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Application of Tumor, Bacterial and
Parasite Susceptibility Assays to Study
Immune Alterations Induced by
Environmental Chemicals
by Jack H. Dean,* Michael 1. Luster,t Gary A. Boorman,*
Robert W. Leubket and Lloyd D. Lauer*

Model systems to study the effects of chemicals of environmental concern on bacterial and
parasitic diseases as well as the immunosurveillance and destruction of transplantable tumor
cells were described and evaluated. Studies were conducted in female B6C3F1 mice following
adult or pre/postnatal exposure to several prototype chemicals. The prototype chemicals em-
ployed included the synthetic estrogen diethylstilbestrol (DES), the polycyclic aromatic hydro-
carbon benzo(a)pyrene (B[a]P), and the carcinogenesis promoting agent 12-0-tetradecanoyl-
phorbol-13-0-acetate (TPA).
The host resistance models employed depend primarily on functional thymus-dependent

immunity, although humoral immunity is suggested to have a role in the parasite model as well.
These models include: subcutaneous challenge with a dose of PYB6 tumor cell causing a 10-20%o
incidence (TD1-20) of tumor; intravenous challenge with B16 melanoma cells; challenge with a
dose of Listeria monocytogenes causing a 10-20% incidence of mortality (LD1 -20); challenge with
a dose of E. coli lipopolysaccharide endotoxin causing a 10-20o incidence of lethality (LD1020);
and challenge with larvae of Trichinella spiralis for parasite expulsion kinetic studies.

Increased mortality was observed following Listeria monocytogenes challenge in DES-exposed
mice. B(a)P and TPA exposure did not alter host resistance to this organism. The increased
mortality observed following DES was associated with a significant increase in the number of
viable Listeria in the spleens and livers at 4 days, a time when T-cell immunity is thought to be
expressed, but bacterial counts were similar to control mice at day 1, a time when MO are
thought to exert their greatest effect. These data suggest that the increased Listeria susceptibility
found following DES exposure may result from a T-cell defect, although the intracellular killing
capacity of DES-treated MO's has not been well examined.
Tumor susceptibility studies following challenge with 5 x 103 viable syngeneic PYB6 tumor

cells revealed that nontreated adult B6C3F1 mice resisted tumor formation, with only a 10-20%
incidence of tumor formation. In contrast, mice exposed to DES or TPA as adults had a tumor
frequency of from 70-100% following TPA and up to 90% following DES exposure. In all cases the
tumors were progressive and resulted in death. B(a)P did not alter the frequency of tumor
incidence from controls in this model.
Preliminary data, using the B16 melanoma intravenous challenge model and 125IUdR to

quantitate tumor mass revealed this model was sensitive to non-specifically activated macro-
phage kill. DES treated mice with activated macrophages did not demonstrate increased tumor
mass, while mice exposed to TPA or the potent immunosuppressive agent cyclophosphamide had
a significantly increased tumor mass in their lungs.

*National Toxicology Program, National Institute of Envi- tLaboratory of Environmental Chemistry, National Institute
ronmental Health Sciences, National Institutes of Health, P.O. of Environmental Health Sciences, Research Triangle Park,
Box 12233, Research Triangle Park, North Carolina 27709. North Carolina 27709.
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Expulsion of Trichinella spiralis adults from the gut also apparently required functional
T-cells and possibly some element of humoral immunity. Mice exposed to DES and B(a)P
exhibited increased numbers of adult worms in the gut at day 14.

Sensitivity to gram-negative endotoxin (LPS) was apparently increased following exposure to
DES or B(a)P. These data suggest that the detoxification of LPS is related to an intact M4
population. The data presented here demonstrate the sensitivity of the host resistance assay
panel proposed for detecting immune alteration. Alteration of T-cell function appeared to
correlate with increased susceptibility to bacterial and tumor cell challenge.

Introduction
During the past few years there has been a

renaissance of interest in the development of sensi-
tive and reproducible rodent host resistance models
to define immunological dysfunction following ex-
posure to drugs or chemicals of environmental con-
cern. These assays are needed to improve the data
base for the safety assessment of these agents and
to provide better correlates with the numerous in
vitro assays of immunological function. This inter-
est in providing better correlation and interpreta-
tion between an alteration in one or several
measurable immunological parameters and host re-
sistance effects, stems from the well known associ-
ation between congenital immunodeficiency syn-
dromes and an increased frequency of neoplasia (1,
2) or infectious diseases. In addition, renal trans-
plant patients maintained on chronic therapy with
hydrocortisone or immunosuppressive agents to sus-
tain an allograft have been shown to have a much
higher (2.5 x) frequency of solid tumors and an
increased frequency of infectious disease (3, 4).
Several groups (5, 6) have observed a correlation
between depressed delayed cutaneous hypersensi-
tivity responses (DHR) to recall antigens (i.e., par-
tial or complete anergy) and an increased frequency
of bacterial sepsis and mortality following major
surgery. Collectively these clinical and epidemio-
logical data support a strong association between
immune dysfunction and altered host resistance.

