Supporting Text

1 Full Derivation of the Systematic Perturbation Expansion

1.1 Notation

To shorten the notation, we write da(x,t) = r(z,t)dt 4+ dn(x,t), where
@ t) = f(Dxa)(t) — palz,t) — a(Cxa)(z, alz, ),

so that we may write ds(z,t) = da(z,t) — dq(t) = r(z,t)dt — dq(t) + dn(z,t). We shorten
the notation further by writing a; = a(x;,t), s; = s(x;,t), ds; = ds(x;,t), dn; = dn(z;,t) and
r; = r(x;,r). Furthermore, as we need not consider time lags while deriving the perturbation
expansion, we will drop the time ¢ from the arguments of all functions.

As described above, we denote by (G, the nth-order central moment,
Gn(z1,...2n) = E[s1---s,],

and by G} (21, . . . x,,) the nth-order residual moment, which can be considered as the novel part

of the nth-order moment. We denote by Z,, the nth-order raw moment
Zn(x1,...2,) = Ela;---ay].

As none of the moments depend on the absolute position, we may set the first spatial coordinate,

e.g., to zero without loss of generality. To do so, we define the moments g,,, g;;, and z,, by

Gn(z1,...2) = gn(va—21,... 2, — 21),
Gr(z1,...xn) = gp(ra—21,...2, — 21),
Zn(x1, .. xn) = zZp(xe —2q,... 2, — 7).

We note that as the arguments of the moments with capital letters can be freely permuted, so

can the ones with small letters. Also, the sign of any argument can be changed, if the argument



is at the same time subtracted from the other arguments, so that, e.g.,

gn(T1, . 1) = Go(—21,T2 — X1, ... Tpoq — T1).

For functions with several arguments, we denote the convolution with respect to the first argu-

ment simply by %, so that, e.g.,
(D x Gy) (w1, 22) = /C(xl —2)G(x, x9)dz.
We note the identities

(D*Ga)(z1,72) = (D*go)(w1 — 12),
(DxGs)(x1,02,73) = (D *g3)(w1 — 22,73 — 72),

(D x Gy) (21, 22,23, 24) = (D*ga)(x1 — 2, T3 — T, Ty — T2).
1.2 The Covariance of the Noise

To assess the covariance of the noise, we consider a discretization of the domain to sites of size
dzr. Assuming that a site has at time ¢ k individuals (as dx is small, we either have k£ = 0 or
k = 1), Table 1 lists the possible events that may take place before time ¢+ dt. As the noise dn) is
independent at different sites and times, we obtain E[dn(z)dn(z',t")] = V(t)§(x—a")d(t—t')dt,

where
V() = (f+malt) +aq(t)’ + R(t). )
1.3 The Decompositions of the Central Moments

We start by deriving Eqgs. 4-6 in the main text that decompose the central moments into a sum
of the lower-order moments and the residual moment. The decompositions are constructed in
such a way that the residual moments satisfy two conditions, which we call conditions (C1)

and (C2). The condition (C1) requires that the residual moment is smooth, so that it does not



contain any delta distributions. The condition (C2) requires that the residual moment vanishes

if the maximum distance between any of the points diverges.
1.3.1 The second moment

The second raw moment can be written as
Zo(x1,20) = Zj(x1,22) + qo(x1 — xa), ()
where
Z3(w1,29) = ¢+ Gi(x1,20)

refers to the case in which the two points do not coincide. To verify condition (C1), we consider
a discretization of the domain to sites of size dx, where dz is so small that each site can be
assumed to contain at most one individual. Thus, a site at x; has an individual with probability
qdx, in which case a; = 1/dz, and is empty (a; = 0) with probability 1 — qdz. If x1 = x5, we
have E(ajay) = qdz(1/dz)?. As (1/dr) translates at the limit dz — 0 to a delta distribution,
we obtain Zs(x1,z2) = ¢o(zy — x2). To see that the condition (C2) holds, we note that if
|71 — x9] — o0, then a; and ay become independent, and we should have Zs(xy, 15) — ¢,

which is true with Eq. 2. As Zs(x1, 23) = ¢* + Ga(x1, T3), we obtain Eq. 4 in the main text.
1.3.2 The third moment

