
Supporting Text

1 Full Derivation of the Systematic Perturbation Expansion

1.1 Notation

To shorten the notation, we write da(x, t) = r(x, t)dt + dη(x, t), where

r(x, t) = f(D ? a)(x, t)− µa(x, t)− α(C ? a)(x, t)a(x, t),

so that we may write ds(x, t) = da(x, t) − dq(t) = r(x, t)dt − dq(t) + dη(x, t). We shorten

the notation further by writing ai = a(xi, t), si = s(xi, t), dsi = ds(xi, t), dηi = dη(xi, t) and

ri = r(xi, r). Furthermore, as we need not consider time lags while deriving the perturbation

expansion, we will drop the time t from the arguments of all functions.

As described above, we denote by Gn the nth-order central moment,

Gn(x1, . . . xn) = E[s1 · · · sn],

and by G∗
n(x1, . . . xn) the nth-order residual moment, which can be considered as the novel part

of the nth-order moment. We denote by Zn the nth-order raw moment

Zn(x1, . . . xn) = E[a1 · · · an].

As none of the moments depend on the absolute position, we may set the first spatial coordinate,

e.g., to zero without loss of generality. To do so, we define the moments gn, g∗n, and zn by

Gn(x1, . . . xn) = gn(x2 − x1, . . . xn − x1),

G∗
n(x1, . . . xn) = g∗n(x2 − x1, . . . xn − x1),

Zn(x1, . . . xn) = zn(x2 − x1, . . . xn − x1).

We note that as the arguments of the moments with capital letters can be freely permuted, so

can the ones with small letters. Also, the sign of any argument can be changed, if the argument



is at the same time subtracted from the other arguments, so that, e.g.,

gn(x1, . . . xn−1) = gn(−x1, x2 − x1, . . . xn−1 − x1).

For functions with several arguments, we denote the convolution with respect to the first argu-

ment simply by ?, so that, e.g.,

(D ? G2)(x1, x2) =
∫

C(x1 − x)G(x, x2)dx.

We note the identities

(D ? G2)(x1, x2) = (D ? g2)(x1 − x2),

(D ? G3)(x1, x2, x3) = (D ? g3)(x1 − x2, x3 − x2),

(D ? G4)(x1, x2, x3, x4) = (D ? g4)(x1 − x2, x3 − x2, x4 − x2).

1.2 The Covariance of the Noise

To assess the covariance of the noise, we consider a discretization of the domain to sites of size

dx. Assuming that a site has at time t k individuals (as dx is small, we either have k = 0 or

k = 1), Table 1 lists the possible events that may take place before time t+dt. As the noise dη is

independent at different sites and times, we obtain E[dη(x)dη(x′, t′)] = V (t)δ(x−x′)δ(t−t′)dt,

where

V (t) = (f + µ)q(t) + αq(t)2 + R(t). (1)

1.3 The Decompositions of the Central Moments

We start by deriving Eqs. 4-6 in the main text that decompose the central moments into a sum

of the lower-order moments and the residual moment. The decompositions are constructed in

such a way that the residual moments satisfy two conditions, which we call conditions (C1)

and (C2). The condition (C1) requires that the residual moment is smooth, so that it does not



contain any delta distributions. The condition (C2) requires that the residual moment vanishes

if the maximum distance between any of the points diverges.

1.3.1 The second moment

The second raw moment can be written as

Z2(x1, x2) = Z∗
2(x1, x2) + qδ(x1 − x2), (2)

where

Z∗
2(x1, x2) = q2 + G∗

2(x1, x2)

refers to the case in which the two points do not coincide. To verify condition (C1), we consider

a discretization of the domain to sites of size dx, where dx is so small that each site can be

assumed to contain at most one individual. Thus, a site at xi has an individual with probability

qdx, in which case ai = 1/dx, and is empty (ai = 0) with probability 1− qdx. If x1 = x2, we

have E(a1a2) = qdx(1/dx)2. As (1/dx) translates at the limit dx → 0 to a delta distribution,

we obtain Z2(x1, x2) = qδ(x1 − x2). To see that the condition (C2) holds, we note that if

|x1 − x2| → ∞, then a1 and a2 become independent, and we should have Z2(x1, x2) → q2,

which is true with Eq. 2. As Z2(x1, x2) = q2 + G2(x1, x2), we obtain Eq. 4 in the main text.