Altered immunological function, as indicated by
the inability to be sensitized for DHR to recall
antigens and increased susceptibility to certain in-
fectious agents have likewise been observed in con-
genital athymic nude (nu/nu) mice (7, 8) and rats
(rnu/mu) (9). Likewise, Law et al. (10) observed
that neonatal thymectomy increased the suscepti-
bility of mice to polyoma virus induced tumors. The
application of immunologic and host resistance as-
says to study rodents following exposure to chemi-
cals has indicated that certain chemicals can result
in immune dysfunction (11-13). In addition, such
exposure often leads to altered host resistance to
bacteria (14, 15), viruses (16-18), parasites (19, 20),
or transplantable syngenic tumor cells (20-22) as
well as spontaneous tumors (23, 24).
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Although there is general agreement that severely
depressed cell-mediated immunity (CMI) or humoral-
mediated immunity (HMI) results in altered host
susceptibility to infectious agents, there is no gen-
eral agreement regarding the effects of subtle or
chronic immunosuppression nor is there agreement
about which measurable immunological function(s)
most consistently predicts altered host resistance.
The recent emphasis on evaluating chemical induced
immunotoxicity has resulted in a concerted effort to
optimize the sensitivity and reproducibility of these
models, to re-examine the application of these mod-
els and to improve the data base regarding their
correlation with other immune function parameters
which are readily measured in vitro. These pursuits
have been a major goal of our laboratory and will be
described here.

Operative Immunological
Mechanisms for Resistance to
Bacterial Infections and Neoplasia

Bacterial infections are classified as either acute,
chronic or toxigenic. The former is illustrated by
Staphylococcus or Streptococcus infections in which
non-specific phagocytic mechanisms and later specific
antibody mediated mechanisms are primarily oper-
ative (Fig. 1). Antibodies serves to enhance the
phagocytosis and killing of pathogenic micro-
organisms by polymorphonuclear leukocytes (PMN)
and macrophages (M4) through opsonization or neu-
tralization of specific bacterial toxins by preventing
binding of the toxin to their specific receptors.
Chronic infections, caused by organisms such as
Listeria monocytogenes or Mycobacterium tuber-
culosis, that are facilitative intracellular pathogens
multiply within the phagocytic cell and thus pre-
vent PMN killing. CMI enhances the killing efficiency
of the macrophage in these infections through
lymphokines such as macrophage chemotactic fac-
tor (CF), macrophage migration inhibition factors
(MIF) and macrophage activation factor (MAF).
Ultimately, CMI plays the primary role in the
control and eradication of these often persistent
and chronic agents (Fig. 1). Toxigenic infections
result from the production of toxins by certain
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FIGURE 1. Diagrammatic representation of host resistance to bacteria indicating roles played by cell-mediated and humoral immunity.

bacteria and require the production of specific anti-
body for their neutralization (e.g., tetanus toxin)
with little if any role played by CMI.
An imbalance or transient dysfunction of the

immune surveillance mechanisms is believed to fa-
cilitate the development of neoplastic disease (25).
For example, a newly transformed or transplanted
tumor cell may present a foreign antigenic con-
figuration to the host who in turn develops an
immunological response designed to eradicate the
tumor cell. This response is believed to be similar to
that mounted against an allograft and its relatively
weak antigens associated with the tumor cell mem-
brane is predominantly T-lymphocyte-dependent,
involves a cascade of cell types and events collec-
tively known as cell-mediated immunity and culmi-
nates in the production of T-effector cells and
activated macrophages (26).

