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Effects of Inhaled Acids on Respiratory
Tract Defense Mechanisms
by Richard B. Schlesinger*

The respiratory tract is endowed with an interlocking array of nonspecific and specific defense mech-
anisms which protect it from the effects of inhaled microbes and toxicants, and reduce the risk of absorption
of materials into the bloodstream, with subsequent systemic translocation. Ambient acids may compromise
these defenses, perhaps providing a link between exposure and development of chronic and acute pulmonary
disease. This paper reviews the effects of inhaled acids upon the nonspecific clearance system of the lungs.

Introduction
The respiratory tract presents a large area (ca. 150-

180 mn2) in direct contact with the external environment,
with most of its surface providing very little physical
barrier between this environment and the circulatory
system. But in addition to being a "vast" portal of entry
into the blood for airborne materials, it contains poten-
tial target sites for numerous inhaled toxic agents and
pathogens. The success an inhaled agent has in pro-
ducing any local or systemic damage is the result of a
number of different influences acting upon the host, one
of which is the ability of the material to overload or

subvert a sophisticated array of defenses.
The respiratory defense arsenal consists of a system

of interlocking mechanisms, which may be conveniently
divided into two broad categories: nonspecific and spe-
cific (immunologic) (Table 1). The former consists of
nonselective mechanisms, which protect against a wide
variety of materials; the latter requires antigenic stim-
ulation for activation. Although one system may act
without the other, they are linked, such that, for ex-

ample, response to an immunologic insult may enhance
subsequent response to nonantigenic materials as well.
The overall efficiency of the defense system determines
the residence times of deposited agents within the res-
piratory tract, and it is this which has a major influence
upon the degree of local and/or systemic response; fur-
thermore, dysfunction or overactivity of these systems
may be involved in the pathogenesis of certain lung
diseases.

Acids are irritants and, as such, inhaled acids may
interfere with normal host defense, perhaps increasing
the potential for acute or chronic disease. The study of
altered defenses due to inhaled acids has concentrated
on examination of bronchial reflex response in terms of
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ventilatory changes, and upon conducting and respira-
tory airway clearance function; there are essentially no
direct studies of effects upon immunologic competence.
Ventilatory effects have been described by others in
this symposium; this paper discusses the role of inhaled
acids in affecting clearance. In terms of the predepo-
sitional phase of acidic precipitation, the chemical spe-
cies of interest are the acidic sulfur and nitrogen oxides.

Mechanisms of Respiratory Tract
Clearance

Clearance is the physical removal of material that
deposits on airway surfaces. The mechanisms involved
are regionally distinct.

In conducting airways, clearance occurs via the mu-
cociliary system. The nasal passages (except for the
anterior nares and the posterior nasopharynx) and all
airways of the tracheobronchial tree through the ter-
minal bronchioles are lined with a ciliated epithelium
overlaid by a fluid layer called mucus. Depending upon
the species, this fluid lining is derived from various
sources, which include specialized epithelial cells, and
submucosal glands (1). The mucus is moved by the co-
ordinated beating of cilia towards the naso- or oro-
pharynx. The result is, in general, removal of deposited,
insoluble material from the conducting airways within
- 24 hr (2,3).

In the respiratory (alveolated) region of the lung,
clearance may occur via a number of mechanisms and
pathways, but the relative importance of each is not
always certain and may depend to some extent upon
the physicochemical properties and amount of material
deposited, or the nature of any injury which occurs.
Nevertheless, the first-line defense against microbes
and nonviable particles is the alveolar macrophage,
which isolates, transports and detoxifies deposited ma-
terial. These large cells, which are part of the body's
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mononuclear phagocytic system, rest freely within the
fluid lining of the alveolar epithelium and move via ame-
boid motion. They likely originate from precursors in
bone marrow, and most reach the lungs, via the blood-
stream, as monocytes, maturing in the pulmonary in-
terstitium from which they traverse the epithelium to
reach the alveolar surface; a certain percentage may
arise from resident cells in the interstitium, which then
migrate onto the alveolar surface (4,5). Macrophages
comprise over 95% of the free cells obtainable by lavage
from healthy lungs (6).
Via phagocytic ingestion, macrophages help prevent

the penetration of deposited material through alveolar
epithelium and subsequent translocation to other sites.
They contain proteolytic enzymes that allow them to
digest a wide variety of organic materials, and they also
kill bacteria through peroxide-producing oxidative
mechanisms (4). In addition, macrophages are involved
in the induction and expression of cell-mediated immune
reactions. Thus, the macrophage provides a link be-
tween the lung's nonspecific and specific defense sys-
tems.
Macrophages may be cleared from the respiratory

region via a number of pathways, the primary one being
via the mucociliary system (5,7,8). However, the mech-
anism(s) by which these cells reach the distal terminus
of the mucus blanket is not definitely known. Never-
theless, the effective overall operation of clearance de-
pends upon the integrated functioning of the macro-
phage and the mucociliary apparatus; dysfunction of the
latter could affect the protective function of the former.

Clearance from respiratory airways is generally much
slower than that from conducting airways (9). There are
few useful data on alveolar clearance rates in man, while
those for experimental animals vary widely due to dif-
ferent techniques used in the various studies (10).
Nevertheless, alveolar clearance has been represented
by three exponential phases which may relate to specific
physiological processes: an initial fast phase, having a
half-time ofdays to weeks, representing relatively rapid
clearance via macrophages; an intermediate phase of
slower macrophage clearance or movement of particles
through alveolar epithelium, having a half-time on the
order of months; and a phase of slow clearance, with a
half-time of months to years, representing removal by
dissolution (8,9).

Effects of Acidic Sulfur Oxides
The major acidic sulfur oxide species found in ambient

air are ammonium sulfate [(NH4)2SO4], ammonium bi-
sulfate [(NH4HSO4)], and sulfuric acid (H2SO4) (11,12).
Both H2SO4 and NH4HSO4 are strong acids, with the
former the stronger of the two; (NH4)2SO4 is weakly
acidic.

Mucociliary Clearance
The assessment of effects upon mucociliary clearance

due to inhaled acid sulfates often involves examination

Table 1. Defense mechanisms of the respiratory tract.