1.3.2 The third moment

The third raw moment can be written as

Z3(x1, x2, x3) = Z∗
3(x1, x2, x3) + Σ{i,j,k}∈P Z∗

2(xi, xk)δ(xi − xj)

+ qδ(x1 − x2)δ(x1 − x3), (3)

where

Z∗
3(x1, x2, x3) = q3 + qΣ{i,j,k}∈P G∗

2(xi, xj) (4)

+ G∗
3(x1, x2, x3)



refers to the case in which none of the three points coincide. To see that condition (C1) holds,

we need to consider two cases, as either all of the points or two of the points may coincide.

First, if all the three points coincide, the reasoning goes exactly as above, and we obtain

Z3(x1, x2, x3) = qδ(x1 − x2)δ(x1 − x3). There are three permutations (P) by which two of the

points can coincide. For example, if x1 = x2 6= x3, we have Z3(x1, x2, x3) = (q/dx)E[a3|a1 =

1/dx]. To assess the conditional expectation, we note that

Z∗
2(x1, x3) = E[a1a3]

= E[a3|a1 = 0]0P (a1 = 0) + E[a3|a1 = 1/dx](1/dx)P (a1 = 1/dx)

= qE[a3|a1 = 1/dx],

and thus E[a3|a1 = 1/dx] = Z∗
2(x1, x3)/q, which gives Z3(x1, x2, x3) = (1/dx)Z∗

2(x1, x3) →

Z∗
2(x1, x3)δ(x1 − x2).

To verify condition (C2), we may now assume that the three points are disjoint. If e.g. x1

diverges from the other points (|x1 − xi| → ∞ for i = 2, 3), we should have Z∗
3(x1, x2, x3) →

qZ∗
2(x2, x3) = q3 + qG∗

2(x2, x3), as is the case with Eq. 3 if G∗
3(x1, x2, x3) → 0. Note

that xi diverging includes also the possibility that all of the points diverge, in which case

Z3(x1, x2, x3) → q3. As

Z3(x1, x2, x3) = q3 + qΣ{i,j,k}∈P G2(xi, xj) + G3(x1, x2, x3),

we obtain Eq. 5 in the main text.

1.3.3 The fourth moment

The fourth raw moment can be written as

Z4(x1, x2, x3, x4) = Z∗
4(x1, x2, x3, x4)

+ qδ(x1 − x2)δ(x1 − x3)δ(x1 − x4)



+ Σ{i,j,k,l}∈P4Z
∗
2(xi, xj)δ(xj − xk)δ(xj − xl)

+ Σ{i,j,k,l}∈P6Z
∗
3(xi, xk, xl)δ(xi − xj)

+ Σ{i,j,k,l}∈P3Z
∗
2(xi, xk)δ(xi − xj)δ(xk − xl), (5)

where

Z∗
4(x1, x2, x3, x4) = q4 + qΣ{i,j,k,l}∈P4G

∗
3(xj, xk, xl)

+ Σ{i,j,k,l}∈P3G
∗
2(xi, xj)G

∗
2(xk, xl)

+ q2Σ{i,j,k,l}∈P6G
∗
2(xi, xj)

+ G∗
4(x1, x2, x3, x4) (6)

again refers to the case in which none of the points coincide. To see that condition (C1)

holds, we need to consider four possibilities. First, if all the four points coincide, we obtain

Z4(x1, x2, x3, x4) = qδ(x1 − x2)δ(x1 − x3)δ(x1 − x4). Second, three of the points may co-

incide, for which option there are P4 permutations. For example, if x1 6= x2 = x3 = x4, we

have Z4(x1, x2, x3, x4) = (q/dx2)E[a1|a2 = 1/dx] = (1/dx2)Z∗
2(x1, x2) → Z∗

2(x1, x2)δ(x2 −

x3)δ(x2 − x4). Third, two of the points may coincide, while the other two are separate. For

this option the relevant permutations are given by P6. For example, if x1 = x2 while x3 6= x4,

x3 6= x1 and x4 6= x1, we have Z4(x1, x2, x3, x4) = (q/dx)E[a3a4|a1 = 1/dx]. To assess the

conditional expectation, we note that

Z∗
3(x1, x3, x4) = E[a1a3a4]

= E[a3a4|a1 = 0]0P (a1 = 0) + E[a3a4|a1 = 1/dx](1/dx)P (a1 = 1/dx)

= qE[a3a4|a1 = 1/dx].