The third raw moment can be written as

Z3(x1, 29, 23) = Z3(x1,22,%3) + X jkrer Ly (Ti, )0 (2 — x5)
+ qd(z1 — x2)d(21 — 3), (3)
where
Zi(w1,22,73) = ¢+ qSp merGalTi, T;) “4)

+ G;(xl,lé,x?,)



refers to the case in which none of the three points coincide. To see that condition (C1) holds,
we need to consider two cases, as either all of the points or two of the points may coincide.
First, if all the three points coincide, the reasoning goes exactly as above, and we obtain
Zs(x1, 9, x3) = qd(x1 — x9)0(x1 — x3). There are three permutations (P) by which two of the
points can coincide. For example, if 21 = x5 # x3, we have Z3(x1, 29, x3) = (q¢/dx)E[az|a; =

1/dz]. To assess the conditional expectation, we note that

Zy(x1,23) = FElayas)
= Flasla; = 0]0P(a; = 0) + Elas|a; = 1/dz|(1/dz)P(a; = 1/dx)
= qFlaslay = 1/dx],
and thus Flag|la; = 1/dz| = Z5(x1,x3)/q, which gives Z3(xy, x9, x3) = (1/dx)Z3 (21, x3) —
Z3(x1,23)0(x1 — 29).

To verify condition (C2), we may now assume that the three points are disjoint. If e.g. x;
diverges from the other points (|z; — x;| — oo for i = 2, 3), we should have Zj(zy, z2, x3) —
qZ3 (e, w3) = ¢ + qG5(wa,23), as is the case with Eq. 3 if G3(x1, 12, 23) — 0. Note
that x; diverging includes also the possibility that all of the points diverge, in which case

23(331,@,553) - q3. As
Zs(x1, w9, 03) = ¢+ 03405 kyerGa(, x5) + G321, T2, 23),
we obtain Eq. § in the main text.

1.3.3 The fourth moment

The fourth raw moment can be written as

Z4(.ZC1,ZL'2,CC3,[L‘4) - ZZ('I17$27$37$4)

+ ¢o(xy — x9)0(xy — x3)d (21 — 4)



+ SpigknerZs (@i, 1;)0(x; — 2x)d () — 1)
+ Bpigkirers 23 (Ti, Ty, 21)0(x; — ;)
+  Spigkayers 2y (@, )0 (2 — x;)8(x), — 1), (5)

where

Zi(w1, 20,23, 04) = ¢+ ¢S jener,Gy(T), Tp, 1)
+ E{iuyk,l}EPg GZ(% l’j)Gg(l’k, 961)
+ SpknerGalwi, 1))

+  Gi(71, T, T3, 74) (6)

again refers to the case in which none of the points coincide. To see that condition (C1)
holds, we need to consider four possibilities. First, if all the four points coincide, we obtain
Zy(xq, 29,3, 74) = qO(x1 — x9)0(x1 — x3)0(1 — x4). Second, three of the points may co-
incide, for which option there are P, permutations. For example, if z1 # x5 = 13 = x4, We
have Zy(x1, T2, 73, 14) = (q/dz?)Elai|as = 1/dz] = (1/dx?*)Z5 (21, 23) — Z5(x1,79)0 (22 —
x3)d(x2 — x4). Third, two of the points may coincide, while the other two are separate. For
this option the relevant permutations are given by Fs. For example, if 21 = x5 while 3 # x4,
xg # x1 and x4 # 1, we have Zy(xy, x9, 23, 24) = (¢/dx)Elagasla; = 1/dzx]. To assess the

conditional expectation, we note that
Zi (1, x3,24) = Elajasay]
= Flagasla; = 0]0P(a; = 0) + Elasaq|lay = 1/dz|(1/dx)P(ay = 1/dx)
= qFElaza4lay = 1/dz].
Thus, Zy(x1, X9, x3,24) = (1/dx) Z5(x1, 23, 24) — 6(x1 — 22)Z3 (21, 3, 24). The fourth al-

ternative is that there are two pairs of coinciding points, for which option the relevant permu-

tations are given by P3. For example, if 1 = xo # x3 = 14, we have Zy(x1, T2, x3,74) =



(q/dz)E|a%|a, = 1/dx]. To asses the conditional expectation, we note that
Elaglay = 1/dx] = Plag =0|a; = 1/dz]0 + Plas = 1/dz|a; = 1/dz](1/dz),
and thus
Plag = 1/dz|lay = 1/dz] = dxElas|lay = 1/dz] = (dz/q)Z5 (a1, a3),
which gives
Ela3|la; = 1/dx] = Plaz = 1/dx|a; = 1/dz](1/dx)?
= (1/q)(1/dx)Z;(ax, as).