Nonspecific Specific
Clearance Antibody mediated (B-cell)

Via mucociliary transport
(conducting airways)

Via macrophages (with Cell-mediated (T-cell)
possible detoxification)
(respiratory airways)

Local detoxification in airway
fluids

Buffers
Antimicrobial agents

Reflex responses
Sneeze
Cough
Airway constriction
Altered breathing pattern

solely of mucous transport rates in the trachea, since
this is a readily accessible airway and tracheal muco-
ciliary clearance measurements are more straightfor-
ward to perform than those aimed at assessing clearance
from the entire tracheobronchial tree. Table 2 describes
the available studies.
The most likely reason for the lack of effect in most

studies, some of which involved high concentrations, is
that the particular size of the H2SO4 aerosol used pre-
cluded significant tracheal deposition. This is supported
by noting that Wolff et al. (14) found tracheal transport
rates in dogs to be depressed only when using a 0.9 p,m
H2SO4 mist, while no effect was seen with a 0.3 ,um
aerosol at an equivalent mass concentration. Although
the persistence of response after a single H2SO4 expo-
sure seen by Wolff et al (14,18) in both dogs and rats
is important, the use of tracheal clearance rates as the
sole endpoint to assess the potential exposure-response
relationship for acid sulfates, in terms of altering mu-
cociliary clearance, may be misleading, inasmuch as
studies in this laboratory (15-17,20) have demonstrated
changes in bronchial clearance which were not associ-
ated with any change in tracheal transport.
The results of studies aimed at assessing the effects

of acid sulfates upon bronchial clearance following acute
exposures are outlined in Table 3; all of the effects are
transient, unless noted otherwise. The lowest concen-
tration of an acidic sulfate shown, to date, to produce
any change at all after a single, brief (1 hr) exposure is
_ 0.1 mg/m3 H2SO4, and this occurred in healthy human
volunteers breathing via nasal mask (16). In addition,
studies with H2SO4 indicate that the direction of clear-
ance change, i.e., slowing or speeding, is exposure con-
centration dependent. Figures 1A and 2 show the con-
centration-response profiles for H2S04 determined in
humans (16) and rabbits (21), respectively, in this lab-
oratory. The ability of an inhaled irritant to stimulate
mucociliary clearance at low exposure concentrations
while slowing it at higher levels was previously dem-
onstrated in this laboratory on both animals and human
volunteers using another irritant, whole fresh cigarette
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Table 2. Effects of inhaled sulfates on tracheal clearance.

Particle Exposure
Concentration, size, duration,

Aerosol Species mg/rm3 pm hr Effecta Reference
H2SO4 Sheep 14 0.1 0.3 nc (13)

4 0.1 4 nc (13)
Dog 1 0.3 1 nc (14)

5 0.3 1 nc (14)
Donkey 0.2-1.4 0.4 1 nc (15)
Human 0.1-1.0 0.5 1 nc (16,17)
Dog 1 0.9 1 4 (at 30 min, 1 day, 1 wk) (14)

0.5 0.9 1 4 (ati wk) (14)
Rat 1 0.6 6 T (at3 wk) (18)

10 0.7 6 t (ati day) (18)
100 0.8 6 t (at 1 and 3 wk) (18)

Rat 10 0.6 0.5 t (ati wk) (18)
50 0.4 0.5 T (ati wk) (18)
100 0.5 0.5 T (at 1 day, and 1 wk) (18)

NH4HSO4 Sheep 1 0.1 4 nc (19)
(NH4)2SO4 Donkey 0.3-3.0 0.4 1 nc (15)

Sheep 1.1 0.1 4 nc (19)
aExplanation of symbols: nc =no significant change from control; t =significant acceleration of clearance; 4 =significant slowing of

clearance.

Table 3. Effects of inhaled sulfates on bronchial clearance of acute exposures.

Concentration, Particle Duration,
Aerosol Species mg/m3 size, p.m hr Effecta Reference
H2SO4 Human 1 0.5 2.5 t (25)

Human 0.1-1.0 0.5 1 , 4 (depending on concentration) (16,17)
Rabbit 0.1-2.2 0.3 1 l, 4 (depending on concentration) (21,26)
Donkey 0.2-1.4 0.4 1 4 (persistent effect in 2 of 4 animals (15)
Mouse 1.5 0.6 4 nc (27)

15 3.2 4 1 (27)
Rat 3.6 1.0 4 nc (28)

NH4HSO4 Rabbit 0.6-1.7 0.4 1 4 (only at highest conc.) (29)
(NH4)2SO4 Rabbit 2 0.4 1 nc (29)

Donkey 0.3-3.0 0.4 1 nc (15)
Rat 3.6 0.4 4 nc (28)

aExplanation of symbols: nc = no significant change from control; t = significant acceleration of clearance; 4 = significant slowing of
clearance.
smoke (22-24).
The actual H2SO4 exposure level needed to produce

an observed acceleration may be dependent upon the
region within the bronchial tree from which clearance
is being measured, in relation to the region which is
most affected by the inhaled acid mist. Figure 1B shows
results of a study from this laboratory with human vol-
unteers using a smaller tracer aerosol (4.2 pum) than
that used in the study depicted in Figure 1A (7.5 ,um);
with the former, clearance was slower (rather than ac-
celerated) at the 0.1 mg/m3 concentration level.

Deposition model calculations (17) indicate that the
submicrometer H2SO4 aerosol used in both of these
studies should be concentrated in distal conducting air-
ways (generations 10-16). The 2.4 ,um tracer should
have substantial deposition fractions in both large (gen-
erations 0-9) and small airways, while the 7.5 ,um par-
ticles should be concentrated primarily within the large
airways. Based upon this model oftracer deposition and,

therefore, the region from which observed clearance
was occurring, it appears that the lowest H2SO4 ex-
posure concentration, i.e., 0.1 mg/m3, accelerated clear-
ance from the large proximal airways, where little de-
posited, while slowing clearance from the distal ciliated
airways, where there was greater acid mist deposition.
At the highest exposure concentrations, i.e., 1 mg/m3,
both proximal and distal ciliated airway clearance was
depressed.
The above scheme is supported by the results of single