Thus, Z4(x1, x2, x3, x4) = (1/dx)Z∗
3(x1, x3, x4) → δ(x1 − x2)Z

∗
3(x1, x3, x4). The fourth al-

ternative is that there are two pairs of coinciding points, for which option the relevant permu-

tations are given by P3. For example, if x1 = x2 6= x3 = x4, we have Z4(x1, x2, x3, x4) =



(q/dx)E[a2
3|a1 = 1/dx]. To asses the conditional expectation, we note that

E[a3|a1 = 1/dx] = P [a3 = 0|a1 = 1/dx]0 + P [a3 = 1/dx|a1 = 1/dx](1/dx),

and thus

P [a3 = 1/dx|a1 = 1/dx] = dxE[a3|a1 = 1/dx] = (dx/q)Z∗
2(a1, a3),

which gives

E[a2
3|a1 = 1/dx] = P [a3 = 1/dx|a1 = 1/dx](1/dx)2

= (1/q)(1/dx)Z∗
2(a1, a3).

Thus, Z4(x1, x2, x3, x4) = (1/dx)2Z∗
2(a1, a3) → Z∗

2(a1, a3)δ(x1 − x2)δ(x3 − x4).

To see that condition (C2) holds, we may now assume that none of the points coincide.

There are two alternatives by which the maximum distance between the points may diverge, as

either one point may diverge from all the other points, or then a pair of points may diverge from

another pair of points. First, assume that the distance between a single point (say x1, there are P4

permutations) and the other points diverges (not restricting whether the three remaining points

stay close to each other or diverge from each other). We should have Z4(x1, x2, x3, x4)
∗ →

qZ∗
3(x2, x3, x4), which is consistent with Eq. 5. Second, it may be that two pairs of points

diverge from each other (not restricting whether the points within the pairs stay close to each

other or not). For example, if x1 and x2 diverge from x3 and x4 (there are P3 permutations), we

should have Z4(x1, x2, x3, x4)
∗ → Z∗

2(x1, x2)Z
∗
2(x3, x4), again consistent with Eq. 5. As

Z4(x1, x2, x3, x4) = q4 + q2Σ{i,j,k,l}∈P6G2(xi, xj)

+ qΣ{i,j,k,l}∈P4G3(xj, xk, xl) + G4(x1, x2, x3, x4),

as

Σ{i,j,k,l}∈P4G3(xj, xk, xl) = qΣ{i,j,k,l}∈P4δ(xj − xk)δ(xj − xl)



+ Σ{i,j,k,l}∈P4G
∗
3(xj, xk, xl)

+ Σ{i,j,k,l}∈P6 [G
∗
2(xi, xk) + G∗

2(xi, xl)]δ(xi − xj),

and as

Σ{i,j,k,l}∈P6Z
∗
3(xi, xk, xl)δ(xi − xj)

= q3Σ{i,j,k,l}∈P6δ(xi − xj)

+ Σ{i,j,k,l}∈P6G
∗
3(xi, xk, xl)δ(xi − xj)

+ qΣ{i,j,k,l}∈P6 [G
∗
2(xi, xk) + G∗

2(xi, xl) + G∗
2(xk, xl)]δ(xi − xj),

we obtain Eq. 6 in the main text.

1.4 The Exact Equations for Central Moments
1.4.1 Mean

Using the notation of Eq. 8 in the main text,

da = [f(D ? a)− µa− α(C ? a)a]dt + dη,

from which we get

dq = E[da(x)]

= E[f(D ? a)− µa− α(C ? a)a]dt,

and thus the exact equation for first moment (Eq. 1 in the main text) is

dq

dt
= (f − µ)q − αq2 −R,

where

R = αE[(C ? s)(x)s(x)]

= α(C ? G2)(x, x)

= α(C ? g2)(0).



1.4.2 Second moment

We have

dG2(x1, x2) = G2(x1, x2, t + dt)−G2(x1, x2)

= E[(s1 + ds1)(s2 + ds2)]−G2(x1, x2)

= E[s1ds2] + E[s2ds1] + E[ds1ds2].

First,

E[s1ds2] = E[s1r2dt]

= E[s1(f(D ? a)(x2)− µa(x2)− α(C ? a)(x2)a(x2))]dt.

Thus,

E[s1ds2]/dt = f(D ? G2)(x2, x1)− µG2(x1, x2)

− αq[G2(x1, x2) + (C ? G2)(x2, x1)]−R2(x1, x2),

where

R2(x1, x2) = αE[s(x1)s(x2)(C ? s)(x2)]

= α(C ? G3)(x2, x2, x1)

= α(C ? g3)(0, x1 − x2).

