated PC more than doubles. During fetal life,
lavage PC accounts for only 0.2 to 1.1% of total lung PC
(125). After birth and in the adult this increases to 10 to
13% (125).

Phospholipid Synthesis

The rate of incorporation of precursors, such as
glucose (126), glycerol (127), palmitate (126), phosphate
(128), choline (60,65,68,126,129,130) and lyso-PC (127)
into lung PC increases towards the end of gestation in
several species. Most of the incorporation studies were
carried out on lung slices. Therefore, they measured
rates of incorporation into whole lung PC or disaturated
PC and were not specific measurements of surfactant
synthesis. Slice studies also suffer from the disadvan-
tage that intracellular pool sizes of the precursor and
intermediates are unknown. Pool size differences could
alter apparent rates of synthesis. Nevertheless, the
increase in the rate of precursor incorporation into PC
correlates well with the increase in surfactant as
measured by various criteria (15,129,131).

Enzymes of Phospholipid Synthesis

The activities of enzymes of pulmonary PC and
phosphatidylglycerol synthesis have been measured in
the rabbit, rat and mouse during fetal and early
postnatal life. There are general similarities in enzyme
developmental profiles among the various species. There
are also differences but some of these may be due to
experimental variation.

Choline Kinase (EC 2.7.1.32). There is little change,
or even a slight decrease, in the activity of choline
kinase during fetal and early postnatal development in
the rabbit (71,132), rat (66,68,133), mouse (69) and
human (134) lung. In one study, however, the activity of
this enzyme peaked 2 to 3 days before term in the rat
(67,135).

Cholinephosphate Cytidylyltransferase (CP-CYT)
(EC 2.7.7.15). There is a developmental increase in the
activity of CP-CYT either at the end of gestation or
immediately after birth in the rabbit (70,71), rat
(66-68,72) and mouse (65,69) lung. Fetal lung CP-CYT
activity is stimulated up to 7-fold by phosphatidyl-
glycerol in the rat (136), rabbit (76) and mouse (65). The
developmental increase in the activity of this enzyme in
rat lung cytosol parallels the increase in phospholipids
in the same fraction (72). Weinhold’s group (72,137) has
shown that rat lung CP-CYT exists in two forms: an L
form of 190,000 molecular weight, which predominates
in the fetus, and an H form of 5-50 x 10® molecular
weight, which predominates in the adult. The L form
aggregates into the H form in the presence of phospha-
tidylglycerol. The same group (136) has recently shown
that there is less of the H and more of the L form when

the lungs are lavaged prior to homogenization and
subcellular fractionation. This suggests that the aggre-
gation occurs during the experimental manipulations
involved in preparation of the cytosol fraction. It
remains to be established if the aggregation and activa-
tion by phosphatidylglycerol is of any physiological
significance.

Cholinephosphotransferase (CPT) (EC 2.7.8.2).
CPT activity does not change much or even decreases
during fetal life in the rabbit (61,71,81,132), rat (68,133)
and mouse (65) lung. There is a postnatal increase in the
activity of CPT in the rabbit (70,71,81) while in the rat
adult activities are considerably higher than those of
the fetus or newborn (68,133). In two studies, however,
the activity of lung CPT was reported to peak 1 to 2
days before term in the rat (67,135) and mouse (69).

Phosphatidate Phosphatase (PAPase) (EC 3.1.3.4).
The activity of lung PAPase, measured with aqueously
dispersed phosphatidic acid as substrate, increases
before term in the fetal rabbit (60,61) and mouse (65)
and after birth in the fetal rat (68,138). PAPase activity,
measured with membrane-bound phosphatidic acid
—which is probably more meaningful in terms of
phospholipid synthesis (64)—increased before birth in
both the fetal rat (139) and rabbit (140) lung. Johnston
and colleagues have reported that PAPase is released
from lamellar bodies together with surfactant phos-
pholipids (141-143). The activity of PAPase in human
amniotic fluid increases during gestation (144). The
increase precedes the increase in the L/S ratio but is
parallel to it (145). It has been suggested that measure-
ment of PAPase in amniotic fluid might be used in the
prediction of fetal lung maturity (142,146). PAPase has
also been reported to be associated with surfactant in
the dog lung (147). The relationship, if any, between the
PAPase associated with surfactant and that involved in
the synthesis of lung phospholipids, including sur-
factant, is not known.

Acyltransferase. There is a developmental increase
in the activities of 1-acylglycerophosphate acyltrans-
ferase (EC 2.3.1.51) (71), lysolecithin acyltransferase
(EC 2.3.1.23) (71,132) and lysolecithin:lysolecithin acyl-
transferase (132) in the fetal rabbit lung. Hallman and
Raivio (148) and Okano and Akino (127) also reported in-
creased activity of the deacylation-transacylation path-
way with increasing gestational age in the rabbit and rat
lung. In the fetal mouse there is no developmental change
in lysolecithin acyltransferase activity but there is a
sharp increase in lysolecithin:lysolecithin acyltransferase
just before term (149).

Enzymes of Fatty Acid Synthesis. The activities of
enzymes of de novo fatty acid synthesis have been
reported to be unchanged (150) or to increase slightly
(151) during fetal rabbit lung development. The activity
of lung lipoprotein lipase, which may be involved in the
uptake of fatty acids from the blood, also increases
toward the end of gestation and then declines after birth
in the rat (152).
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Phospholipid Transfer Proteins. Engle et al. (109)
reported maximum activity of a phosphatidylcholine
transfer protein 2 days before term in the fetal mouse
lung.