H2S04 exposures in rabbits (21), shown in Figure 2.
The tracer aerosols used in this study likely had a similar
regional deposition pattern to the 7.5 ,um aerosol used
in the human tests. Thus, it seems that the low H2SO4
exposure concentrations act as small, stimulatory doses
to mucociliary transport in the larger bronchial airways
and, at these concentrations, the overall observed ef-
fects as measured in rabbits and humans (with the
larger tracer) were dominated by those occurring in
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FIGURE 1. (A) Effects of individual 1-hr exposures to H2SO4 upon
bronchial clearance of tracer particles (7.5 ,um) from the lungs of
healthy human volunteers, derived from data of Leikauf et al.
(16). Clearance is quantitated in terms of half-time (T5,), i.e., the
time required for completion of half of the bronchial clearance; an
increase represents a slowing of clearance, while a decrease rep-
resents speeding. Each point represents the average change in
bronchial clearance half-time (AT50) of six subjects at each expo-
sure concentration. Vertical error bars are ± 1 SE of AT50 = 0;
horizontal error bars are ± 1 SE of mean [H2SO4]. 95% C.L. =

95% confidence limits of AT50 = 0. The linear regression line
calculated from individual data for each subject is shown. The
asterisk (*) denotes significant change (p < 0.05) at an individual
concentration. From Schlesinger et al. (21). (B) Effects of indi-
vidual 1-hr exposures to H2S04 upon bronchial clearance of small
tracer particles (4.2 ,um) from the lungs ofhealthy humans, derived
from data of Leikauf et al. (17). Each point represents the average

change in bronchial clearance half time of 8 subjects at each ex-
posure concentration. Error bars, 95% C. L., and asterisk as in
Figure 1A.

these airways, even though the H2SO4 dose delivered
to the distal ciliated airways was sufficient to depress
mucociliary transport there (Fig. 1B). On the other
hand, at high concentrations, when the dose delivered
to the entire bronchial tree was increased, there was
likely slowing throughout the system.
The above scheme may be carried one step further.

Examination of Figure 2 shows that from the apparent
threshold level to ca. 0.25 mg/m3, there is an increase
in the degree of acceleration. Thus, it is likely that, in
fact, at low levels just beyond the threshold, overall
bronchial clearance is stimulated by exposure to H2SO4,
but a maximum acceleration is reached, and exposures
at increasing concentrations result in a reduction in the
degree of overall observed acceleration, as the dose de-
livered to distal bronchial regions is presumably suffi-
cient to initiate a slowing of mucus transport. As this
trend progresses, the regression curve begins to pass
through the zero band at approximately 0.45 mg/m3
(Fig. 2), until the degree of retardation is sufficient to
produce a net observable slowing of clearance. Within
this crossover band, the H2SO4 exposures produce no

FIGURE 2. Effects of individual 1-hr exposures to H2SO4 upon bron-
chial clearance of tracer particles from the lungs of rabbits. Clear-
ance is quantitated in terms of changes in mean residence time
(MRT); an increase represents a slowing of clearance, while a
decrease represents speeding. Each point represents the average
change (AMRT) of a group of eight rabbits versus the mean H2SO4
concentration of all tests performed at each nominal concentration
level. Vertical error bars are ± 1 SE of AMRT = 0; horizontal
error bars are ± 1 SE of mean [H2SO4]. 95% C.L. = 95% con-
fidence limits for AMRT = 0 based upon preexposure sham con-
trols. The solid curved line is the polynomial regression calculated
from the individual data for each animal. The asterisk (*) denotes
significant change (p < 0.05) at an individual concentration. From
Schlesinger et al. (21).

"apparent" change in clearance. This observation should
not be interpreted as indicating "no effect" exposure
levels. Rather, at these concentrations, the differential
responses to H2SO4 may have been equal (but opposite)
in the upper and lower tracheobronchial tree, resulting
in no apparent net change in tracer particle clearance
from the lungs as a whole.
From Table 3, it is evident that in most studies where

effects due to H2SO4 were found, levels > 1 mg/m3
resulted in bronchial clearance depression. However, in
a study with exercising nonsmoking adults, Newhouse
et al. (25) observed a speeding of bronchial clearance
following exposures to H2SO4 at 1 mg/m3. This apparent
discrepancy may be due to differences in the method of
exposure and level of activity. In the Newhouse et al.
study, the subjects had their nasal passages blocked,
and were mouth breathing in an exposure chamber.
There is greater neutralization of inhaled H2SO4 by en-
dogeneous ammonia in oral than in nasal exposures, and
perhaps some neutralization by exhaled ammonia in the
chamber prior to H2SO4 inhalation. This methodology,
thus, may have resulted in partial neutralization of the
H2SO4 to the less irritating NH4HSO4 or (NH4)2SO4
(see below). The remaining H2S04 levels may have been
low enough to result in accelerated clearance, as dis-
cussed above.
From the above discussion, the speeding of tracheal

transport (Table 2) found by Wolff et al. (18) in the rat
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at H2SO4 levels up to 100 mg/m3 seem anomalous, since
in other species, levels at - 1 mg/m3 produced muco-
ciliary depression. The reasons for this observation are
not known. It is known that the rat is less susceptible
to the lethal effects of H2SO4 and that they do not have
strong bronchoconstrictive reflex responses following
H2SO4 exposures (18). These characteristics, together
with the lack of effect of H2SO4 on bronchial clearance
found by Phalen et al. (28) at 3.6 mg/m3 for 4 hr, and
in view of the similarity in bronchial clearance response
in humans, donkeys, and rabbits to acute, 1-hr expo-
sures, suggest that the rat mucociliary system may also
differ in sensitivity from the other species studied.

In evaluating the potential public health significance
of a pollutant, it is generally accepted that all individuals
in any given population may not be equally susceptible
to its actions. For example, recent studies have shown
that asthmatics may be more sensitive to the broncho-
constrictive effects induced by inhaled irritants such as
SO2 (30), 03 (31), and H2SO4 (32). In order to examine
whether such individuals were more susceptible to
H2SO4-induced alterations in mucociliary clearance,
Spektor et al. (33) studied the effects of 1 hr nasal in-
halations of submicrometer H2SO4 aerosols in a group
of 10 asthmatic subjects. Of this group, six subjects
were not on routine medication, and were found to have
similar responses to those of healthy nonsmokers, i.e.,
1 mg/m3 H2SO4 produced a transient slowing of clear-
ance. The four asthmatics who were on daily medication
exhibited mucociliary clearance patterns that were too
variable to permit detection of any H2SO4 effect. Al-
though the magnitude of the clearance response in the
nonmedicated asthmatics was not greater than for
healthy nonsmoking volunteers, the asthmatics did have
lower baseline rates for bronchial clearance which, com-
bined with the observations of an effect on respiratory
mechanics indices not seen in healthy people (16,33),
suggests that asthmatic subjects may indeed be more
sensitive to H2SO4 aerosols.