Chemicals, Exposures and
Assay Methods
We have investigated several chemicals of envi-

ronmental concern by short term exposure in adult
February 1982

female B6C3F1 mice. Diethylstilbestrol (DES) was
obtained from Sigma Chemical Company (St. Louis,
Mo). Female B6C3F1 mice, 6 to 8 weeks old, exclu-
sive of the control group were injected subcutane-
ously (sc) with 0.2, 2 or 8 mg/kg body weight of
DES dissolved in 0.1 ml of corn oil for five consecu-
tive days. Benzo(a)pyrene [B(a)P] was kindly sup-
plied by Dr. Douglas Walters through the NTP
chemical repository and administered in corn oil by
sc injections. Adult female B6C3F1 mice received a
total dose of 50, 200 or 400 mg/kg body weight of
B(a)P over a 14-day period exclusive of controls.
The phorbol ester, TPA (12-0-tetradecanoylphorbol-
13-0-acetate) was obtained from Chemicals for Can-
cer Research (Eden Prairie, MN), dissolved in corn
oil and administered by sc injections. Adult female
B6C3F1 mice received a total dose of 40, 400 or 800
p,g of TPA over a 14 day period exclusive of con-
trols. Control mice for the dosage groups described
above received corn oil (0.1 ml) on the same sched-
ule as chemically treated groups in each case. Im-
munological and host resistance studies were
performed 2-5 days following the last dose.
The battery of assays employed for host resis-

tance evaluation has been previously described in
detail by Dean and co-workers (13, 21, 27).
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Altered Resistance to Tumor
Cell Challenge Following
Chemical Exposure

In normal mice most transplantable syngeneic
tumors can be titrated to a cell concentration that
will produce tumors in 100% (TD100), 50% (TD50) or
10% (TD10) of the challenged mice. Treatment of
mice with known immunosuppressive agents which
alter thymus-dependent lymphocyte numbers or
function prior to tumor cell challenge will result in a
significantly higher frequency of tumors (21).
Conversely, agents which stimulate immunologic
function will facilitate resistance to tumor develop-
ment in mice given a TD80_100 dose of tumor cells.
These same agents will likewise facilitate or dimin-
ish the frequency or latency (i.e., time to tumor
development) of spontaneous tumor in high risk
mouse strains. Table 1 summarizes the effect of
DES, B(a)P and TPA exposure in adult female
B6C3F1 mice on the incidence of tumors following a
TD1>20 challenge dose of 5 x 103 viable PYB6
tumor cells. A significantly increased frequency (p
< 0.05) of tumors was observed in mice exposed to
the medium (80%) and high (90%) dose of DES and

Table 1. Effect of chemical exposure on tumor frequency
following challenge with PYB6 tumor cells.

No. tumorsa
Chemical Total No. mice Tumor
treatment dose challenged frequency, %

DESb 0 2/10 20
1.0 mg/kg 3/10 30

10.0 mg/kg 8/10C 80
40.0 mg/kg 9/10C 90

B(a)pd 0 2/10 20
50 mg/kg 2/10 20

200 mg/kg 2/10 20
400 mg/kg 1/10 10
800 mg/kg 2/10 20

TPAe 0 4/20 20
40 ,ug/mouse 8/10c 80
400,ug/mouse 7/10 70
800 ,g/mouse 8/8C 100

aMice were challenged subcutaneously with 5 x 103 syngeneic
PYB6 cells 3 days following the last exposure and palpated twice
weekly for 60 days.

bMice were treated with 0.2, 2 and 8 mg/kg diethylstilbestrol
(DES) (Sigma Chemical Co.) in corn oil daily for 5 days and
assays were performed on days 7-10.

cThe tumor frequency was significantly different from corn oil
treated controls by chi-square analysis at p < 0.05.

dMice were given 5, 20, 40 and 80 mg/kg of benzo(a)pyrene
(B(a)P) in corn oil by gavage for 10 treatments over a 14 day
period.

eMice were injected subcutaneously with 10, 100 and 200 ,ug of
the phorbol ester TPA (12-0-tetradecanoyl-phorbol-13-0-acetate)
dissolved in corn oil twice weekly for 2 weeks.

84

all doses of TPA (70-100%). B(a)P exposure did not
modulate the out-growth or development of this
tumor. These results are consistent with the immu-
nological alterations reported in the companion pre-
sentation (28) which indicated that DES and TPA
effect predominantly T-cell mediated immune func-
tion while B(a)P exposure alters primarily the HMI
response.