Second,

E[ds1ds2] = E[dη1dη2] = V δ(x1 − x2)dt.

Thus,

dG2(x1, x2)

dt
= f [(D ? G2)(x1, x2) + (D ? G2)(x2, x1)]− 2µG2(x1, x2)

− 2αqG2(x1, x2)− αq[(C ? G2)(x1, x2) + (C ? G2)(x2, x1)]

+ V δ(x1 − x2)−R2(x1, x2)−R2(x2, x1).



Accounting for the symmetry, we obtain

dg2(x)

dt
= 2f(D ? g2)(x)− 2µg2(x)− 2αq[g2(x) + (C ? g2)(x)]

+ V δ(x)− 2r2(x),

where

r2(x) = R2(x
′, x + x′)

= α(C ? g3)(0, x).

1.4.3 Third moment

We have

dG3(x1, x2, x3) = G3(x1, x2, x3, t + dt)−G3(x1, x2, x3)

= E[(s1 + ds1)(s2 + ds2)(s3 + ds3)]−G(x1, x2, x3)

= Σ{i,j,k}∈P E[sisjdsk] + Σ{i,j,k}∈P E[dsidsjsk]

+ E[ds1ds2ds3].

First,

E[sisjdsk] = E[sisjrk]dt− dqE[sisj]

= E[sisjrk]dt− dqG2(xi, xj).

We have

E[sisjrk] = (fq − µq − αq2)G(xi, xj)

+ fE[sisj(D ? s)(xk)]− (µ + αq)G3(xi, xj, xk)

− αqE[sisj(C ? s)(xk)]−R3(xi, xj, xk)

= (fq − µq − αq2)G2(xi, xj)



+ f(D ? G3)(xk, xi, xj)− (µ + αq)G3(xi, xj, xk)

− αq(C ? G3)(xk, xi, xj)−R3(xi, xj, xk).

where

R3(xi, xj, xk) = αE[sisjsk(C ? s)(xk)]

= α(C ? G4)(xk, xi, xj, xk).

We write this as

E[sisjrk] = (fq − µq − αq2)g2(xj − xi)

+ f(D ? g3)(xk − xi, xj − xi)− (µ + αq)g3(xj − xi, xk − xi)

− αq(C ? g3)(xk − xi, xj − xi)− r3(xj − xi, xk − xi),

where

r3(xA, xB) = α(C ? g4)(xB, xA, xB).

Second,

E[dsidsjsk] = E[dηidηjsk] = E[V (xj)sk]δ(xi − xj)dt,

where

V (x) = f(D ? a)(x) + µa(x) + α(C ? a)(x)a(x),

and we have used the fact that E[dηidηjsk] = 0 if xj 6= xi. We have

E[V (xj)sk] = fE[sk(D ? s)(xj)] + (µ + αq)G2(xk, xj)

+ αqE[sk(C ? s)(xj)] + R2(xk, xj)

= f(D ? G2)(xj, xk) + (µ + αq)G2(xk, xj)



+ αq(C ? G2)(xj, xk) + R2(xk, xj)

= f(D ? g2)(xj − xk) + (µ + αq)g2(xj − xk)

+ αq(C ? g2)(xj − xk) + r2(xj − xk).

Finally,

E[ds1ds2ds3] = dqδ(x1 − x2)δ(x1 − x3).

Combining the above components and accounting for symmetry gives

dg3(x1, x2)

dt
= Σ{xA,xB}∈P ′ [(fq − µq − αq2)g2(xB)

+ f(D ? g3)(xA, xB)− (µ + αq)g3(xA, xB)

− αq(C ? g3)(xA, xB)− r3(xB, xA)− dq

dt
g2(xB)]

+ Σ{xA,xB}∈P ′ [f(D ? g2)(xA) + (µ + αq)g2(xA)

+ αq(C ? g2)(xA) + r2(xA)]δ(xB)

+
dq

dt
δ(x1)δ(x2)

= Σ{xA,xB}∈P ′ [f(D ? g3)(xA, xB)− (µ + αq)g3(xA, xB)

− αq(C ? g3)(xA, xB)− r3(xB, xA) + Rg2(xB)]

+ Σ{xA,xB}∈P ′ [f(D ? g2)(xA) + (µ + αq)g2(xA)

+ αq(C ? g2)(xA) + r2(xA)]δ(xB)

+
dq

dt
δ(x1)δ(x2),

where P ′ = {(x2, x1), (x1, x2), (x1, x1 − x2)}.