Enzymes of Phosphatidylglycerol Synthesis. Activi-
ties of enzymes involved in the synthesis of lung
phosphatidylglycerol have been measured in the rabbit
(71,153,154) and rat (155) during fetal and neonatal
development. In both species there is an increase in
phosphatidate cytidylyltransferase (EC 2.7.7.41) activ-
ity at the very end of fetal life and this continues into
the early postnatal period (153-155). The activities of
glycerophosphate phosphatidyltransferase (EC 2.7.8.5)
and phosphatidylglycerophosphatase (EC 8.1.3.27) com-
bined decreased with increasing gestational age in fetal
rabbit lung homogenate (71). The same was true of
glycerophosphate phosphatidyltransferase alone in both
the homogenate and mitochondria but the activity in
the microsomes increased (153). It has been reported
that surfactant phosphatidylglycerol is synthesized in
the microsomes rather than in mitochondria (25). This
has been disputed, however (156). Rabbit lung micro-
somal phosphatidylglycerophosphatase activity increases
at the end of gestation (153). There was an increase in
the activities of rat lung homogenate glycerophosphate
phosphatidyltransferase and phosphatidylglycerophos-
phatase at the end of gestation and in the immediate
newborn period (155).

In summary, although there are discrepancies in the
developmental profiles of the enzymes of lung phospho-
lipid synthesis, the following general pattern does
emerge. There is a developmental increase in CP-CYT
activity either at the end of gestation or immediately
after birth when there is a surge in surfactant produc-
tion. An increase in enzyme activity might be expected
before an increase in product. This, however, has not yet
been demonstrated in the case of surfactant. The
increase in the rate of choline incorporation into
phosphatidylcholine in fetal lung slices does correlate
well with increased surfactant in lung lavage (60,71).
However, enzyme activities are measured i vitro under
optimal conditions, while in vivo they may operate
under suboptimal conditions. In addition, all of the
enzyme studies have been carried out on whole lung
and, thus, may not accurately reflect the situation in the
Type 1I cell.

In addition to CP-CYT, increased activities of CPT
and PAPase might also help to account for increased
phospholipid synthesis. Finally, there are developmen-
tal increases in the enzymes of disaturated PC and
phosphatidylglycerol synthesis.

Glycogen

Brandstrup and Kretchmer (157) reported an in-
crease in the glycogen content of the fetal rabbit lung
during the period 20 to 24 days gestation followed by a
decrease after 26 days. Kikkawa et al. (158), in morpho-
logical studies on the same species, noticed the inverse
relationship between glycogen and lamellar bodies

—glycogen disappearance occurred at the time of
lamellar body appearance—and speculated that glyco-
genolysis might be associated with surfactant synthesis.
Biochemical studies on the fetal rat (68,73,159), rabbit
(60,160) and mouse (65) lung have also shown a temporal
relationship between glycogen depletion and increased
choline incorporation into PC. The relationship may,
however, not be simply that of a precursur product,
since in the mouse the increase in choline incorporation
preceded the decrease in glycogen rather than the
opposite (65). Glycogen could clearly provide substrate
or energy for phospholipid synthesis. A direct relation-
ship, however, has not been demonstrated.

Influence of Hormones and Other
Factors on Surfactant Production
by the Fetus

Several hormones and other factors have been shown
to accelerate lung maturation and stimulate surfactant
production in the fetus (Table 2). One hormone, insulin,
has been implicated in delaying fetal lung maturation

Table 2. Physiological agents and factors which stimulate
surfactant production in the fetus and newborn.

Hormone or other agent Species Reference®
Glucocorticoids Rabbit (75,162)
Rat (73,163)
Mouse (65,69)
Guinea pig (164)
Sheep (165,166)
Monkey (167,168)
Human (169,170)
Thyroid hormone Rabbit (171,172)
Rat (73)
Human 173)
Thyrotropin-releasing hormone  Rabbit 174)
Estrogen Rabbit (77,175)
Rat (159)
Human (176)
Prolactin Rabbit 177)
Corticotropin Rabbit 178)
Sheep 179)
Epidermal growth factor Rabbit (180)
Sheep (181)
Fibroblast pneumonocyte factor Rat (182)
Cyclic AMP (aminophylline) Rabbit (183,184)
Rat (185)
Human (186)
B-Adrenergic agents Rabbit (187,188)
Sheep (189)
Monkey (190)
Human (191,192)
Cholinergic agents Rabbit (188,193)
Prostaglandins Rabbit (22)
Birth Rabbit (194,195)
Rat (196)
Stress Rabbit (75,178)
Human (197,198)
Labor Rabbit (70,199)
Human (200,201)

* References are restricted to a maximum of two for each hormone-
species combination. The choice of references does not imply that
others are less important.
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since infants of diabetic mothers have an increased
incidence of RDS (161) and these infants are hyper-
insulinemic.

Glucocorticoids

In 1969 Liggins (202) reported that dexamethasone
administration to fetal lambs resulted in partial lung
aeration when the animals delivered prematurely and
suggested that this might be the result of accelerated
surfactant appearance. This finding was quickly con-
firmed by deLemos et al. (165), who administered
cortisol to fetal lambs and showed increased lung
maturation by measurement of lung mechanics and lung
extract surface activity. Kotas and Avery (162) reported
similar findings in the fetal rabbit while Wang et al.
(203) and Kikkawa et al. (158) extended these observa-
tions to include accelerated morphological maturation.
Extensive biochemical investigations have shown that
glucocorticoids increase the amount of surfactant
phospholipid in lung lavage (60,75), increase the rate of
incorporation of choline into PC and disaturated PC in
lung slices (59,60,63,163,197,20;), as well as in lung
explants (73,169) and cells (171) cultured in vitro, and
stimulate lung glycogen depletion (60,73,205).