Thus, Z4(x1, 22, 13, 24) = (1/dx)*Z; (a1, a3) — Z3(ay,a3)d(xy — 19)0(x3 — 74).

To see that condition (C2) holds, we may now assume that none of the points coincide.

There are two alternatives by which the maximum distance between the points may diverge, as

either one point may diverge from all the other points, or then a pair of points may diverge from

another pair of points. First, assume that the distance between a single point (say 1, there are P,

permutations) and the other points diverges (not restricting whether the three remaining points

stay close to each other or diverge from each other). We should have Z,(z1, 2, 3, 24)" —

qZ5(xg, x3,x4), Which is consistent with Eq. 5. Second, it may be that two pairs of points

diverge from each other (not restricting whether the points within the pairs stay close to each

other or not). For example, if x; and x5 diverge from x5 and x, (there are P; permutations), we

should have Z,(x1, xo, x3, x4)" — Z5(x1,22)Z5 (3, 4), again consistent with Eq. 5. As

Z4($1,$2,$3,$4) = C]4+Q2E{i,j,k,1}eP6G2(fEi,$j)

+ X enerGs(T), o, 1) + Ga(1, 22, 23, T4),
as

Z{i,j,k,l}eP4G3(5Eja $k7$l) = qE{i,j,k,z}eP45($j - %)5(%‘ - iEl)



+ 2{i,j,k,l}€P4G§<xj; Tk, T7)
+  Xpijrnyers |Gy (@i, i) + Gy (i, 27)]0(2; — x;5),
and as
Nfigtyers Zs (Lo, Tr, 21)0(2; — ;)
= qu{i,j,k,z}eP65($z’ - ffj)
+ Ypijkners G (@i, x, 11)6 (v — )
+ 0B ggkners (Ga(@i o) + Go(wi, 20) + Go(an, 20)]0(2; — x;5),
we obtain Eq. 6 in the main text.

1.4 The Exact Equations for Central Moments
14.1 Mean

Using the notation of Eq. 8 in the main text,
da = [f(D*a)— pa— a(C*a)aldt + dn,
from which we get
dq = E[da(x)]
= E[f(D*a)— pa — aC % a)aldt,

and thus the exact equation for first moment (Eq. 1 in the main text) is

dq

— —_ 2_
o (f —wq—aq” —R,

where
R = aF|[(Cx*s)(x)s(x)]
= a(CxGy)(x,x)

= «a(C*g2)(0).



1.4.2 Second moment

We have

First,

Thus,

where

Second,

Thus,

ng(l’l, IEQ)

dG2($1,$2) = GQ(ZL’l,ﬁg,t + dt) — GQ(JTl,[L'Q)
= E[(s1+ds1)(s2 + dsa)] — Go(x1, x2)

= FE[s1dss] + E[s2ds1] + E[dsidss)].

E[SldSQ] = E[Sﬂ“gdt]

= E[s1(f(D*a)(xs) — pa(zs) — a(C * a)(xs)a(xs))]dt.

E[sidss)/dt = f(D*Gy)(xe,x1) — uGao(xy, x2)

— aq|Gy(x1,22) + (C*x Go)(xe, 21)] — Ra(x1, 22),

Ry(x1,20) = aE[s(z1)s(x2)(C* s)(xg)]
= a(CxG3)(x, 2, 11)

= a(Cxg3)(0,21 — xa).

Eldsidss] = E[dmdn] = V(x) — xq)dt.

dt = f[(D*GQ)(ZL’l, 1’2) + (D*GQ)(CL’Q, I1>] — 2/1@2(5(]1, l‘g)

— 2aqGy(x1,22) — aq[(C * Ga) (21, x2) + (C *x Ga) (22, 11)]

+ V(S(l’l —ZEQ) —Rg(fEl,Ig) —Rg(l’g,l‘l).