1.5 The Exact Equations for the Residual Moments

To transform the differential equations for the central moments g2 and g3 to corresponding

equations for the residual moments g∗2 and g∗3 , we use the equations

g2(x) = qδ(x) + g∗2(x),

g3(x1, x2) = qδ(x1)δ(x2) + g∗3(x1, x2) + Σ{xA,xB}∈P ′g∗2(xA)δ(xB),

g4(x1, x2, x3) = qδ(x1)δ(x2)δ(x3) + g∗4(x1, x2, x3)

+ Σ{xA,xB ,xC}∈P ′
4
g∗2(xA)δ(xB)δ(xC)

+ Σ{xA,xB ,xC}∈P ′
3
[q2 + g∗2(xA)]δ(xB)δ(xC)

+ Σ{xA,xB ,xC}∈P ′
6
[qg∗2(xA) + g∗3(xA, xB)]δ(xC)

+ Σ{xA,xB ,xC}∈P ′
3
g∗2(xB)g∗2(xC),

where

P ′
3 = {{x2, x1, x3 − x2}, {x1, x2, x3 − x1}, {x1, x3, x2 − x1}},

P ′
4 = {{x1, x2, x3}, {x2, x1, x3}, {x3, x1, x2}, {x1, x2 − x1, x3 − x1}},

P ′
6 = {{x3 − x2,−x2, x1}, {x3 − x1,−x1, x2}, {x2 − x1,−x1, x3}, {x3, x1, x2 − x1},

{x2, x1, x3 − x1}, {x1, x2, x3 − x2}}.

1.5.1 Mean

We have

dq

dt
= (f − µ)q − αq2 −R,

where

R = α(C ? g2)(0)

= α[qC(0) + (C ? g∗2)(0)].



1.5.2 Second moment

We obtain

dg∗2(x)

dt
= 2f(D ? g∗2)(x)− 2µg∗2(x)− 2αq[g∗2(x) + (C ? g∗2)(x)]

+ 2fqD(x)− 2αq2C(x) + 2Rδ(x)− 2r2(x).

As

r2(x) = α(C ? g3)(0, x) = Rδ(x) + r∗2(x),

where

r∗2(x) = α[(C ? g∗3)(0, x) + C(x)g∗2(x) + C(0)g∗2(x)],

we obtain

dg∗2(x)

dt
= 2f(D ? g∗2)(x)− 2µg∗2(x)− 2αq[g∗2(x) + (C ? g∗2)(x)]

+ 2fqD(x)− 2αq2C(x)− 2r∗2(x).

1.5.3 Third moment

We have

dg∗3(x1, x2)

dt
= Σ{xA,xB}∈P ′{[f(D ? g3)(xA, xB)− (µ + αq)g3(xA, xB) (7)

− αq(C ? g3)(xA, xB)− r3(xB, xA) + Rg2(xB)]

+ [f(D ? g2)(xA) + (µ + αq)g2(xA)

+ αq(C ? g2)(xA) + r2(xA)− dg∗2(xA)

dt
]δ(xB)}.

We note that

r3(xB, xA)



= α(C ? g4)(xA, xB, xA)

= αqC(0)δ(xB)δ(xA) + α(C ? g∗4)(xA, xB, xA)

+ α(C ? g∗2)(0)δ(xB)δ(xA) + αC(0)g∗2(xB)δ(xA)

+ αC(xA)g∗2(xA)δ(xB) + αC(0)g∗2(xA)δ(xB − xA)

+ αq2[C(xA)δ(xA − xB) + C(0)δ(xB) + C(xB)δ(xA)]

+ α[C(xB)g∗2(xB)δ(xB − xA) + C(0)g∗2(xA)δ(xB) + C(xB)g∗2(xB)δ(xA)]

+ αq[C(xA)g∗2(xA − xB) + C(xB − xA)g∗2(xA) + C(0)g∗2(xB)]

+ αq[(C ? g∗2)(xB)δ(xA) + (C ? g∗2)(0)δ(xB) + (C ? g∗2)(xA)δ(xA − xB)]

+ α[C(xA)g∗3(xA, xB) + (C ? g∗3)(0, xA)δ(xB) + (C ? g∗3)(0, xB)δ(xA)]

+ α[C(xA − xB)g∗3(xA, xB) + C(0)g∗3(xA, xB) + (C ? g∗3)(0, xA)δ(xA − xB)]

+ α[(C ? g∗2)(xA)g∗2(xA − xB) + (C ? g∗2)(0)g
∗
2(xB) + (C ? g∗2)(xB − xA)g∗2(xA)],

where we have used the fact that

(C ? g∗3)(x, x) = (C ? g∗3)(0, x).