Sulfuric acid is the most potent of the acid sulfates in
terms of altering mucociliary clearance. Schlesinger et
al (15) showed altered bronchial clearance in donkeys
exposed to H2SO4 for 1 hr at levels above - 0.2 mg/m3,
while exposures to (NH4)2SO4 at up to 3 mg/m3 pro-
duced no response.
The relative irritant potency of the major ambient

sulfates was specifically examined in a study by Schles-
inger (29) using rabbits. Figure 3 shows the results of
1 hr (oral) exposure to submicrometer aerosols of
NH4HSO4, (NH4)2SO4, and Na2SO4 (nonammonium
control). NH4HSO4 at concentrations of ca. 0.6-1.7 mg/
m3 produced a significant depression of clearance rate
only at the highest exposure level. No significant effects
were observed with the other sulfates at levels up to
ca. 2 mg/m3. When these results were compared to those
from a study using H2SO4 (21) (Fig. 2), the ranking of
irritant potency was H2SO4 > NH4HSO4 > (NH4)2SO4,
Na2SO4; this strongly suggests a relation between the
hydrogen ion (H +) concentration and the extent of bron-
chial mucociliary clearance alteration. However, the

mechanism(s) by which deposited acid aerosol alter(s)
clearance after acute exposures is not certain.
The effective functioning of mucociliary transport de-

pends upon optimal beating of the cilia and the presence
of mucus having appropriate physicochemical proper-
ties. Both ciliary beating as well as mucus viscosity may
be affected by the deposition of acid. Normally, trach-
eobronchial mucus has a pH of ca. 6.5 to 8.2 (34-37).
In vitro studies have shown that, at alkaline pH, mucus
is more fluid than at acid pH; the inflection point occurs
at a pH between 7.5 to 7.6 (38). An increase in viscosity
which may occur due to deposited acid could "stiffen"
the mucus blanket, perhaps promoting the clearance
mechanism and, thus, increasing its efficiency (37). This
may occur at low H2SO4 exposure concentrations, where
ciliary activity would not be affected, and is consistent
with clearance acceleration observed at these concen-
trations.
At higher exposure concentrations, H2SO4 may affect

ciliary beating. Schiff et al (39) and Grose et al (40) found
that 2 to 3 hr in vivo exposures of hamsters to ca. 0.9
to 1 mg/m3 H2SO4 resulted in a depression of ciliary
beating frequency in tracheal explants prepared after
exposure. In vitro studies clearly indicate that compelte
ciliostasis will occur if the pH is low enough (37); how-
ever, ciliostasis in only some regions, presumably with
a change in clearance function, may occur at pH values
above this critical level. Thus, an H+-induced depres-
sion of ciliary beating, with or without a change in mucus
viscosity, could account for the observed retardation of
clearance observed at high exposure concentrations of
H2SO4 (or NH4HSO4).
There is, however, some evidence that the effects of

H2SO4 may not be entirely due to H . Schiff et al. (39)
exposed hamster tracheal rings in vitro to H2SO4 in
media for 3 hr and examined ciliary beat frequency and
cytology; the pH of the media was ca. 5. There was no
effect upon beat frequency when the tissue was ex-
amined within 1 hr after exposure, although morphol-
ogical damage was evident at this time; at 24 hr after
exposure, beat frequency was depressed. They then
exposed tracheal explants for 3 hr to the same media
as above, but with the pH adjusted to 5 using hydro-
chloric acid (HCl). Exposure under this condition re-
sulted in a 50 to 75% reduction in beating frequency,
but no change in cell morphology. When these latter
explants were transferred to fresh culture media, the
cilia resumed beating at their normal frequency. Ac-
cording to the investigators, these results indicated that
media at pH 5 itself produced no lasting morphological
effects, and that acidity alone was not responsible for
the observed morphological and functional effects pro-
duced by H2SO4.
The nature of any other factors is unknown; however,

the lack of any significant effect upon mucociliary clear-
ance due to (NH4)2SO4 or Na2SO4 observed in other
studies (Table 3), at concentrations which would provide
an equivalent amount of sulfate ion (So42-) as the ef-
fective concentrations of the strong acid sulfates, dem-
onstrates both that the sulfate component is not re-
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FIGURE 3. Effects of individual 1-hr exposures to various sulfate aerosols upon bronchial clearance of tracer particles from the lungs of
rabbits. Each point represents the mean change in MRT of a cohort of five rabbits plotted versus the mean concentration of a pair of tests
performed at each nominal concentration level. Error bars, 95% CL and asterisks as in Figure 2. From Schlesinger (29).

sponsible for the observed effects of NH4HSO4 or
H2SO4, and that the ammonium ion does not mask or
mitigate any potential response which may have been
due to SO42
Another (or an additional) mechanism by which an

irritant may affect mucociliary clearance is via altera-
tion in the rate and/or amount of mucus secreted. An
increase in the quantity of mucus is consistent with the
initial increase in bronchial clearance observed in vivo
following exposures to low levels of H2SO4. In a study
which directly examined secretory rate, Last and Cross
(41) showed that in vivo exposure of rats for 23.5 hr/
day for 3 day to submicrometer H2SO4 at ca. 1 mg/m3
did not affect the secretion of mucus glycoprotein from
tracheal explants prepared after exposure; however,
the effect on mucus secretion from smaller conducting
airways was not examined. An indirect examination of
bronchial airway secretion was performed by Hender-
son et al. (42), using analysis of lung lavage fluid to
detect responses in the lungs of rats exposed to 1, 10,
or 100 mg/m3 H2SO4 for 6 hr. They showed a dose-
related increase in sialic acid content (a component of
mucous glycoproteins), which they suggested was due
to increased bronchial mucus secretion.
The pathological significance of transient alterations

in bronchial clearance rates in healthy individuals is not
certain, but such changes are an indication of a lung
defense response. On the other hand, persistent im-
pairment of clearance may render the host more sus-
ceptible to the inception or progression of acute or
chronic respiratory disease and, as such, may be a plau-
sible link between inhaled pollutants and respiratory
pathology.