The effects of glucocorticoids on enzymes of lung
phospholipid synthesis have been examined in several
laboratories (59,60,63,65,69,73-75,163,204,206-211). As
in the case of the normal developmental profiles, there
are discrepancies in the reported effects of glucocor-
ticoids on individual enzymes. Choline kinase is not
stimulated by glucocorticoids (69,73,75,207). As shown
in Table 3, CP-CYT was stimulated by glucocorticoids in
several in vivo and in vitro studies in the fetal rabbit,
rat and mouse. In two studies, however, in the fetal
rabbit (207) and mouse (69), this enzyme was not stimu-
lated while in another study in the rabbit it was actually
decreased (211). CPT was reported to be stimulated by
glucocorticoids in an early study in the fetal rabbit (59).
This finding was not confirmed in several subsequent
studies in the same species (60,63,75,204,209-211).
However, CPT was stimulated by glucocorticoids in in
vivo studies on the fetal rat (163) and mouse (65,69) but
not in fetal rat lung explants (73). Pulmonary PAPase,
measured with aqueously dispersed phosphatidic acid,
was stimulated by glucocorticoids in the fetal rabbit
(60,63,204) and mouse (65) but not in fetal rat lung
explants (73). Glucocorticoids did not significantly stim-

ulate PAPase measured with membrane-bound phospha-
tidic acid (204). There is even less consistency in
the reported effects of glucocorticoids on lysolecithin
acyltransferase (69,73,75,204,206,210,211), lysolecithin:
lysolecithin acyltransferase (60,69,204,211) and gly-
cerophosphate phosphatidyltransferase combined with
phosphatidylglycerophosphatase (63,73,75,204,209,210).
In one study (213), lipoprotein lipase in adult rat lung
was stimulated by dexamethasone.

Some of the discrepancies in the effects of gluco-
corticoids on enzymes of phospholipid synthesis may be
due to species differences. There are also differences in
the nature of the glucocorticoid and in the dose
employed. More important factors, however, probably
include variation in the experimental model, in the
gestational age when the hormone is administered and
in the period of exposure to the hormone. Experimental
models have included glucocorticoid administration to
the fetus and to the doe as well as exposure of lung
explants to these hormones in vitro. The hormone has
been administered once as well as up to several times
over several days. Animals have been sacrificed from
one to several days after hormone administration.
Despite these variations, however, glucocorticoids con-
sistently stimulated the rate of choline incorporation
into PC (59,60,63,65,73,74,163,204,208,209,211), in-
creased the amount of surfactant in lung lavage (60,75)
or accelerated morphological maturation of the fetal
lung (209,210) in the studies where effects on enzymes
were also examined. In only two studies (69,206) were
no other maturational effects of glucocorticoids demon-
strated.

In summary, although there is conflict in the data on
the effects of glucocorticoids on enzymes of phospholipid
synthesis, the pattern is generally similar to that of the
normal development of these enzymes. Enzymes which
increase in activity during normal development also
appear to be induced by glucocorticoids. These include
CP-CYT, CPT, PAPase, lysolecithin acyltransferase,
glycerophosphate phosphatidyltransferase and phos-
phatidylglycerophosphatase. Of these the strongest
evidence has been obtained in the case of CP-CYT.
This suggests a rate-regulatory role for CP-CYT in the
lung. A similar role has been proposed for this enzyme
in other systems (56,58,214,215). Clearly experiments
are needed in which the effects of glucocorticoids on
enzymes of phospholipid synthesis are examined in
isolated fetal Type II cells. Such experiments might

Table 3. Effects of glucocorticoids and estrogen on fetal lung cholinephosphate cytidylyltransferase activity in vive and in vitro.

Hormone Species Experimental design Stimulation, % Reference
Cortisol Rabbit Fetal injection 22 (75)
Cortisol Rabbit Explants in vitro 250 (208)
Betamethasone Rabbit Maternal injection 50 (60)
Dexamethasone Rabbit Explants in vitro 41 (74)
Dexamethasone Rat Explants in vitro 134 (212)
Dexamethasone Mouse Maternal injection 37 (65)
178-Estradiol Rabbit Maternal injection 62 (76)
17B-Estradiol Rabbit Maternal injection 66 @7)
17B-Estradiol Rabbit Explants in vitro 39 (74)
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distinguish between specific effects in Type II cells and
those in cells unrelated to surfactant synthesis. Re-
cently Post et al. (216) examined the effect of cortisol on
phospholipid synthesis in Type II cells isolated from
adult rat lung. Cortisol increased the rates of acetate,
palmitate, glucose and glycerol incorporation into PC,
disaturated PC and phosphatidylglycerol, but not into
phosphatidylethanolamine, to a small but statistically
significant extent. The rate of choline incorporation into
total and disaturated PC was stimulated by 27-29%
(216). Effects on enzymes were not examined.

Glucocorticoids act directly on the lung since their
effects can be demonstrated in fetal lung explants
(73,169) as well as in fetal (171) and adult (216) lung cells
cultured in vitro. In addition, specific glucocorticoid
receptors have been demonstrated in the fetal lung
(217,218) and in adult and fetal Type II cells (219).

There is evidence that endogenous glucocorticoids are
involved in the physiological control of fetal lung matura-
tion (220,221). Metopirone, an inhibitor of cortisol
synthesis, has been reported to delay lung maturation
in the fetal rabbit (222), rat (164) and guinea pig (164).
Glucocorticoids are used clinically in the prevention of
RDS in human infants (14,16,170), although there is
controversy that such use may have deleterious effects
on the development of other organs (223-227).