We also note that

(F ? g2)(xA) = qF(xA) + (F ? g∗2)(xA),

that

(F ? g3)(xA, xB) = qF(xA)δ(xB) + (F ? g∗3)(xA, xB)

+ F(xA)g∗2(xB) + F(xA − xB)g∗2(xB) + (F ? g∗2)(xA)δ(xB),

and that

g3(xA, xB) = qδ(xA)δ(xB) + g∗3(xA, xB)

+ g∗2(xB)δ(xA) + g∗2(xA)δ(xB) + g∗2(xA)δ(xA − xB).



We write Eq. 7 as

dg∗3(x1, x2)

dt
= Jδ(x1)δ(x2) + I1(x2)δ(x1) + I2(x1)δ(x2) + I12(x1)δ(x1 − x2) + smooth part,

where the coefficients of the delta distributions should vanish. To see this is the case, we note

that

J = −3q(µ + αq)− 3αqC(0)− 3α(C ? g∗2)(0) + 3q(µ + αq) + 3R

= 0,

and that I1(x) = I2(x) = I12(x) = I(x), where

I(x) = f [qD(x) + (D ? g∗2)(x)]− 3(µ + αq)g∗2(x)

− αqC(x)− αq(C ? g∗2)(x)

− 2αC(0)g∗2(x)− αC(x)g∗2(x)− αq2C(0)− 2αq2C(x)

− 2αC(x)g∗2(x)− αC(0)g∗2(x)− αq(C ? g∗2)(0)− 2αq(C ? g∗2)(x)

− 3α(C ? g∗3)(0, x) + αq[qC(0) + (C ? g∗2)(0)]

+ fqD(x) + f(D ? g∗2)(x) + (µ + αq)g∗2(x)

+ αq2C(x) + αq(C ? g∗2)(x)

+ α(C ? g∗3)(0, x) + αC(x)g∗2(x) + αC(0)g∗2(x)

− 2f(D ? g∗2)(x) + 2µg∗2(x) + 2αq[g∗2(x) + (C ? g∗2)(x)]

− 2fqD(x) + 2αq2C(x)

+ 2α[(C ? g∗3)(0, x) + C(x)g∗2(x) + C(0)g∗2(x)]

= 0.

Combining the smooth terms we finally get

dg∗3(x1, x2)

dt



= Σ{xA,xB}∈P ′{f(D ? g∗3)(xA, xB) + fD(xA)g∗2(xB) + fD(xA − xB)g∗2(xB)

− (µ + αq)g∗3(xA, xB)− αq(C ? g∗3)(xA, xB)− αqC(xA)g∗2(xB)− αqC(xA − xB)g∗2(xB)

− α(C ? g∗4)(xA, xB, xA)− αq[C(xA)g∗2(xA − xB) + C(xB − xA)g∗2(xA) + C(0)g∗2(xB)]

− α[C(xA)g∗3(xA, xB) + C(xA − xB)g∗3(xA, xB) + C(0)g∗3(xA, xB)]

− α[(C ? g∗2)(xA)g∗2(xA − xB) + (C ? g∗2)(0)g
∗
2(xB) + (C ? g∗2)(xB − xA)g∗2(xA)]

+ Rg∗2(xB)

= Σ{xA,xB}∈P ′{f(D ? g∗3)(xA, xB)− (µ + αq)g∗3(xA, xB)− αq(C ? g∗3)(xA, xB)

+ f [D(xA) +D(xA − xB)]g∗2(xB)− 2αq[C(xA) + C(xA − xB)]g∗2(xB)

− α[(C ? g∗2)(xA) + (C ? g∗2)(xA − xB)]g∗2(xB)− r∗3(xA, xB)},

where

r∗3(xA, xB) = α(C ? g∗4)(xA, xB, xA)

+ α[C(xA)g∗3(xA, xB) + C(xA − xB)g∗3(xA, xB) + C(0)g∗3(xA, xB)].