Previous studies (29) in both male and female
C3H mice demonstrated a significant increased
dose-related incidence of spontaneous mammary
tumors following DES exposure. They likewise (29)
demonstrated a requirement for murine mammary
tumor virus (MMTV) for the mammary tumor in-
ductive effects of DES. The incidence of spontane-
ous mammary tumors following DES was additionally
enhanced by radiation exposure, another agent which
alters T-cell function (30). In addition, Bern et al.
(31) found that neonatal exposure to estrogens like-
wise gave an increased incidence and earlier
appearance of mammary tumors. McMartin et al.
(32) has suggested that the effect of DES on mam-
mary tumor incidence is via the stimulation of pitu-
itary and serum prolactin which in turn stimulates
MMTV production. However, it is possible that
impairment of T-cell immunocompetence or Mf
function is a major cofactor in the enhancement of
mammary tumor frequency following DES expo-
sure and accounts for the increased tumor frequen-
cy we have observed following DES exposure (20).
This speculation is supported by the knowledge
that a potent immunosuppressive drug such as
cyclophosphamide enhances the frequency of mam-
mary tumors in low MMTV expressor strains
(BALB/c-CRGL) (Lopez, personal communication).
B(a)P failed to alter susceptibility of B6C3F1

mice to challenge with PYB6 tumor cells. This was
consistent with the observation reported in this
volume (28) and previously (33-35) that B(a)P pri-
marily affects B-cell response. Immunity to virus
and chemically induced tumors is primarily mediat-
ed by cell-mediated and not humoral immunity (10,
36). The previous reports of an association between
depressed humoral antibody responses and increased
tumor frequency in B(a)P-treated mice (34) proba-
bly represent separate nonassociated events based
on the minimal alterations in immunological and
host resistance parameters observed in our com-
prehensive study.

Finally, TPA induced a statistically increased
frequency in the outgrowth of PYB6 tumors fol-
lowing challenge. This is consistent with prelimi-
nary data which indicates that the concentration of
TPA that altered tumor outgrowth likewise affects
T-cell mediated immunity.

In a search for a more rapid and quantitative
Environmental Health Perspectives



Table 2. Effect of chemical exposure on the growth of B16 melanoma in the lung following intravenous challenge.

B 16 melanoma X cpm of 3H-TdR incor- Change in 3H-TdR over
challenge Chemical treatment Colonies/lung poration + SEMa control, %b

- None 0 239± 15
+ Corn Oil 8 465 138 +95
+ CY (180 mg/kg) >50 6359 ± 873C +2550
+ DES (10 mg/kg) 0 296 32 +23
+ TPA (400 ,ug/mouse) >50 1808 ± 429c + 653

aSix mice per group were injected with 5 x 104 B16F10 melanoma cells by the intravenous route 3-5 days following the last exposure
(day 0). All mice received 1 mg ofFUDR on day 20 following at 1 hr by approximately 1 x 106 CPM of 125IUdR (IP) and were sacrificed
18-20 hr later. The lungs were perfused with saline, placed in a counting tube and counted for 10 min in a Packard Biogamma Counter.
The data are expressed as mean counts per minute (x CPM) of 3H-TdR incorporation ± standard error of the mean (SEM) from six
mice/group.
b% Change - x (cpm) of '25IUDR in the lungs of non-tumored mice - 1 x 100

x (cpm) of 125IUDR in the lungs of treated and tumored mice
cSignificantly different from mean CPM in control mice at p < 0.01 by Student's t-test.

method of assessing tumor resistance we have used
an '25IUdR (125I-iododeoxyuridine) pulsing technique
(27) to quantitate tumor mass in the lungs of chemi-
cal treated mice at 21 days following an intravenous
challenge with the B16F10 melanoma line of Fidler
(37). In this assay mice are challenged with 5 x 104
viable tumor cells at 2-3 days following their last
dose of chemical. This model assumes that normal
surveillance and immunological mechanisms operat-
ing systemically in the lungs of mice resist or de-
stroy a large portion of the tumor cell inoculum.
The remaining tumor cells which escape surveil-
lance primarily develop foci in the lungs, appearing
as a black mass of tumor which can easily be
enumerated. Treated and tumored mice are then
injected with approximately 1 x 106 cpm of 125IUdR
on day 20 following tumor cell injection and the
lungs are removed on day 21, perfused with saline,
and the amount of 125IUdR incorporation deter-
mined by a gamma counter.