Accounting for the symmetry, we obtain

dgs(x)
dt

= 2f(D*g2)(x) — 2ng2(x) — 20q(ga2(x) + (C * g2) ()]

+ Vi(z) — 2ry(x),
where

ro(x) = Ra(2',x+2')

= «a(Cxg3)(0,z).

1.4.3 Third moment

We have
ng(.Tl, X2, 1'3) = G3(x17 T2,T3, t + dt) - G3(£17 X2, :U3)
= E|(s1+ds1)(s2 + dsa)(s3 + dss)] — G(x1, x2, 3)
= E{i,j,k}ePE[sideSk] + E{i,j,k}epE[dSideSk]
+ E[d51d52d53].
First,
Elsisjdsy] = E[s;is;jri|dt — dqE|s;s;]
= Els;s;rgldt — dgGa(x;, x;).
We have

Elsisjry] = (fq—pg — QQQ)G(%JJ')
+ fE[sisi(D« s)(xp)] — (1 + aq)Gs(wi, x5, xx)
— aqE[s;s;(C * s)(zg)] — Rs(xi, xj, v)

= (fq— pg — ag®)Gs(w;, z;)



+ f(D*Gg)(.Tk,.Ti,QJj) — (u+ Oéq)Gs(Q?i,inaxk)

— aq(C * G3) (g, v, xj) — Ra(z4, xj, ).
where

Rs(zi,zj,x,) = aE[s;sjsi(Cxs)(xy)]

= o(C*Gy)(xk, i, xj, Tp).
We write this as

Elsisjry] = (fq—pg— aqz)gz(xj — ;)
+ f(D*g3)(vp — 4,25 — ) — (p+ aq)gs(x; — x;, T — ;)

— aq(C*gs)(xp — xi, x5 — ;) — r3(wj — x4, T — T4),

where
rs(za,rg) = a(C*gs)(rp,Ta,2B).
Second,
Elds;ds;si) = Eldndn;sg] = E[V (x;)sg]d(x; — x;)dt,
where

V(z) = f(D*a)(z)+ pa(x)+ o(Cxa)(x)a(z),
and we have used the fact that E[dn;dn;si] = 0if x; # ;. We have

EV(zj)sk] = fE[sp(D*s)(x;)] + (1 + aq)Ga(z, 7))
+  aqE[si(C x s)(z;)] + Ra(zy, ;)

= f(DxGo)(aj, zp) + (1 + aq)Galw, 7))



+ aq(C* Gy)(zj, xx) + Rolay, x))

= f(Dxgo)(x; —x1) + (1 + aq)ga(x; — x3)

+ aq(C* g2)(z; — xp) + ro(z; — x1).
Finally,
Eldsidsedss] = dqd(z1 — x2)d(z1 — x3).

Combining the above components and accounting for symmetry gives

d ;
93(2;%2) Siwazprer [(fa — pg — ag®)ge(zp)
+ f(Dxg3)(wa,zp) — (1 + aq)gs(ra, )
d
~ aq(Cxgo)(wa,vs) — ralwmwa) = Zlga(ap)

+ Baapter [[(D* ga)(xa) + (1 + aq)ga(a)
+ aq(C*ga2)(za) + r2(24)]6(2B)
dgq
+ $5(l’1)(5($2)
= Yaapter [f(Dxg3)(wa,28) — (0 + aq)gs(va, vp)
— aq(C*gs3)(ra,xp) —r3(zp,z4) + Rga(z5))
+ Dpaaapier [f(D*g2)(xa) + (1 + aq)ga(za)
+ aq(Cxg2)(xa)+12(xa)]0(TB)
dgq

+ a(S(.Tl)é‘(l’Q),

where Pl = {(IQ, 2{31), ($1,LE2), (Il, Ty — .Z‘Q)}



1.5 The Exact Equations for the Residual Moments

To transform the differential equations for the central moments g» and g3 to corresponding

equations for the residual moments g5 and g3, we use the equations

g2(z) = ¢d(z)+ g5(x),

g3(x1, x2) q0(z1)d(x2) + g5(z1, x2) + Yivaanter' 9s(T4)0(TR),

ga(x1, 29, 23) = qO(x1)d(x2)0(x3) + g3(21, 22, X3)