Thyroid Hormone and Thyrotropin-
Releasing Hormone (TRH)

Wu et al. (172) reported that thyroxine administra-
tion to fetal rabbits accelerated lung maturation as
shown by morphology and surface activity measure-
ment. Accelerated morphological maturation was later
confirmed (210) and it was also shown that thyroxine
increased the amount of PC in lung lavage (125).
Smith and Torday (171) reported that thyroxine in-
creased the rate of choline incorporation into PC in
mixed fetal rabbit lung cells in monolayer culture. Gross
et al. (73) reported a similar finding in fetal rat lung in
organ culture. Morphological lung maturation was de-
layed in thyroidectomized fetal lambs (228,229). The L/S
ratio in tracheal fluid from these animals was also lower
than in that from controls (229). RDS is associated with
low thyroid hormone levels (230-232). Thyroid hormone
receptors have been demonstrated in fetal and adult
lungs (233,234). Das (151) reported a temporal relation-
ship between increased thyroid hormone binding and
increased fatty acid synthesis in fetal rabbit lung. These
data suggest a role for thyroid hormones in fetal lung
maturation.

In the adult, thyroxine has also been reported to
increase surfactant production. Redding et al. (235)
reported that administration of thyroxine to adult rats
increased the amount of surfactant in lung lavage and
increased the number of lamellar bodies in Type II cells.
Thyroidectomized animals had fewer lamellar bodies
than controls (235). In contrast, Mason et al. (236)
reported that thyroxine administration or thyroidec-

tomy had no effect on the amount of disaturated PC in
rat lung. Lung lavage was not examined, however. Post
et al. (216) reported that throxine had no effect on the
rate of precursor incorporation into phospholipids in
isolated rat lung Type II cells.

The effect of thyroxine on enzymes of pulmonary
phospholipid synthesis was examined in two studies.
Gross et al. (73) found no change in enzyme activities in
fetal rat lung explants. Rooney et al. (210) examined the
effect of thyroxine administration to fetal rabbits on a
limited number of enzymes and observed no effect. In
that study, however, thyroxine was administered di-
rectly to the fetus and this administration procedure
itself can stimulate fetal lung maturation (75,178,237).
Thus, in that model, effects on enzymes could very well
have been missed. Since thyroxine cannot generally
cross the placenta (238), its effects on the fetus cannot
be studied by maternal administration. Two groups
sought to overcome this problem by maternal admini-
stration of TRH (174) and of the thyroid hormone
analog 3,5-dimethyl-3'-isopropyl-L-thyronine (DIMIT)
(239) both of which cross the placenta.

Administration of TRH to pregnant rabbits resulted
in increased amounts of surfactant in fetal lung lavage
(174). There was no effect on the rate of choline
incorporation into PC, however, suggesting that the
effect might have been on secretion. The mechanism of
this action of TRH is not clear. There are at least three
possibilities. TRH could stimulate the fetal pituitary to
produce thyrotropin and this would stimulate fetal
thyroid hormone production. TRH stimulates prolactin
production (240) and there is evidence that this hor-
mone also stimulates surfactant production. Finally,
TRH could act directly on the fetal lung.

Administration of DIMIT to pregnant rabbits in-
creased the amount of phospholipid in fetal lung lavage
and increased the rate of choline incorporation into PC
in fetal lung minces (239). It also reduced fetal lung
glycogen content. It had a stimulatory effect on PAPase
measured with aqueously dispersed phosphatidic acid.
Other enzymes of lung phospholipid synthesis were not
assayed.

Estrogen

There was early clinical evidence that estrogen is
involved in maturation of the fetal lung and prevention
of RDS (241,242). Lower estriol levels were reported in
the cord blood (243) and first voided urine (244) of
newborn infants with RDS compared to normal infants
of the same weight and gestational age. Spellacy et al.
(176) reported that estrogens were as effective as
glucocorticoids in increasing the L/S ratio in human
amniotic fluid. Shanklin and Wolfson (245) reported that
postnatal estrogen administration lowered the incidence
of RDS in humans and rabbits. On the other hand,
Dickey et al. (246) failed to prevent RDS by administra-
tion of aqueous estrogens to women in labor. This might
well have been because the hormone was administered
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too late to be effective. Abdul-Karim and Prior (247)
reported that the anti-estrogen ethamoxytriphetol
(MER-25) delayed morphological maturation of the lung
vasculature in fetal rabbits. This was prevented with
17B-estradiol but the effect of 17B-estradiol alone was
not examined (247).

More direct evidence that estrogen accelerates fetal
lung maturation has been recently obtained. Khosla and
Rooney (175) reported that administration of 178-estra-
diol to pregnant rabbits increased the amount of surfac-
tant in fetal lung lavage. Subsequent studies in the
same species showed that estrogen increases the rate of
choline corporation into PC in fetal lung slices (76,77),
increases the activities of fetal lung CP-CYT (Table 3)
and lysolecithin acyltransferase (76), decreases the
glycogen content of the fetal lung (160) and accelerates
its morphological maturation as determined by both
light and electron microscopy (160). Some of these
effects of estrogen have also been demonstrated in
explants of fetal rat (159) and rabbit (74) lung. This
suggests that the effect of estrogen is directly on the
lung. Estrogen receptors have been reported in adult
rat (248) and fetal guinea pig (249) lung. Recent studies,
however, in the human (250) and rabbit (74) have shown
that the estrogen binder in the fetal lung is not the
classical estrogen receptor. The role, if any, of the
estrogen binder in mediating the effects of estrogen in
the fetal lung remains to be established.

In humans, estrogen levels increase during preg-
nancy (251). The rise in plasma estrogens appears to
precede the increase in the amniotic fluid L/S ratio (252).
It is possible that estrogens are involved in the physio-
logical regulation of fetal lung maturation but there is as
yet no direct evidence in support of this. Possible use of
estrogens to prevent RDS in humans is unlikely because
of the known association between diethylstilbestrol in
pregnancy and genital cancer in the offspring.