Short-term exposures to acids may lead to persistent
clearance changes. Schlesinger et al. (15) demonstrated

that weekly, 1 hr exposures of donkeys to submicro-
meter H2SO4 at 0.2 to 1 mg/i3 produced transient slow-
ing of bronchial clearance in three of four animals. How-
ever, two of the four (including one which did not
respond after any individual test) developed persist-
ently slowed clearance after about six of the exposures,
and which persisted for about 2 months after all expo-
sures had ceased.
The development of persistent alterations after a rel-

atively small number of 1 hr weekly exposures empha-
sizes that in order to fully evaluate the impact ambient
exposures to H2SO4 might have upon the inception and
progression of respiratory disease, it is essential to con-
sider the effects of intermittent exposures, especially
at low levels. Thus, as a follow-up to the above study,
Schlesinger et al. (20) exposed the two donkeys which
had shown only transient responses, as well as two pre-
viously unexposed animals, to 0.1 mg/m3 H2SO4 for 1
hr/ day, 5 days/week for 6 months (Fig. 4). Within the
first few weeks of exposure, all four animals developed
erratic clearance rates, i.e., rates that on specific test
days were either significantly slower than, or signifi-
cantly faster than, those in the preexposure period. The
two previously unexposed animals developed persist-
ently slowed bronchial clearance during the second 3
months of exposure, and during 4 months of follow-up
clearance measurements, while the two previously ex-
posed animals adapted to the exposures in the sense
that their clearance times fell consistently within the
normal range during the last few months of exposure.
However, after the end of the exposure series, their
clearance rates were significantly faster than in their
preexposure control tests, and remained so for the 4-
month follow-up period (24).

In a recent study, Schlesinger et al (43) examined the
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from the tracheobronchial tree. Significantly increased
epithelial thickness of small conducting airways, com-
pared to sham exposure controls, was noted in rabbits

-__---__--r exposed orally at 0.25 mg/m', or nasally at 0.5
additionally, the lumen of the smallest airways of the
former group was narrower than in the controls. The
number of airways containing epithelial secretory cells
was also significantly greater in these acid exposure
groups compared to sham controls. The only change in
the rabbits exposed nasally at 0.25 mg/m3 was a signif-
icant increase in the number of small airways containing
epithelial secretory cells. Differences in site and degree

------------ of histological response and degree of physiological
rwt *.u--r change between the two groups exposed to identical

v. Dc Jan. acid concentrations appear to have been due to differ-
ences in exposure mode, and resultant effects on breath-
ing pattern, aerosol size distribution, and H2SO4 con-
centration penetrating beyond the upper respiratory
tract.
The appearance of persistently increased secretory

cell number in peripheral airways due to H2SO4 was a
significant finding, since excess mucus production in

*9 small airways, which is a likely consequence of this in-
. . crease, may be an early feature in the pathogenesis of

*------- chronic bronchitis (44). Furthermore, this demonstrates
an underlying histological change consistent with the
observed physiological effects of the H2SO4. For ex-
ample, the exposure regime which produced the great-
est degree of alteration in clearance rate was also as-
sociated with the most extensive change in secretory

H2So4 cell number in the small intrapulmonary airways.
An ongoing study in our laboratory is aimed at ex-

amining the temporal course of histological changes as
0 . . they may relate to altered bronchial clearance. Groups
------------ --- of rabbits are being exposed (nasally) to H2SO4 at 0.25
--July-----Aug---- -Sept- mg/m3 for 1 hr/day, 5 days/week for up to 52 weeks,

during which time mucociliary clearance is monitored
at 1 to 3 week intervals. Preliminary results from one

)4 upon bronchial group exposed, to date, for 30 weeks is shown in Figure
!exposures were 5. In this group, erratic clearance rates occur in all of
th follow-up. The the animals. In one (A3), there was a general tendencyfor TO (clearance ,

a
.

o
. .

introl tests which towards a slowing Of Clearance, while two others (A2
singer et al. (20). and A4) tended towards acceleration. The relationship

between the direction of change and epithelial secretory
histology is currently being examined.

s in rabbits.
ubmicrometer
veeks, during
ice was moni-
) 0.25 mg/m3,
Le nose, and a
ng. Clearance
Lys during the
at 0.5 mg/m3.
Scantly faster,
a 2-week fol-

eased. (This is

Alveolar Defense
Antimicrobial Activity. The alveolar macro-

phage represents the initial defense against pathogenic
organisms depositing in the alveolar region; under nor-
mal circumstances, there is rapid killing of microbes that
do deposit. Since the development of an infectious dis-
ease requires both the presence of the appropriate path-
ogen as well as host vulnerability, the ability of pollu-
tants to modify resistance to infection could, perhaps,
result from an alteration in normal macrophage mi-
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FIGURE 5. Effects of daily, 1-hr exposures to H2SO4 upon bronchial clearance from the lungs of five rabbits. Clearance is quantitated in terms
of the amount of tracer particles cleared by 4 hr after exposure (C4). The horizontal lines define the 95% tolerance interval for C4 based
upon a series of control tests prior to initiation of H2S04 exposures.

crobicidal function. To test this possibility, the rodent
infectivity model has been used (45). In this test system,
animals (usually mice) are challenged with a bacterial
aerosol after exposure to the pollutant of interest; mor-
tality rate and survival time are then examined within
a particular time period, usually 14 to 15 days post-
exposure. Any decrease in the latter or increase in the
former indicates impaired defense against respiratory
infection, and suggests that the site of pollutant injury
is likely the alveolar macrophage. Studies which have
used the infectivity model to assess effects of acid sul-
fates are outlined in Table 4. It is evident that these
aerosols are apparently not very effective in enhancing
susceptibility to bacterial mediated respiratory disease
in test animals. The only acid aerosol study which dem-
onstrated any response was that of Coffin (48), and in-
creased mortality occurred only at an extremely high
exposure level.

In a related type of study, Fairchild et al (27) ex-
amined the clearance rate of viable bacteria from the

lungs of mice, using a colony count assay involving cul-
turing ground lung tissue. They found that exposures
to 1.5 mg/m3 of submicrometer H2SO4 for 1.5 hr for 4
days prior to, or for 4 hr after, exposure to a bacterial
aerosol produced no alteration, compared to control, in
the removal of this aerosol from the lungs. Since the
bulk ofmicrobial clearance was likely due to macrophage
activity, these results are another, albeit indirect, in-
dication that H2SO4 exposures at modest levels produce
no measurable effects on bacterial infectivity.
Macrophages are also involved in antiviral defense.