+ Zoaapecrer;9(Ta)d(p)d(zc)
+ Bsepecierld® + 3(2a)ld(zp)d(zc)
+ Soaepacreryags(®a) + g5(xa, vp)lo(zc)
+ Z{eaapacter9s(Tr)gs (o),
where
P, = {{xo, 1,13 — 22}, {x1, 00, 13 — 21}, {71, X3, X0 — 11} },
P, = {{x1, 20, w3}, {2, 21, 23}, {23, x1, 22}, {71, 22 — 71, 23 — 11} },
Py = {{xs — 1z, —xo, 21}, {xs — 21, —21, 22}, {0 — 11, —71, 23}, {73, 11, 12 — 21},
{z2, 21,25 — 21}, {21, w2, 33 — 22} )
1.5.1 Mean
We have
Cj; = (f-wq—ag’ - R,
where

R = «aC*gy)(0)

= agC(0) + (C * g3)(0)].



1.5.2 Second moment

We obtain

where

we obtain

dgs ()

o = 2f(D x g3)(x) — 2ug5(x) — 2aq(g5(x) + (C *x g3) ()]

+ 2fqD(x) — 20¢*C(z) + 2R6(x) — 2ry().

ro(z) = a(Cxg3)(0,2) = Ré(x) + ry(x),

ry(x) = al(C*g3)(0,7) + C(x)g5(x) + C(0)gz ()],

dgs ()

2= 2f(Dxgi)(w) — 293 () — 20lg3(x) + (C* 63) (@)

+ 2fqD(z) — 20¢*C(x) — 2r}(x).

1.5.3 Third moment

We have

dg;(xla x2)

We note that

dt = Z{wA,xB}EP’{[f(D *xg3)(xa, ) — (L + aq)gs(za, zp)

— aq(C*gs)(za,rp) — r3(xp,x4) + Rga(2B)]

+ [f(D*g2)(za) + (1 + aq)ga(za)

+ aq(Cxga2)(za) +r2(T4) 7

7"3(3737 $A)

(7)



a(C* gs)(Ta,xp,24)

aqC(0)0(xp)0(xa) + a(Cx g3)(xa, 25, 2.4)

a(Cx g3)(0)6(xp)d(xa) + aC(0)g3(x5)d(24)

aC(za)gs(xa)d(xp) +aC(0)g5(va)d(xp — 2a)

aq’[C(z)0(za — wp) +C(0)d(zp) +C(z5)d(2.4)]
alC(zp)gs(vp)d(xp — xa) +C(0)g5(x4)0(x5) + C(xp)g5(28)5(2a)]
aq[C(za)gs(xa — xp) + Clep — xa)g5(2a) + C(0)g3(25)]

aq[(Cx g5)(p)d(xa) + (C % 93)(0)0(x) + (Cx g5)(z4)0(za — 25)]
alC(xa)gs(za, w5) + (Cx g3)(0,24)0(x5) + (C* g35)(0, 25)0(x4)]

a[C(wa —xp)g3(wa,v8) +C(0)g5(xa,28) + (C* g3)(0,24)0(x4 — 7B)]

+ o+ 4+ 4+ o+ 4+ o+ o+ o+

a[(CHg3)(wa)gs(wa —x5) + (Cx 93)(0)g5(x5) + (C* g3) (x5 — wa)g5 ()],
where we have used the fact that
(CHg3)(x,x) = (Cxg3)(0, ).
We also note that
(Frga)(wa) = qF(xa) +(Fxg3)(xa),
that
(Fxgs)(@a,z5) = qF(xa)d(zp) + (F *g5)(za, z5)
+ Flxa)gs(xp) + Fza — 25)g5(xn) + (F * g5)(24)0(z),

and that

93(za, ) = qd(za)d(xp) + g3(a,2B)

+ 65(28)0(xa) + g2 (x4)0(xp) + g2(24)0(24 — ).