Prolactin

There have been a number of recent reports suggest-
ing a role for prolactin in fetal lung maturation. Hauth
et al. (252) reported that, in humans, cord plasma
prolactin increased with increasing gestational age and
preceded the developmental increase in the L/S ratio in
amniotic fluid. A similar relationship between plasma
prolactin and tracheal fluid surfactant exists in the fetal
lamb (253). A correlation between cord blood prolactin
levels and the incidence of RDS has also been reported
(252,254,255). Amniotic fluid prolactin levels correlated
negatively with the L/S ratio, however (256).

More direct evidence for a role for prolactin was
provided by Hamosh and Hamosh (177), who adminis-
tered ovine prolactin to fetal rabbits and reported
increased lung levels of total phospholipid, PC and
disaturated PC. Preliminary data from Gluck’s labora-
tory (257) suggested that prolactin stimulates PC and
phosphatidylglycerol synthesis in A549 Type II cells.
There is also evidence for a prolactin receptor in fetal

monkey lung (258). On the other hand, two groups have
failed to confirm the finding of Hamosh and Hamosh
(177). Ballard et al. (253) administered prolactin to fetal
rabbits in experiments very similar to those of Hamosh
and Hamosh (177) but found no change in lung total
phospholipid or disaturated PC and no change in the
rate of choline incorporation into PC in lung minces.
The same group found that prolactin had no effect on
fetal lamb lung maturation (253). Van Petten and
Bridges (259) reported that prolactin had no effect on
fetal rabbit lung maturation as determined by pressure
volume relationships. Clearly, further work is needed if
a role for prolactin in surfactant production is to be
established.

Other Hormones and Growth Factors

Sundell et al. (179) infused fetal lambs with corticotro-
pin (ACTH) and demonstrated accelerated lung matura-
tion by morphological criteria. Plasma cortisol levels
were elevated and it is likely that the ACTH effect was
mediated by cortisol. However, a direct effect of ACTH
on the fetal lung is also possible (178).

Stahlman’s group reported that epidermal growth
factor accelerates maturation of the fetal rabbit (180)
and lamb (181) as shown by morphology and lung
mechanics.

Smith (260) reported that a factor from fetal lung
fibroblasts (fibroblast-pneumocyte factor, FPF) medi-
ates the effect of cortisol on fetal Type II cells. In the
absence of fibroblasts pure fetal Type II cells respond
poorly to cortisol (260). Administration of partially
purified FPF to fetal rats resulted in increased amounts
of lung disaturated PC and phosphatidylglycerol and an
increased rate of choline incorporation into pulmonary
disaturated PC (182).

Smith et al. (261) also reported that serum from
pneumonectomized rabbits stimulated the rate of
thymidine incorporation into DNA in human fetal Type
IT cells. The active agent was reported to be a
somatomedin-like compound. Effects on phospholipid
synthesis or secretion were not reported.

Cyclic AMP (cAMP)

Administration of aminophylline (a phosphodiesterase
inhibitor which increases endogenous cAMP levels) to
pregnant rabbits has been shown to have the following
effects on the fetal lung: it increases the amount of
phospholipid in lavage (183,184,262); it increases the
rate of precursor incorporation into phospholipids
(263,264); it decreases glycogen content (264); and it
accelerates maturation as determined by measurements
of lung mechanics (183,184,262). Hallman (265) also
reported that intraperitoneal administration of cAMP
to preterm rabbits at cesarean section delivery in-
creased the amount of surfactant in lung lavage. In a
human study, antepartum aminophylline was reported
to lower the incidence of RDS (186).
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The effects of cAMP have also been examined in
vitro. In fetal rat lung in organ culture, cAMP (185),
aminophylline (185) and caffeine (73), another phos-
phodiesterase inhibitor, increased the rate of choline
incorporation into PC. In the same model both cAMP
and aminophylline decreased glycogen content and
inhibited glycogen synthase (266). cAMP has also been
reported to increase the rate of choline incorporation
into total and disaturated PC in A549 Type II cells
(267). Incubation of preterm fetal rabbit lung slices with
cAMP has been reported to increase the rate of
precursor incorporation into phosphatidylglycerol (265).

These studies suggest that cAMP may stimulate
surfactant synthesis. Since cAMP is known to be
involved in the mediation of the action of B-adrenergic
agonists and such agonists are known to stimulate
surfactant secretion (see below) clearly cAMP is also
involved in the secretion of surfactant. Barrett et al.
(263) reported that cortisol inhibited fetal rabbit lung
phosphodiesterase activity and increased cAMP levels
and speculated that cAMP mediates the effect of
glucocorticoids on fetal lung maturation. In addition to
cAMP, cyclic GMP has also been reported to be involved
in surfactant release (268).

B-Adrenergic Agonists

Early clinical data (191) suggested that administra-
tion of isoxsuprine to pregnant women to delay labor
resulted in a reduced incidence of RDS in premature
newborns. Similar findings were reported with ritodrine
(269) and terbutaline (192). Several studies have shown
that administration of isoxsuprine to pregnant or fetal
rabbits increased fetal surfactant production (187,270-
273). Isoxsuprine also stimulated surfactant production
in the fetal monkey (190). Epinephrine had a similar
effect in the fetal rabbit (788) and lamb (189). B-
Adrenergic agents also stimulated surfactant produc-
tion in the adult rabbit (27;) and rat (275). The
effect of B-agonists was blocked with .propranolol
(187,188,274,275). In many of these studies the B-
adrenergic agent was administered for a relatively short
period (a few hours at most). Thus, the increased
surfactant production was attributed to stimulation of
secretion rather than synthesis. Kanjanapone et al.
(276) reported, however, that isoxsuprine increased the
rate of choline incorporation into disaturated PC in fetal
rabbit lung slices, suggesting an effect on synthesis.
Abdellatif and Hollingsworth (188) also suggested that
epinephrine increased synthesis secondary to increased
secretion.