Table 2 summarizes preliminary studies of the
lung tumor mass found in B6C3F1 mice following
exposure to the standard immunosuppressive agent
cyclophosphamide (CY, 180 mg/kg) and the chemi-
cals DES (10 mg/kg) and TPA (200 jig) followed by
challenge with B16F10 melanoma cells. As expect-
ed, an immunosuppressive dose of CY resulted in a
2500-fold increase in tumor mass as estimated by
125IUdR and TPA exposure resulted in a 653-fold
increase in tumor mass. These data roughly corre-
lated with the number of colonies seen on the
surface of the lungs (i.e., 8 versus > 50). Corn oil
(i.e., carrier) or DES did not significantly increase
lung tumor mass, in fact DES treated mice had a
lower incorporation rate than controls. This appar-
ent paradox produced by DES in this model may be
due to the exquisite sensitivity of the B16F10 tumor
line to nonspecifically activated macrophage cyto-
toxicity (37) and the potency of DES as a MO
February 1982

activator (38, 39). Morahan et al. (40) have pre-
viously shown that low MW pyran copolymers will
potentiate the tumorcidal activity of macrophages
against the transplantable form of B16 melanoma.
Our interpretation of increased susceptibility to
B16F10 tumor cells in CY and TPA treated mice is
consistent with the adverse effect of both CY (28)
and TPA (41) on T-cell mediated immunity. B(a)P
has not yet been examined in this model. This
model may also be a useful procedure for screening
chemicals suspected of immunopotentiatory effects.

Altered Susceptibility to Listeria
Infections Following
Chemical Exposure
The role of immunocompetent T-cells and macro-

phages in controlling the intracellular replication
and destruction of the gram positive bacteria Listeria
monocytogenes has been well documented (42, 43).
Recently, Newborg and North (44) re-examined
this model using nude mice and found that survival
during listeriosis ultimately requires the genera-
tion of T-cell mediated immunity. In our studies,
control and chemical treated mice were challenged
with 1 x 106 viable Listeria which produced a
mortality frequency ofapproximately 10-20% (LD10-)
in normal B6C3F1 mice. Table 3 summarizes mor-
tality following Listeria challenge in mice exposed
to DES, B(a)P and TPA. DES significantly reduced
resistance to Listeria at all doses of chemicals (i.e.,
100% mortality). The mean latency to death was
likewise reduced. In contrast, B(a)P and TPA did
not significantly alter Listeria resistance.
The increased mortality we observed following

DES was associated with a significant increase in
the number of viable Listeria in the spleens and
livers at 4 days (20), a time when T-cell immunity is
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Table 3. Effect of chemical exposure on mortality to Listeria
monocytogenes challenge.a

No. deaths

Chemical Dose No. inoculated Mortality, %

DES 0 2/10 20
1.0 mg/kg lo/job 100

10.0 mg/kg lo/job 100
40.0 mg/kg lo/job 100

B(a)P 0 0/10 0
50 mg/kg 1/10 10

200 mg/kg 0/10 0
400 mg/kg 2/10 20

TPA 0 4/23 17
40,ug 0/10 0
400,g 0/10 0
800 Rg 0/10 0

aAnimals were challenged with 1 x 106 viable bacteria and
mortality followed in 14 days.

bSignificantly different from control mice by chi-square analy-
sis.

thought to be expressed. Bacterial numbers similar
to control mice were observed at day 1 post-infection,
a time when M( are thought to exert their greatest
effect. In a previous study, Heller (45) found that
synthetic estrogens increased phagocytosis, but that
enhanced phagocytosis did not result in enhanced
protection against microbial infection. Thus, the
altered resistance to Listeria observed appears to
be related to the functional T-cell defect observed
following DES and reported in the companion pre-
sentation (46). B(a)P was not expected to alter
resistance to Listeria since antibodies have no defined
role in controlling listerosis (44) and B(a)P primari-
ly effects B-cell function (34, 41). In contrast, the
lack of effect of TPA on Listeria resistance was
unexpected since in preliminary studies TPA al-
tered T-cell function and increased the susceptibili-
ty to PYB6 tumor cells. Thus, the T-cell dysfunction
observed following TPA appears to be unique to
tumor resistance. This observation awaits confirm-
ation and definition through further studies.

Altered Hypersensitivity to
Endotoxin Following Exposure
The detoxification of gram negative bacterial en-

dotoxin is believed accomplished primarily by liver
macrophages (47) and endotoxin challenge is thought
to mimic the response to gram-negative bacteria.
Increased sensitivity to endotoxin has been observed
following the administration ofknown reticuloendo-
thelial system stimulants such as glucan and zymozan
or certain environmental chemicals (11). In the
studies described here, B6C3F1 mice were chal-
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Table 4. Effects of chemical exposure on endotoxin hypersen-
sitivity.