1.6 The Fourier Transformed Exact Equations

To work out the systematic perturbation equation from the exact equations, it is convenient to

transform the equations to the Fourier domain. To do so, we denote by ·̃ the Fourier transform

over all spatial coordinates, so that

g̃∗2(ω) =
∫

g∗2(x)e−2πiωxdx,

g̃∗3(ω1, ω2) =
∫ ∫

g∗3(x1, x2)e
−2πi(ω1x1+ω2x2)dx2dx1,

g̃∗4(ω1, ω2, ω3) =
∫ ∫ ∫

g∗4(x1, x2, x3)e
−2πi(ω1x1+ω2x2+ω3x3)dx3dx2dx1.

We note the symmetries g̃∗3(ω1, ω2) = g̃∗3(ω2, ω1) = g̃∗3(ω1 + ω2,−ω2).



1.6.1 First moment

For the first moment we obtained

dq

dt
= (f − µ)q − αq2 −R,

where we write R now as

R = α[qC(0) +
∫
C̃(ω)g̃∗2(ω)]dω.

1.6.2 Second moment

For the second moment we obtain

dg̃∗2(ω)

dt
= 2Ã(ω)g̃∗2(ω) + 2fqD̃(ω)− 2αq2C̃(ω)− 2r̃∗2(ω),

where

Ã(ω, t) = fD̃(ω)− µ− αq(t)[1 + C̃(ω)], (8)

and

r̃∗2(ω) = α
[∫

ω′
C̃(ω′)g̃∗3(ω

′, ω)dω′ + (C̃ ? g̃∗2)(ω) + C(0)g̃∗2(ω)
]
.

1.6.3 Third moment

Let us define P ′′ = {ω1, ω2, ω1 + ω2}. For any kernel F , we have the identities

Σ{xA,xB}∈P ′

∫ ∫
(F ? g∗3)(xA, xB)e−2πi(ω1x1+ω2x2)dx2dx1

= Σω∈P ′′F̃(ω)g̃∗3(ω1, ω2),

Σ{xA,xB}∈P ′

∫ ∫
F(xA)g∗3(xA, xB)e−2πi(ω1x1+ω2x2)dx2dx1

= 2(F̃ ? g̃∗3)(ω1, ω2) + (F̃ ? g̃∗3)(ω2, ω1),

Σ{xA,xB}∈P ′

∫ ∫
F(xA − xB)g∗3(xA, xB)e−2πi(ω1x1+ω2x2)dx2dx1

= (F̃ ? g̃∗3)(ω2, ω1)(F̃ ? g̃∗3)(−ω2, ω1 + ω2) + (F̃ ? g̃∗3)(−ω1, ω1 + ω2).



Furthermore,

Σ{xA,xB}∈P ′

∫ ∫
[F(xA) + F(xA − xB)]g∗2(xB)e−2πi(ω1x1+ω2x2)dx2dx1

= Σ{ω,ω′}∈P ′′′F̃(ω)g̃∗2(ω
′),

where P ′′′ = {(ω, ω′)|ω, ω′ ∈ P ′′, ω′ 6= ω}. We thus obtain

dg̃∗3(ω1, ω2)

dt
= [Σω∈P ′′Ã(ω)]g̃∗3(ω1, ω2) + Σ{ω,ω′}∈P ′′′B̃(ω)g̃∗2(ω

′)

− r̃∗3(ω1, ω2),

where

B̃(ω) = fD̃(ω)− 2αqC̃(ω)− αC̃(ω)g̃∗2(ω),

and

r̃3(ω1, ω2)

= α
∫
C̃(ω)[g̃∗4(ω, ω1, ω2 − ω) + g̃∗4(ω, ω2, ω1 − ω) + g̃∗4(ω,−ω2, ω1 + ω2 − ω)]dω

+ 2α(C̃ ? g̃∗3)(ω1, ω2) + 2α(C̃ ? g̃∗3)(ω2, ω1)

+ α(C̃ ? g̃∗3)(−ω2, ω1 + ω2) + α(C̃ ? g̃∗3)(−ω1, ω1 + ω2)

+ 3αC(0)g̃∗3(ω1, ω2).