We write Eq. 7 as

dgg (xh x?)

di = J&(ﬂ?l)é(l‘g) + ]1(1'2)5(1‘1) + 12(1'1)5(1‘2) + ]12(1’1)5(1’1 — ZL‘Q) + smooth part,

where the coefficients of the delta distributions should vanish. To see this is the case, we note

that

J = =3q(p+ aq) —3aqC(0) — 3a(C x g3)(0) + 3q(p + aq) + 3R

and that [, (z) = Iy(z) = L12(x) = I(x), where

I(x) = [flgD(x) + (D *g3)(x)] = 3(u + aq)gs(x)
— ag®(z) — aq(C x g5) ()
— 2aC(0)g;(x) — aC(x)gs(x) — aq°C(0) — 20¢”C()
— 2aC(z)gy(x) — aC(0)g3(x) — aq(C x g3)(0) — 204(C x g3) ()
— 3a(Cxg3)(0,x) + aq[qC(0) + (C * g3)(0)]
+ faD(x) + f(D*g5)(x) + (1 + aq)gs(x)
+ ag’C(z) + aq(C * g;)(x)
+ a(Cxg3)(0,2) + aC(x)g;(x) + aC(0)g;(z)
— 2f(D+g5)(x) + 2pg5(x) + 2aqlgs (x) + (C % g3)(x)]
— 2fq¢D(z) + 2a¢°C(x)
+ 2a[(C+g3)(0,2) + C(x)g5(x) + C(0)g5(x)]

= 0.

Combining the smooth terms we finally get

dg; ('rly $2)
dt



= Zpaenyer{f(D*g35)(wa,2) + [D(wa)gs(xp) + fD(xa — )95 (z5)

— (n+aq)gs(za, 2p) — aq(Cx g5)(za, w5) — aqC(ra)gs(vp) — aqC(za — 25)g5 ()
— a(Cxgi)(wa,vp,24) — aqC(wa)gs(xa — xp) + C(xp — 4)g5(xa) + C(0)g5(x5)]
— alC(za)gs(za, wp) + Clwa — x5)g5(xa, x5) + C(0)g5(xa, 25)]

— a[(Cxg3)(za)gs(xa—x8) + (Cxg3)(0)gz(p) + (Cx g3) (x5 — wa)g3(74)]

+ Rgj(zp)

= Zgeaapter{f(D*g3)(za,25) — (n+ aq)gs(za, 25) — aq(C x g5)(z4, 5)

+ f[D(za) + D(wa — 2p)lg5(xp) — 20q[C(xa) + Clxa — x5)]g5(2p)

— o[(Cxg3)(wa) + (Cxg3)(xa — wp)lgs(x5) — ri(wa, v5)},
where
r3(xa, ) = a(C*gp)(ra,7B,74)
+ alC(wa)g3(ra,28) +C(xa — xB)g3(xa,28) +C(0)g5(7a, 7B)].
1.6 The Fourier Transformed Exact Equations

To work out the systematic perturbation equation from the exact equations, it is convenient to
transform the equations to the Fourier domain. To do so, we denote by - the Fourier transform

over all spatial coordinates, so that

@) = [ gale)emrdr,
g;(wl,u&) = //gg‘(xh$2)e—2wi(w1m1+w2m2)dx2dxl7

~ % _ * —27mi(w1 1 tweretwsx
g1 (w1, wo,w3) = ///94(x1,x2,x3)6 (Wre1twazatws®s) oo o day |

We note the symmetries g5 (w1, ws) = G5 (w2, w1) = §i (w1 + wa, —ws).



1.6.1 First moment

For the first moment we obtained

dq

2
= (f—pwqg—ai®—R
I (f —m)g—aq ,

where we write R now as

R = algC(0)+ [ C()ga(w)ldw.
1.6.2 Second moment
For the second moment we obtain

dgs(w)
dt

= 2A(w)g5(w) + 2fqD(w) — 2a¢°C(w) — 275 (w),

where

Alw,t) = fDw)—p—aqt)[l +C(w)],

and

W) = o [ CF W + (Cxg)w) +CO)5w)]

1.6.3 Third moment
Let us define P” = {w,ws,w; + wo}. For any kernel F, we have the identities

Spenanerr [ [(Fxgi)(wa ap)e 2t drydy,
= Soep F(w)F;(wi,ws),

E{a:A,xB}eP'//]:(xA)gg‘(xA,xB)6_2”i(“’1x1+”2x2)dx2dx1
= 2(F % G5) (w1, ws) + (F * §5) (wa, wn),

E{IA7IB}EPI//F(I’A — ZL'B)g;(ﬁA, mB)6—27ri(w1:c1+w2ac2)dx2dxl

= (F 33)(wa, 1) (F x §5)(—wa, wi +ws) + (F x G5)(—wi, wi + ws).