Mortality, %a
Chemical Control Low Medium High

DES 0 67b gob 44
B(a)P 0 30 40 80b
TPA 0 10 0 10

aAfter 48 hr in mice challenged with 650 jig of E. coli
endotoxin.

bSignificantly different from control by chi-square analysis at
p < 0.05.

lenged intravenously with 650 ,ug of Escherichia
coli endotoxin 2-3 days following the last chemical
dose and animal survival was observed for 48 hours.
Table 4 summarizes mortality at 48 hr following
challenge with endotoxin in mice exposed to DES,
B(a)P and TPA. Mortality was significantly increased
(44-90%) in DES treated mice. B(a)P treated mice
likewise had increased mortality following endotox-
in challenge (30-80%). TPA treated mice did not
have increased hypersensitivity to endotoxin. The
pattern of increased endotoxin sensitivity following
chemical treatment appears to remain ill-defined
correlating with M4) alterations in the case of DES.
Significantly increased mortality to endotoxin fol-
lowing B(a)P exposure only at the high dose may
reflect macrophage toxicity. Thus, hypersensitivity
to endotoxin appears to offer a sensitivity indicator
of chemical immunotoxicity.

Altered Expulsion of Adult
Trichinella Following
Chemical Exposure
The role of T-cell mediated immunity in the ex-

pulsion of adult Trichinella spiralis has been clear-
ly shown by Larsh and associates (48). In this
model mice are challenged with 200 larvae following
chemical exposure and are then sacrificed on day 14
and the number of adult worms in the gut are
enumerated. Table 5 summarizes adult worm counts
following exposure to DES, B(a)P and TPA in
B6C3F1 mice. DES treated mice had a significantly
greater number of adult worms (p < 0.01) in their
gut at day 14 than did control mice. These data
demonstrate that DES treatment of naive mice
prior to larvae challenge reduced the normal expul-
sion of adult worms (63%) and substantiated the
role of T-cell immunocompetence in eradicating the
host of adult worms. Similarly, nude mice have
been shown to have reduced expulsion rates with
adult worms lingering for up to 83 days (49). B(a)P

Environmental Health Perspectives



Table 5. Effect of chemical exposure on Trichinella spiralis
expulsion.

Chemical Dose, Adults % of
treatment mg/kg recovereda control,b

DES 0 1.1 t 0.8 0.7
1.0 0.9 t 0.5 0.6

40 96.0 t 14.7c 62.8
B(a)P 0 1.3 t 0.7 1.4

50 3.0 t 1.0 3.3
200 5.0 ± 0.7d 6.4
400 49.8 ± 12.6c 54.2

TPA 0 4.8 ± 2.5 4.3
40 7.5 ± 3.5 6.7
400 1.5 ± 1.1 1.3
800 5.8 ± 3.4 5.2

aAverage adult counts ± SEM of 7 mice/group examined at 14
days post-infection.
b% Control = % of adult worm remaining at day 14 versus

controls killed on day 7.
'Significantly different by Student's t-test at p < 0.001.
dSigrnificantly different by Student's t-test at p < 0.01.

also reduced parasite expulsion (54%), at the two
highest doses administered. This finding may sug-
gest that humoral immunocompetence is also re-
quired for efficient expulsion. Finally, TPA had no
effect on adult worm expulsion.

Conclusion
In conclusion, the studies described here demon-

strate that adult exposure of female B6C3F1 mice
to various chemicals can severely impair host resis-
tance to syngeneic tumor cells, Listeria, endotoxin
and T. spiralis challenge. These studies also point
out the sensitivity of and significance of examining
host resistance parameters when evaluating the
immunotoxicity of environmental chemicals or drugs.
The study of chemical toxicity might also provide a
powerful tool for dissecting mechanisms of altered
host resistance and immunocompetence. The data
presented in this and the companion report (28)
strongly suggest that exposure of adult mice to
DES, B(a)P or TPA can result in thymus atrophy,
impaired DHR responses, impaired T-cell respons-
es in vitro, impaired AB production, and enhanced
in vitro peritoneal macrophage activity as measured
by phagocytosis and cytostasis of tumor target
cells. The host resistance models described are
strongly dependent on depressed T-lymphocyte im-
munocompetence if effects are to be observed, al-
though a secondary specific defect in peritoneal M4
function (i.e., associated with DES) cannot be ruled
out and will require further clarification through
more specific in vitro examination of the intracellu-
lar killing capacity of macrophages from exposed

mice. Finally, these assays appear quite sensitive
for detecting chemical induced immune dysfunction.

The authors greatly appreciate the assistance of Ms. Beth
deBrito in the preparation of this manuscript.
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