There is evidence from studies with lung slices and
isolated Type II cells that B-adrenergic agents stimiulate
PC secretion. Marino and Rooney (199) reported that
secretion of surfactant increased during the period
29-31 days gestation in fetal rabbit lung slices. Secre-
tion was stimulated by terbutaline at 30 days and by
labor at 31 days. The labor-induced stimulation was
abolished by propranolol. They concluded that the effect

of labor is at least partly mediated by catecholamines
which are known to increase at birth (277). it is also
noteworthy that B-receptors increase toward the end of
gestation in fetal rabbit lung (278,279) at the same time
as the increase in surfactant secretion (199). B-Recep-
tor concentrations were increased by glucocorticoids in
fetal rabbit lung (278), in adult rat lung (280) and in
human lung cells cultured in vitro (281).

Dobbs and Mason (282) and Brown and Longmore
(283) reported that B-adrenergic agonists stimulated
disaturated PC secretion in Type II cells isolated from
adult rat lung. These studies show that p-adrenergic
agonists act directly on the Type II cell to stimulate
surfactant secretion.

Cholinergic Agonists

Cholinergic agents have also been reported to stimu-
late surfactant production. Goldenberg et al. (284)
showed in a morphological study that pilocarpine stimu-
lated surfactant secretion in adult rats. Subsequent
studies showed that pilocarpine increased the amount of
surfactant in adult lung lavage and that this effect could
be blocked by atropine (275,283,285). Atropine was
reported to block the ventilation-induced increase in
alveolar phospholipids in adult (286) and newborn
rabbits (195). In the fetus, pilocarpine has been re-
ported to stimulate surfactant production as deter-
mined by pressure volume studies (187,193) and to
accelerate morphological lung maturation (287,288).

Dobbs and Mason (282) and Brown and Longmore
(283) reported that cholinergic agonists did not stimu-
late disaturated PC secretion in isolated adult rat Type
IT cells. Brown and Longmore (283) showed that cholin-
ergic receptors were functional in these cells so lack of
response cannot be attributed to receptor loss or
damage during the isolation procedure. Other perturba-
tions during culture, however, cannot be ruled out.
Abdellatif and Hollingsworth (188) reported that the
muscarinic agonist, oxotremorine, stimulated surfac-
tant release in intact newborn rabbits but not in isolated
perfused lungs from the same animals. The effect of
oxotremorine was blocked by adrenalectomy (188). The
effects of both pilocarpine (187) and oxotremorine (188)
were blocked by the B-antagonist propranolol. These
data suggest that cholinergic agonists do not act di-
rectly on the lung or on Type II cells and that their
effect in whole animals is mediated by catecholamines
which are released by the adrenal medulla in response
to the cholinergic stimulation. This, however, does not
explain the findings of Brown and Longmore (283) who
reported that pilocarpine did stimulate surfactant re-
lease in isolated perfused adult rat lung, and of Pysher
et al. (289), who reported that pilocarpine stimulated
PC release in fetal rat lung explants. It is possible that
fetal and adult lung respond differently to cholinergic
agents. Abdellatif and Hollingsworth (188) studied
isolated perfused newborn rabbit lungs while Brown
and Longmore (283) studied those from adult rats.
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Delahunty and Johnston (290) reported that carbamyl-
choline stimulated PC release in adult, but not fetal,
hamster lung slices. Marino and Rooney reported that
pilocarpine did not stimulate surfactant release in
newborn rabbit lung slices (22) and that atropine did not
block the labor-induced stimulation of surfactant re-
lease in the same model (199).

Prostaglandins

Marino and Rooney (22) reported that prostaglandin
E, stimulated surfactant secretion in newborn rabbit
lung slices. Indomethacin and flufenamic acid, inhibi-
tors of prostaglandin synthesis (291), inhibited secre-
tion (22). Indomethacin also abolished the labor-induced
stimulation of surfactant secretion in the same model
(199). Pulmonary prostaglandin synthesis has been
reported to increase with increasing gestational age in
the fetal rabbit (292) and lamb (293). Prostaglandins are
also known to increase in labor (294). These data,
therefore, suggest a physiological role for prostaglan-
dins in surfactant production by the neonatal lung.

Prostaglandins may also be involved in surfactant
production in adults. Oyarzun and Clements (27})
reported that inhibitors of prostaglandin synthesis
inhibited the ventilation-induced increase in alveolar
phospholipids in adult rabbits. Anderson et al. (295)
reported that prostaglandin E,, stimulated PC release
in adult rat Type II cells. Colacicco et al. (296) reported
that prostaglandin E, and Foa stimulated the rates of
choline and palmitate incorporation into PC in A549
Type II cells.

Maternal Diabetes

The infant of the diabetic mother (IDM) has an
increased incidence of RDS (161). Glucose freely crosses
the placenta from mother to fetus making the fetus
hyperglycemic. In response to this situation the fetal
pancreas produces insulin so the fetus is also hyper-
insulinemic.