(8)



Furthermore,

Yizaan}eP //[f(xA) + Flxa—x8)|95 (xB)e_Q’”(W”H“’?”)dxgdxl

= Z{w,w’}EP”’j}(w)gg (w,)7

where P = {(w,w')|w,w’ € P",w" # w}. We thus obtain

dg; (wla w2)

2~ Saepr A, w2) + Spowepn B@)35()

~%

— 73w, W),
where
B(w) = [D(w)—2a¢C(w) — al(w)gsw),
and

73(wi, ws)
= a/é(w)[gi‘(w,wl,wg —w) + g1 (w,wa, w1 —w) + Gy (w, —wa, wy + we — w)]dw
+ 20(C x g5)(w, ws) + 20(C * F5) (wa, wn)
+ a(Cx §5)(—wa, w1 + wa) + (€ * §5) (—wr, wy + w)

+ 3aC(0)g;(wr, ws).
1.7 The Perturbation Expansion

The final step in deriving the perturbation expansion is to expand all terms into power series
of L~ and to match the terms of the same orders. To do this, we write D(z) = Dy(z/L)/L4,
C(z) = Co(x/L)/L%, where Cy and Dy are independent of the length scale L = Lp = Lo. We

note that D(w) = Dy(Lw) and C(w) = Co(Lw). The expansions are given as

g = Z?igq(i)L_di,



Gw) = 220" (L)L,
Gilwn,wa) = 25" (Lon, Lun) L,
Aw) = TR AY(Lw)L ™,
B(w) = ¥Z,BY(Lw)L™",
R = %, RO
Fw) = " (Lw)L ™,
Filw,ws) = S0 (Lwy, L) L%,
where we have accounted for the fact that the residual terms R, 75 and 75 do not have a zeroth-
order term.

1.7.1 Mean-field

Collecting the terms of the zeroth order gives the mean-field model,

dq®)
dt

2
(f = wa® — g
1.7.2 First order

Collecting the terms of order L~¢ gives

dq™W

o = (F= gV —2a¢"¢" = R,

RY = a¢9¢y(0) + o / Co(w)75"” (w)dw,
dgz9(w b o > °C
g2dt() = 249w)3 O (W) + 2f¢ O Do(w) — 204 Co(w),

AV = fDy(w) —p— g1 + Co(w)].
1.7.3 Second order

Finally, collecting the terms of order L~2¢ gives

dq®
dt

= (f = 10)q® — agM® = 20¢©¢® — RO



RO = agVey(0) + [ o) (@),

= 249w)5" W) +240()5" ()
+ 2f¢VDy(w) — 4aq V¢V, (w) — 275 (W),
A(l)(w) = —aq(l)[l—i-éo(w)],

B = a| [ )56 0 + Cox 5 )w) + (05 w)]

- [EwEP”A(O) (w)]gi(;)) (wly WZ) + E{w,w’}EP’”B(O) (w)gg(O) (w/)a

BO(w) = fDo(w) - 2aq"Co(w) — alo(w)gs" (w).

The equations are closed and can be solved numerically, which gives the expansion ¢(t) =

¢O(t) + gV (&) /L + gD (1) /L + ...

2 Asymptotic Exactness of Symmetric Closures

Here we show that the symmetric power-1, power-2, and power-3 closures are asymptotically
exact, but that the asymmetric closures fail to do so. The formulae for the closures are from ref.

1.

2.1 Power-1

The general power-1 closure is given by

7 (01, 22) = ;[QQZZ(@ — 1) + Bgz3(2) + 7923 (71) — (@ +7)¢’)-

As discussed in Section 1.3, the approximation is asymptotically exact if and only if the closure
is consistent with Eq. 3 in the sense that the remaining residual moment satisfies the conditions

(CI) and (C2). It is easy to see that this is the case if and only if the closure is symmetric, i.e.,

a=p3=n.



2.2 Power-2

Similarly, the general power-2 closure is given by

. azs(x)zs () + Bz (21) 25 (v — 11) + 25 (29) 25 (22 — 21) — B
alrnr) = qla+7) ’

which is consistent with Eq. 3 if and only if o = 5 = 7.

2.3 Power-3

The symmetric power-3 closure is given by

za(x1)z5(x0) 25 (e —
Al — AEEE )

which is consistent with Eq. 3.
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