Cells harvested from mice exposed to submicrometer
H2SO4 at high levels, i.e., 125 to 154 mg/m3, for 10 to
14 days showed decreased interferon titers in their cul-
ture media (53).

Alveolar Clearance. Since acidic sulfates can al-
ter the rate of mucociliary clearance from conducting
airways, their potential for altering macrophage-me-
diated clearance from the respiratory region should be
considered, so as to provide a more complete picture of

Table 4. Effects of inhaled sulfates on bacterial infectivity in mice.

Concentration, Exposure
Aerosol mg/m3 duration Effect Reference
H2SO4 0.9 2 hr nca (47)

0.543 2 hr nc (49)
80 3 hr nc (48)
150 3 hr nc (48)
300 3 hr Increased

mortality (48)
0.365 2 hr/day, 5 days nc (49)

NH4HSO4 6.7 3 hr nc (50)
(NH4)2SO4 1.1-5.3 3 hr ncb (51)

1 3 hr/day, 20 days nc (52)

anc = no significant change from control.
'An increase in mortality was observed at the 2.1-3 mg/m3 exposure level, but there was no relation between mortality and concentration

in the study as a whole.
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the role these pollutants may play in affecting lung de-
fense systems. The only published study to date which
examined this is that of Phalen et al. (28). Rats exposed
to 3.6 mg/m3 H2SO4 (1 ,um) for 4 hr at low relative
humidity exhibited a showing of alveolar region clear-
ance as measured 2 to 17 days post-exposure.

In a study being completed in our laboratory (55),
rabbits were exposed (orally) to submicrometer H2SO4
at 1 mg/m3 for 1 hr to assess the effects upon alveolar
clearance during the period 2 to 14 days post-exposure.
Clearance ofthe tagged polystyrene latex tracer aerosol
in the acid exposed group was found to be accelerated
compared to that in the sham control group.

In order to adequately perform their role in clearance,
macrophages must be competent in a number of func-
tions, e.g., phagocytosis, mobility, and attachment to a
surface (54). Alterations in any one, or combination, of
these individual factors could perhaps result in altered
clearance function. Thus, as part of the above study,
and to examine the mechanism(s) underlying clearance
alterations, rabbits were sacrificed at six selected times
after H2SO4 exposure, bronchopulmonary lavage per-
formed, and the functional characteristics of recovered
free cells were examined in vitro (55). The acid exposure
produced no change in the viability or numbers of mac-
rophages recoverable by lavage. This is not surprising,
since Coffin (48) found no change in the number of re-
coverable macrophages from mice exposed to 300 mg/
m3 H2SO4 for 3 hr. However, a marked increase in the
number of neutrophils was observed in the rabbits sac-
rificed at 4 hr after either acid or sham exposure, com-
pared to nonexposed colony controls. Although the num-
ber of neutrophils was back to normal by 12 hr in the
sham group, an elevated level continued to be observed
in the acid exposure group through the 1 day sacrifice
time (Fig. 6).
The ability of macrophages to phagocytose latex par-

ticles in vitro was not affected by the H2SO4 exposure.
However, by using a density-gradient technique to sep-
arate macrophages from free latex particles, it was
found that the actual uptake of the tracer microspheres
by macrophages in vivo was enhanced during the first
5 hr after acid exposure. In addition, in vitro phago-
cytosis by neutrophils was also increased through 48 hr
post-exposure in the acid exposed group. Finally, re-
duced in vitro adherence (to a glass substrate) was ob-
served for macrophages obtained from the H2SO4-ex-
posed rabbits.
The only other study to examine the response of mac-

rophages to acid assayed cells obtained by lavage from
rabbits 4 hr after an intratracheal injection of hydro-
chloric acid (56). No change in the number of macro-
phages recovered was found; however, the number of
neutrophils recovered was significantly increased, and
microscopy indicated a mild inflammatory response. In
addition, adherence of macrophages to a glass surface
was decreased compared to controls, which the inves-
tigators attributed to the influx of neutrophils in the
acid treated animals. On the other hand, in vitro mac-
rophage phagocytosis and chemotaxis were not affected
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FIGURE 6. Numbers of macrophages (AM) and neutrophils (PMN)
obtained by lavage fr:om rabbits at selected time points after a
single exposure to H2SO4 (1 mg/rn3) (Mean ± SE). From Naumann
and Schlesinger (55).

by acid exposure.
Recruitment of neutrophils is evidence of an inflam-

matory response; thus, the exposure to 1 mg/m3 H2SO4
performed in our laboratory apparently resulted in such
a response, and one which was prolonged over that seen
in the sham animals. In addition, mild inflammation ap-
pears to be associated with accelerated alveolar clear-
ance, a cause-effect relationship described by other in-
vestigators (57,58).
The results from these alveolar macrophage studies

are consistent with the lack of effects seen using the
rodent infectivity model. Sulfuric acid does not reduce
macrophage numbers nor phagocytic efficiency, but ap-
parently enhances macrophage, as well as neutrophil,
phagocytosis, and alveolar clearance. This inflamma-
tory-induced clearance rate change should not, how-
ever, be deemed beneficial, since the cells involved are
pivotal elements in the delicate balance between defense
and disease, as will be discussed in a later section.
The relative potency of acid sulfates in terms of al-

tering alveolar clearance has not been examined in any
detail. However, Aranyi et al. (52) found no change in
total or differential counts of free cells lavaged from
mice exposed to (NH4)2SO4 at 1 mg/m3 for 3 hr/day for
20 days; this suggests a lack of inflammatory response
to this sulfate aerosol.
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A study in our laboratory (59) is examining early al-
veolar clearance in rabbits at various time intervals dur-
ing the course of a series of intermittent (1 hr/day, 5
days/week) exposures to submicrometer H2SO4 at 0.25
mg/im3. Three clearance tests, using tagged latex
tracers, have been performed, one beginning on day 1
of H2SO4 exposure, with clearance measurements con-
tinuing until day 14, one on day 57, with measurements
continuing until the 71st day, and one on day 240, with
measurements until day 253. All tests show accelerated
clearance, compared to sham controls, and the degree
of acceleration was similar in all cases. Although lung
cell assays were not performed in this study, it is in-
teresting to speculate, based upon the results discussed
previously, that the H2SO4 exposures, by producing and
maintaining a mild inflammatory response, result in the
observed persistent (to date) acceleration of alveolar
clearance.

