
Supporting Text

PageRank Definition and Computation. Search engines
use topological prestige measures to express the quality of
pages, so that they can sort search results according to their
importance along with various query relevance factors. One
possibility is to weigh a web page according to the number of
other pages that point to it, i.e., its in-degree. This represents
the easiest option: the in-degree is a local quantity whose
value can be updated with the least computational effort. On
the other hand, just because the in-degree is a local criterion,
it does not take into account the correlation between the
quality of pages which point to one another. Two pages with
the same in-degree would have the same prestige no matter
how “good” the pages that point to them.

The prestige measure used by Google, called PageRank,
takes into account this important aspect in the quality eval-
uation. The question is shifted from a local to a global per-
spective. One does not want to know how easy it is to reach
a page from its neighbourhood, but rather how easy it is
to reach the page if one randomly crawls through the Web.
Google basically simulates a random walk through the (di-
rected) links of the web graph. A simple random walk would
have however two drawbacks:

• Pages with no incoming links would have a zero asymp-
totic probability to be visited.

• The walkers would concentrate in the sites without out-
going links (dangling links).

To eliminate these drawbacks, the inventors of Google
introduced a probability q for the walker to jump at any
time step from the page it is sitting on to a random page of
the Web. PageRank is, therefore, the stationary probability
of a mixed process, that consists of a random walk and a
random scattering from a generic site to any other. Let p(i)
be the PageRank of the web page i. The vector p satisfies
the following self-consistent system of relations:

p(i) =
q

N
+ (1− q)

r∑
j=1

p(ij)/c(ij) i = 1, 2, . . . , N (9)
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where N is the total number of pages, i1, i2, . . . , ir are the
pages that point to i, and c(j) the outdegree of page j. This
is equivalent to solving the eigenvalue problem for the transi-
tion matrix M, whose element Mij is given by the following
expression:

Mij =
q

N
+ (1− q)

1
c(j)

Aji, (10)

where A is the adjacency matrix of the web graph (Aji = 1
if there is a link from j to i, otherwise Aji = 0). In fact, p is
just the principal eigenvector of M. If c(j) = 0, the second
term on the rhs of Eq. 10 would have no meaning. In this
special case (dangling link), we drop the term for all i 6= j,
and we add the probability 1−q when i = j. This is the most
natural way to proceed: if the crawler reaches a dangling link
j, it cannot reach any other site by following links, so it will
stay trapped in j with probability 1 − q, or it will leap to a
random page (possibly j itself) with probability q.

The stationary probability of the process described by
M is given by its principal eigenvector. Its calculation is a
standard problem of numerical analysis and can be achieved
by repeteadly applying the matrix M to a generic vector p0

not orthogonal to p. It is easy to show that 1 = λ0 ≥ λ1 ≥
... ≥ λN (λ’s being the eigenvalues of M) , and therefore
limn→∞Mnp0 = p.

In practical applications, it turns out that ≈ 100 iter-
ations suffice to calculate the PageRank of a network with
107 − 108 vertices.

The Vicious Cycle. To understand the potential danger of
the popularity bias introduced by search engines, let us envi-
sion a scenario in which people search for information about
the minollo (an imaginary animal). Imagine that there is
an established site minollo-recipes.com about the minollo
and its culinary qualities. Further imagine a newly devel-
oped site save-the-minollo.org holding the view that the
minollo is an endangered species and it should no longer be
hunted. Now, suppose a student is assigned the homework of
creating a web page with a report on the minollo. The stu-
dent will submit the query “minollo” to a search engine and
browse the top 10 hits. Let’s say that minollo-recipes.com
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is the fifth hit and save-the-minollo.org is ranked 15th.
The student will read the established site and write her re-
port on minollo recipes. She will not read about the pos-
sible endangered status of the minollo. She will also dili-
gently cite her source by adding a link from her new page to
minollo-recipes.com.

As a result of this process, the more established site will
have acquired a new link and increased its popularity (as
measured by PageRank). The next time someone searches
about the minollo, it will be more likely that the established
site will be ranked even higher — fourth, say. The visibility of
the less established site, on the other hand, will not increase.
Our example is a practical representation of the vicious cycle
illustrated in Fig. 7.

Hit List Size Distribution. We obtained the hit list size
distribution from a log of 200,000 actual queries submitted
to AltaVista in 2001 (Fig.5B). The data can be reasonably
well fitted by a power law with an exponential cutoff due to
the finite size of the AltaVista index. The exponent of the
power law is δ ≈ 1.1. In our Monte Carlo simulations we
neglected the exponential cutoff, and used the simple power
law

S(h, N) = B(N)h−δ (11)

where the normalization constant B(N) is just a function of
N . The cutoff would affect only the part of the distribution
S(h, N) corresponding to the largest values of h, influencing
a limited portion of the curve tS(R,N) and the click proba-
bility of the very top pages (compare with the scaling relation
of Eq. 7). As there are no real queries that return hit lists
containing all pages,∗ we have that hM < 1. To estimate
hM we divided the largest observed number of Google hits in
our collection of AltaVista queries (≈ 6.6× 108) by the total
number of pages reportedly indexed by Google (≈ 8 × 109

at data collection time), yielding hM ≈ 0.1. The top-ranked
1/hM ≈ 10 sites will have the same probability to be clicked.

∗The policy of all search engines is to display at most 1,000 hits, and
we took this into account in our simulations. This does not mean that
h ≤ 1000/N ; the search engine scans all its database and can report
millions of hits, but it will finally display only the top 1,000.
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We then expect a flattening of the portion of tS(R,N) corre-
sponding to the pages with the highest PageRank/in-degree.
This flattening seems consistent with the pattern observed in
the real data (Fig. 4C ).

Scaling Behavior of Click Probability. We start from
the ansatz of Eq. 7 for the function t(R,N, h) and the power
law form of the distribution S(h, N) (Eq. 11). If we perform
the convolution of Eq. 8, we have

tS(R, N) =
∫ hM

1/N
S(h, N)h A(N)F (Rh)dh, (12)

where we explicitly set hm = 1/N and F (Rh) is the universal
function of Eq. 7. By plugging the explicit expression of
S(h, N) from Eq. 11 into Eq. 12 and performing the change
of variable z = hN within the integral we obtain

tS(R, N) =
A(N)B(N)

N2−δ

∫ hM N

1
z1−δ F

(
R

N
z

)
dz. (13)

The upper integration limit can be safely set to infinity be-
cause hM N is very large. The integral in Eq. 13 thus be-
comes a function of the ratio R/N . The additional explicit
dependence on N , expressed by the term outside the integral,
consists in a simple multiplicative factor f(N) that does not
affect the shape of the curve (compare with Fig. 8).

We finally remark that tS(R,N) represents the relation
between the click probability and the global rank of a page as
determined by the value of its PageRank. For a comparison
with the empirical data of Fig. 4C we need a relation between
click probability and in-degree. We can relate rank to in-
degree by means of Eq. 1 between rank and PageRank and
by exploiting the proportionality between PageRank and in-
degree discussed in the main text.
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