IDM models have been developed in a number of
laboratories. These include fetuses of the alloxan-
diabetic rabbit (297,298) and streptozotocin-diabetic rat
(299,300) and rhesus monkey (301). Lungs from fetuses
of diabetic rats and rabbits were less mature than those
from normal animals as determined by morphology
(301,302), pressure volume studies (297,298), and sur-
face activity measurement (298). They also contained
more glycogen than controls (299,303). Lung lavage
from fetuses of alloxan diabetic rabbits contained less
disaturated PC than did that from controls (297). Tyden
et al. (300) reported reduced rates of choline incorpora-
tion into PC in fetal lung slices from streptozotocin-
diabetic rats. The Harvard group, however, reported no
change in the disaturated PC content of lung lavage
(298) or in the rate of choline incorporation into PC or
disaturated PC in lung slices (303) in their alloxan-
diabetic rabbit model. There were extremely wide

ranges in their lung lavage disaturated PC values,
however, and it is possible that differences were missed
(298).

The above animal models are not exact replicas of the
human IDM. The human IDM is both hyperinsulinemic
and hyperglycemic and is also larger than normal.
Although the animal models have elevated fetal blood
glucose levels, fetal insulin levels are not elevated and
the fetuses are often smaller than controls (297,298,300).
It is possible that the observed changes in fetal lung
maturation in the animal models are due to the hypergly-
cemia alone. The phospholipid content and composition
of lung lavage from fetal rhesus monkeys who were
hyperinsulinemic but not hyperglycemic was the same
as that from normal animals (190). The effect of
hyperinsulinemia together with hyperglycermia on fetal
lung maturation remains to be determined.

Rhoades et al. (304) studied newborns from strep-
tozotocin-diabetic rats. In contrast to the above models,
these animals were significantly smaller than controls
and were also hypoglycemic. They were probably
stressed. Total lung phospholipid was increased, PC
was unchanged but disaturated PC was decreased.
Lung choline kinase, CP-CYT and CPT activities were
increased. CPT activity was 3.5-fold higher in the
fetuses from the diabetics than in those from the
controls. This enzyme was also reported to be increased
by stress in the fetal rabbit (75).

There is evidence that insulin and cortisol have
opposite effects on the fetal lung. It is possible that
insulin interferes with the physiological action of corti-
sol in normal lung maturation. Sosenko et al. (305)
reported that the delay in lung maturation in fetuses
from alloxan-diabetic rabbits could be abolished by
maternal administration of cortisol. Smith et al. (306)
reported that insulin antagonized the action of cortisol
in stimulating choline incorporation into PC in fetal
rabbit lung cells in vitro. Insulin alone slightly stimu-
lated choline incorporation (306), but this is probably
attributable to the known anabolic action of this
hormone. Antagonism of the action of glucocorticoids by
insulin was also reported by Gross et al. (307), who
showed that insulin abolished the dexamethasone-
induced stimulation of acetate incorporation into disat-
urated PC in fetal rat lung explants. This effect of
insulin may be at least partly expressed at the CP-CYT
level. Dexamethasone stimulated CP-CYT by 134% but
addition of insulin reduced this by half (212). In the
same model, insulin delayed morphological maturation
of the fetal lung and increased lung glycogen content
(307)—effects opposite to those of dexamethasone.

Neufeld et al. (308) reported that addition of insulin
to the medium decreased the rate of precursor incorpo-
ration into PC in fetal rabbit lung slices after 90 min
incubation. It is difficult to determine if this observation
has any physiological significance.

Moxley and Longmore (309) reported that insulin
increased, and diabetes decreased, the rate of glucose
incorporation into surfactant and nonsurfactant lipid in
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the perfused adult rat lung. These findings may again
only reflect the anabolic action of insulin and probably
have little relevance to the IDM situation.

Finally, as in the case with other hormones, specific
insulin receptors have been reported in adult rat lung
(310) supporting the notion that insulin has a direct
effect on the lung.

Other Factors Which Influence Surfactant
Production in the Fetus and Newborn

BirthandLabor. Birthandlaborhavebeenreported
to stimulate surfactant production. There was a 2- to
4-fold increase in the phospholipid content of lung
lavage from newborn rabbits delivered by cesarean
section prior to labor at 29-31 days gestation (70,194). A
similar finding was reported by Lawson et al. (195) who
measured surface activity. Weinhold et al. (196) and
Stewart-DeHaan et al. (311) reported an increased rate
of precursor incorporation into lung PC in premature
newborn rats delivered by cesarean section. As dis-
cussed earlier, there are increases in the activities of
enzymes of pulmonary phospholipid synthesis immedi-
ately after birth.

It has long been recognized that there is a higher
incidence of RDS among premature newborn infants
delivered by cesarean section without labor than among
those delivered either vaginally or by cesarean section
after labor at the same gestational age (14,200,312).
The protective effect of labor is more apparent at 37-38
weeks than at 31-33 weeks (312), presumably because
labor stimulates surfactant release and insufficient
surfactant is stored at the earlier gestational age.
Recent studies have shown that labor increases the L/S
ratio and PC content of human amniotic fluid (201,313 -
315). Animal studies have also shown that labor in-
creases surfactant production (70,199). Studies with
newborn rabbit lung slices showed that labor stimulated
surfactant secretion rather than synthesis (199).

There is evidence that the effects of birth and labor
on surfactant production are mediated by a number of
the hormones and other pharmacological agents dis-
cussed previously. For instance, the increase in surfac-
tant production at birth can be prevented with atropine
(194,195). There is evidence that the effects of labor are
mediated, at least in part, by prostaglandins and
catecholamines (199).

Stress. Stress has alsobeenreported tostimulate sur-
factant production. Injection of fetal rabbits with saline,
while the doe is under general anesthesia, has been
shown to increase surfactant production (75,178,237).
Although glucocorticoids are known to increase in
stress, they do not appear to mediate this effect (60).