In the study involving a single exposure to 1 mg/m3
H2SO4, it was noted that phagocytosis by neutrophils
in vitro was enhanced in the acid treated animals. If
this is also a reflection of in vivo effects, this functional
change likely did not affect observed clearance rates for
the tagged latex tracer, since the bulk of the neutrophil
influx was observed to occur at ca. 4 to 5 hr post-ex-
posure, while the latex tracer particles were found to
be essentially completely ingested by macrophages
prior to this time. However, if moderate neutrophil re-
cruitment occurred in the intermittent exposure series,
these cells may be playing a role in observed clearance
since, in this case, they would be present at the time
of the second tagged latex exposure test on day 57.
Neutrophils generally contain less phagocytized parti-
cles than do macrophages, especially under high particle
loading conditions (58). However, under other condi-
tions, especially with low particle loading (such as is the
situation in the described tests with latex), uptake by
neutrophils may account for as much as half of all par-
ticles phagocytized by the free cells of the lungs (58,60).

Effects of Acidic Nitrogen Oxides
There are essentially no data concerning effects of

inhaled acidic nitrogen oxides on lung clearance sys-
tems. Stutts et al. (61) found that ammonium nitrate
(NH4NO3) could alter sodium and chloride transport
across canine tracheal epithelium, which could affect the
nature of the liquid lining of the airway lumen. How-
ever, the response was ascribed to NH4+ rather than
to NO0, since sodium nitrate (NaNO3) had no effect.

Vassallo et al. (62) examined the effects of nitrite
(NO2 ) at concentrations of 5 to 20 mM upon the rate
of in vitro bacterial ingestion and killing by rabbit mac-
rophages. They found that incubation with the highest
concentration used, i.e., 20 mM, reduced intracellular
killing of the bacteria, as well as inhibited their phag-
ocytic uptake. However, these effects were not due to
acidity, since the culture system was maintained at a
pH > 7.1. In addition, the relation between these re-

sults and in vivo exposures is not clear, since the con-
centration needed to produce an effect was very high.

Considerations Concerning
Pollutant Mixtures

In any assessment of the toxicology of air pollutants,
it is always necessary to bear in mind that the usual
manner of inhalation involves mixtures of materials.
The finding of "no effect" upon some endpoint using a
single chemical does not necessarily mean that the pres-
ence of this material in the ambient air poses no poten-
tial health problem. Thus, the effects of ambient acids
may be influenced by various copollutants. Although
this topic is beyond the scope of this review, some ex-
amples from the limited data base will suffice.

Last and Cross (41) exposed rats for 3 and 14 days
(23.5 hr/day) to a mixture of 1.1 mg/m3 (0.5 pum) H2SO4
and 0.5 ppm O3 and found a significant increase in the
secretion of mucus glycoproteins into the trachea, while
exposures to each material alone at these concentrations
had no effect. When the H2S04 concentration was low-
ered to 0.011 mg/m3, a 3-day exposure to this plus 0.5
ppm 03 still produced an increase in secretion.
Although H2SO4 does not appear to influence respi-

ratory infection in the rodent model system mixtures
of H2SO4 (1.4 mg/m3) and carbon (1.5 mg/mi) resulted
in a reduced degree of bacterial inactivation in mice
after 4 weeks (3 hr/day, 5 days/week) of exposure (63).
After 20 weeks, this same mixture produced a decreased
mean survival time following challenge with airborne
influenza virus after the last exposure. On the other
hand (52), exposures of mice (5 hr/day, 5 days/week for
103 days) to mixtures of 03 (0.2 mg/m3) plus SO2 (13.2
mg/m3) plus (NH4)2SO4 (1.04 mg/m3) produced enhanced
bacteriocidal activity of macrophages, compared to O3
alone.

Alterations in Clearance and the
Pathogenesis of Lung Disease
The relationship between clearance and lung disease

is somewhat uncertain. Dysfunction of mucous trans-
port may be involved in the pathogenesis of both acute
and chronic respiratory disorders, but the clinical rel-
evance of mucociliary changes is only recently being
elucidated, and their role in pulmonary disease devel-
opment is only beginning to be experimentally estab-
lished.
To assess the actual importance of mucociliary trans-

port and the effect of its dysfunction upon respiratory
disease, as well as to provide information on the role of
mucociliary clearance in maintaining the integrity of the
lung, one may study individuals with a congenital dis-
ease syndrome, i.e., primary ciliary dyskinesia (PCD).
The lack of mucociliary function in PCD is directly re-
sponsible for the early development of recurrent res-
piratory tract infections and, eventually, chronic bron-
chitis and bronchiectasis (64,65). It is, however, not
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certain whether partial or transient impairment of the
mucociliary system will increase the risk of disease.

Neither a slowing nor speeding of mucociliary clear-
ance is beneficial; both are, most likely, indications of a
pathophysiological response of the bronchial tree to in-
sult. Furthermore, slowing of clearance may result in
the prolonged retention of deposited materials, which
would normally be rapidly removed, increasing the risk
of local damage by and/or systemic uptake of toxic
agents.
The rate of mucociliary clearance may affect the de-

velopment of infectious disease. Pathogenic organisms
depositing in the conducting airways are confronted
with the mucociliary barrier, and the extent of pene-
tration of vectors through the mucus to the underlying
cells may be important in disease development. This
rate, relative to that of mucociliary transport out of the
respiratory tract, could determine the effectiveness of
inhaled pathogens in initiating disease (66,67). In con-
ditions characterized by retarded clearance from con-
ducting airways, e.g., chronic bronchitis, there is a pre-
disposition to respiratory infection (68). Destruction of
the functional integrity of the ciliated epithelium can
result in impaired defense against bacteria (69), and
impaired transport has been observed associated with
viral respiratory infections (70,71).