1.7 The Perturbation Expansion

The final step in deriving the perturbation expansion is to expand all terms into power series

of L−d and to match the terms of the same orders. To do this, we write D(x) = D0(x/L)/Ld,

C(x) = C0(x/L)/Ld, where C0 and D0 are independent of the length scale L = LD = LC . We

note that D̃(ω) = D̃0(Lω) and C̃(ω) = C̃0(Lω). The expansions are given as

q = Σ∞
i=0q

(i)L−di,



g̃∗2(ω) = Σ∞
i=0g̃

∗(i)
2 (Lω)L−di,

g̃∗3(ω1, ω2) = Σ∞
i=0g̃

∗(i)
3 (Lω1, Lω2)L

−di,

Ã(ω) = Σ∞
i=0Ã

(i)(Lω)L−di,

B̃(ω) = Σ∞
i=0B̃

(i)(Lω)L−di,

R = Σ∞
i=1R

(i)L−di,

r̃∗2(ω) = Σ∞
i=1r̃

∗(i)
2 (Lω)L−di,

r̃∗3(ω1, ω2) = Σ∞
i=1r̃

∗(i)
3 (Lω1, Lω2)L

−di,

where we have accounted for the fact that the residual terms R, r̃∗2 and r̃∗3 do not have a zeroth-

order term.

1.7.1 Mean-field

Collecting the terms of the zeroth order gives the mean-field model,

dq(0)

dt
= (f − µ)q(0) − αq(0)2.

1.7.2 First order

Collecting the terms of order L−d gives

dq(1)

dt
= (f − µ)q(1) − 2αq(0)q(1) −R(1),

R(1) = αq(0)C0(0) + α
∫
C̃0(ω)g̃

∗(0)
2 (ω)dω,

dg̃
∗(0)
2 (ω)

dt
= 2Ã(0)(ω)g̃

∗(0)
2 (ω) + 2fq(0)D̃0(ω)− 2αq(0)2C̃0(ω),

Ã(0)(ω) = fD̃0(ω)− µ− αq(0)[1 + C̃0(ω)].

1.7.3 Second order

Finally, collecting the terms of order L−2d gives

dq(2)

dt
= (f − µ)q(2) − αq(1)2 − 2αq(0)q(2) −R(2),



R(2) = αq(1)C0(0) + α
∫
C̃0(ω)g̃

∗(1)
2 (ω)dω,

dg̃
∗(1)
2 (ω)

dt
= 2Ã(0)(ω)g̃

∗(1)
2 (ω) + 2Ã(1)(ω)g̃

∗(0)
2 (ω)

+ 2fq(1)D̃0(ω)− 4αq(0)q(1)C̃0(ω)− 2r̃
∗(1)
2 (ω),

Ã(1)(ω) = −αq(1)[1 + C̃0(ω)],

r̃
∗(1)
2 (ω) = α

[∫
ω′
C̃0(ω

′)g̃
∗(0)
3 (ω′, ω)dω′ + (C̃0 ? g̃

∗(0)
2 )(ω) + C0(0)g̃

∗(0)
2 (ω)

]
,

dg̃
(0)
3 (ω1, ω2)

dt
= [Σω∈P ′′Ã(0)(ω)]g̃

(0)
3 (ω1, ω2) + Σ{ω,ω′}∈P ′′′B̃(0)(ω)g̃

∗(0)
2 (ω′),

B̃(0)(ω) = fD̃0(ω)− 2αq(0)C̃0(ω)− αC̃0(ω)g̃
∗(0)
2 (ω).

The equations are closed and can be solved numerically, which gives the expansion q(t) =

q(0)(t) + q(1)(t)/Ld + q(2)(t)/L2d + ....

2 Asymptotic Exactness of Symmetric Closures

Here we show that the symmetric power-1, power-2, and power-3 closures are asymptotically

exact, but that the asymmetric closures fail to do so. The formulae for the closures are from ref.

1.

2.1 Power-1

The general power-1 closure is given by

z∗3(x1, x2) =
1

β
[αqz∗2(x2 − x1) + βqz∗2(x2) + γqz∗2(x1)− (α + γ)q3].

As discussed in Section 1.3, the approximation is asymptotically exact if and only if the closure

is consistent with Eq. 3 in the sense that the remaining residual moment satisfies the conditions

(C1) and (C2). It is easy to see that this is the case if and only if the closure is symmetric, i.e.,

α = β = γ.



2.2 Power-2

Similarly, the general power-2 closure is given by

z∗3(x1, x2) =
αz∗2(x1)z

∗
2(x2) + βz∗2(x1)z

∗
2(x2 − x1) + γz∗2(x2)z

∗
2(x2 − x1)− βq4

q(α + γ)
,

which is consistent with Eq. 3 if and only if α = β = γ.

2.3 Power-3

The symmetric power-3 closure is given by

z∗3(x1, x2) =
z∗2(x1)z

∗
2(x2)z

∗
2(x2 − x1)

q3
,

which is consistent with Eq. 3.
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