Sex. Recent studies in both humans (316) and rabbits
(317) have shown that the lungs of female fetuses
mature earlier than those of males. Female fetal lungs
also respond better to glucocorticoids than those of
males at the same gestational age (318-320).

Surfactant in Adult Human
Lung Disease

Petty et al. (321) isolated surface-active material from
the lungs of a man who developed adult respiratory
distress syndrome (ARDS) after massive trauma and
hemorrhagic shock. When compared to normals, there
were differences in surface compressability properties
and in lipid/protein ratios (321). Subsequently the same
group (322) confirmed the difference in surface proper-
ties in bronchoalveolar lavage from additional patients
with ARDS. Decreased dipalmitoyl-PC levels were also
reported in lungs of patients with shock lung (323).

Nonphysiological and Toxic Agents
Which Influence Surfactant
Productioninthe Fetus and Adulit

Glass et al. (324) reported absence of RDS in prema-
ture infants of heroin-addicted mothers. Taeusch et al.
(325) reported that heroin administration to pregnant
rabbits accelerated fetal lung maturation. However,
heroin had no effect on the rate of choline incorporation
into PC in cultured fetal rabbit lung cells (171). Thus,
heroin may act indirectly on the lung possibly via agents
released in response-to stress.

Metabolite VIII (NA872) of Bisolvon (bromhexine
hydrochloride) has been reported to stimulate surfac-
tant production in a number of studies (221).

Togari (326) reported that injection of fetal rabbits
with CDPcholine inereased surfactant production.
Whether the CDPcholine provides substrate for PC
synthesis or the choline moiety is converted to acetyl
choline and this stimulates surfactant production is not
known.

Colchicine and vinblastine have been reported to
inhibit PC secretion in newborn rabbit (22) and adult
hamster (327?) lung slices as well as adult rat Type II
cells (328), suggesting a role for microtubules in surfac-
tant secretion. That microfilaments are also involved in
this process is suggested by the finding that surfactant
secretion is inhibited by cytochalasin B (22).

Karotkin et al. (329) reported that maternal phenobar-
bital administration inhibited surfactant production in
the fetal rabbit. Cadmium has also been reported to
reduce lung PC and increase RDS in rats (330).
Aflatoxin B inhibited pulmonary PC synthesis in the
fetal rat (331).

Many agents have been shown to alter the amount of
surfactant in the adult lung (332). Exposure of adult
rabbits to ozone has been reported to decrease the rate
of fatty acid incorporation into lung tissue PC but not
into that in lung lavage (333). It was concluded that
ozone inhibited PC synthesis but stimulated its rate of
release into the alveoli. Ozone was also reported to
change the fatty acid composition of rat lung lavage PC
(334).
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Hyperoxia has been reported to lead to less surfac-
tant in the rat (335), to decreased synthesis of lung PC
in the rat (336) and rabbit (337) and to slightly altered
lung lipid fatty acid compositions in the rabbit (338).
Changes in lung surfactant, however, appear to be
secondary to cellular changes (339-342). There are
species differences in susceptibility to oxygen damage
(343).

Nitrogen dioxide increased the amount of phospho-
lipid in the adult rat lung (344). The greatest increase
was in the disaturated PC and phosphatidylglycerol
fractions. The rate of palmitate incorporation into PC
was also increased (344). In another study (345),
nitrogen dioxide was reported to cause small changes in
the fatty acid composition of adult rat lung phospholipids.

Cook and Webb (346) reported decreased surface
activity in bronchial washings from chronic smokers.
Finley and Ladman (347) reported a similar finding and
showed that lipid content rather than composition was
altered. In a more recent study, Low et al. (348)
reported little difference between smokers and non-
smokers in lung lavage phospholipid. There was no
difference in phospholipid concentration but the phos-
pholipid/protein ratio was lower in the smokers (348).
Pre et al. (349) found no difference between smokers
and nonsmokers in the PC concentration or in the
PC/protein ratio in bronchoalveolar lavage fluid. Expo-
sure of rats to cigarette smoke led to less surfactant in
lung lavage (350). Lower surfactant levels were also
reported in dogs who were exposed to smoke from
burning wood or kerosene. (351).

Inhalation of gasoline, trichloroethylene or carbon
tetrachloride led to lower amounts of surfactant in rat
lung lavage (350). Chronic exposure of rats to hydrochlo-
ric acid has been reported to decrease the rate of choline
incorporation into lung PC (352). Sulfuric acid fumes
produced small changes in the surface activity of rat
lung (353). Dusts, such as quartz, silica, and chrysotile
asbestos, have been reported to increase the amount of
total and surfactant phospholipid in the lung (354-358).
Surface activity, however, was decreased on exposure to
silica (359).

Inhalation anesthetics have been reported to have
little effect on surfactant in the concentrations usually
employed (360-362). Methoxyflurane, however, did lower
surface activity (363).

Ethanol consumption has been reported to lower the
rate of lung PC synthesis in the rat (364). It also
reduced the surface activity of lung extracts (365).

Paraquat injection was reported to decrease the
amount of PC in lung lavage and to decrease the rate of
choline incorporation into lung PC in the rat (366).

Effects of radiation on surfactant have also been
examined (367-373). Rubin et al. (372) reported an
increase in alveolar disaturated PC, a decrease in lung
tissue PC and decreased numbers of lamellar bodies in
irradiated mice. Radiation also increased the amount of
lung lavage phospholipids in mice (368) and rabbits (367).

However, surface activity was reduced (367,369,371).
The amount of phosphatidylglycerol in lung lavage was
also reduced in irradiated mice (370). 1t is possible that
radiation causes cell death leading to release of nonsur-
factant lipids into the alveoli.

Work in the author’s laboratory was supported by grants HD-10192
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