Retardation of mucociliary clearance may be a factor
in the,pathogenesis ofbronchial cancer. Inhaled aerosols
tend to selectively deposit at airway branching sites in
the bronchial tree (72), and histological studies (73,74)
have indicated that neoplastic and preneoplastic lesions
tend to predominate within these regions. Macklin (75)
and Hilding (76) have suggested that bifurcations are
areas of normally slower mucus movements; this would
add to the residence time of agents which deposit within
these areas, or are being carried through them on the
mucociliary escalator. Thus, any selective distribution
of lesions at bifurcations within the upper bronchial tree
may result from selective deposition and/or slower
clearance, resulting in prolonged retention of high local
concentrations of deposited carcinogens. Although
there is no direct evidence that ineffectual clearance is
a contributory factor to the development of broncho-
genic carcinoma, a causal relation has been suggested
between adenocarcinoma and sites of local particle re-
tention and inadequate clearance in the nasal passages
of furniture workers (77,78).
There is accumulating evidence that dysfunction of

bronchial clearance plays a role in the pathogenesis of
chronic bronchitis. Mucus transport is impaired in bron-
chitic individuals (79). In addition, although there is
much interindividual variability in the rate at which
healthy humans clear deposited particles from the
lungs, cigarette smokers and persons with chronic ob-
structive pulmonary disease exhibit a somewhat wider
variation (80,81). In such groups, the within-subject
variation is also greatly increased, suggesting that a
loss of control of mucociliary transport could cause and/
or result from disease.

Mucociliary dysfunction may be an early indication of

impending disease. For example, retarded clearance
has been demonstrated in bronchitics who showed no
sign of airway obstruction (82), while young smokers
having various degrees ofimpairment of tracheal mucus
transport rates had no overt bronchitic symptoms and
had normal pulmonary function (83). Schlesinger et al.
(43) showed, in an experimental animal, that small
changes in bronchial mucociliary clearance rates may
be associated with secretory epithelial changes in small
bronchi and bronchioles. Whether these physiological
and histological changes merely predispose to chronic
bronchitis or are the actual initiating events in a path-
ogenic sequence remains a question, since the observed
response of the mucociliary system may have merely
been adaptive. However, pathological changes appear
when adaptive capacity is overloaded. Thus, in a path-
ogenic scheme for chronic bronchitis proposed by Albert
et al. (80), chronic irritant inhalation initially results in
an acceleration of clearance as excess mucus is pro-
duced, but continued increases in the level of secretion
result in an overloading of the mucus transport system,
retarding clearance and leading to disease.
The hypothesis for a role of H2SO4 in the development

of chronic bronchitis is supported by a comparison of
results from studies of submicrometer H2SO4 mist and
cigarette-smoke exposures conducted in this laboratory
(24); the latter is an agent known to be involved in the
etiology ofhuman chronic bronchitis. The effects of both
cigarette smoke and H2SO4 on bronchial mucociliary
clearance patterns were found to be essentially the same
following either single or intermittent exposures.
The pathogenic implications for lung disease of alter-

ations in clearance from the alveolar region are even
cloudier than those for mucociliary clearance. Alveolar
clearance rates appear to be reduced in people with
chronic obstructive lung disease (84) and in cigarette
smokers (85,86), suggesting some relation between al-
tered defense and disease development. Alveolar clear-
ance dysfunction has also been demonstrated in exper-
imental animals having viral infections (86).
A major role in rapid clearance from the alveolar re-

gion is played by the alveolar macrophage. The ade-
quate performance of macrophages is critical in deter-
mining the effectiveness of pulmonary region defense
in minimizing the residence time of deposited toxicants.
For example, phagocytosis may prevent toxicant entry
into the interstitial tissue of the lung, a region from
which clearance is very slow; accumulations of several
types of dust have been directly linked to the devel-
opment of lung disease. Dysfunction of macrophages is
associated with an increased risk of viral and bacterial
infections (4). Furthermore, the viability and functional
activity of macrophages is impaired in people with
asthma (87).
Although the major function of the macrophage is

protective, these cells are likely involved in the path-
ogenesis of two classes of chronic disease, namely, in-
terstitial fibrosis and emphysema (5,46,88-90). Disease
development may be related not only to actual cell dam-
age or dysfunction, but may be the result of the mac-
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rophage pursuing its protective role after exposure to
noxious materials. Contact with an inhaled agent may
result in macrophage activation, and it is during the
period when these cells are activated that they may play
a role in the pathogenesis of these lung diseases (90).
For example, evidence suggests that cigarette smokers'
lungs contain greater numbers of macrophages and in-
flammatory cells, i.e., neutrophils, than do those of
nonsmokers, and that these macrophages are in an ac-
tivated state (5). Activation involves the release of nu-
merous biologically active materials, plus recruitment
of inflammatory cells. These latter are themselves a
source of potent mediators of tissue degradation, e.g.,
proteases. Thus, inflammation, while an essential re-
sponse in defense of the lungs, is also likely involved in
chronic disease development.

Epilogue
The respiratory tract has an array of intricate and

interlocking specific and nonspecific defense mecha-
nisms to detoxify and physically remove inhaled ma-
terial via cellular and acellular processes. Inhaled acids
may impair these defenses, leading to increased sys-
temic absorption of inhaled materials, or increasing the
susceptibility to acute and chronic respiratory disease.
The bronchial mucociliary clearance system is sensi-

tive to inhaled acids; fairly low levels of strong acids
such as H2SO4, not greatly above current ambient lev-
els, may produce alterations in mucociliary transport,
perhaps an early sign of pulmonary dysfunction, in pre-
viously healthy individuals. Although transient excur-
sions from the norm may be adaptive, helping to main-
tain organ homeostasis, these changes are more likely
a patho-physiological response of the airways, and such
changes may foreshadow more permanent alterations
or progressive changes following continued exposures.
Exposures to acids, in particular H2S04, may alter

the rate of clearance from the alveolar region, by af-
fecting certain functions of the alveolar macrophage.
But since inhalation of 1 mg/m3 for 1 hr accelerated
alveolar clearance and retarded mucociliary clearance,
it is still not clear how these two defense systems are
coupled. Although the implications of altered alveolar
clearance are not certain, the production of a persistent
inflammatory response could predispose the lung to
chronic disease.
Almost all of the data concerning inhaled acid effects

upon lung defense involve acid sulfates. A major gap
exists concerning the effects of inhaled acidic nitrogen
oxides, e.g., HNO2 and HNO3, which may be formed
in the atmosphere from NO2. In addition, these acids
may be formed from inhaled NO2 which deposits upon
the liquid surfaces of the lungs.

Since a competent system of defenses is essential to
host well-being, an understanding ofhow they maintain
operation under environmental assault is necessary in-
formation in the attempt to clarify the pathogenesis of
environmentally induced pulmonary (and, perhaps, sys-
temic) disease.
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