
Supporting Appendix

Results from an Alternative Model

The results we present in the main text come from a statistical model that predicts state-

to-state transitions of each cell as a function of underlying, and unobserved, survival and

colonization processes. To test whether our conclusions are robust to model choice, we

developed a phenomenological statistical model that estimates cell transitions without

making any assumptions about the underlying processes. Here, we (i) describe this

model, a hierarchical version of a multinomial regression; (ii) use this model to test the

three conditions of the storage effect and to quantify the strength of the storage effect;

and (iii) compare the results of the multinomial model with the survival/colonization

model described in the main text.

Model Description. One way to model cell transitions from one year to another is with a

transition matrix containing all possible state-to-state transitions. For our three grass

species and bare ground, this would be a 4 × 4 matrix in which row 1, column 1 gives the

probability that a cell occupied by species 1 remains in state 1; row 2, column 1 is the

probability that a cell occupied by species 1 makes a transition to species 2; and so on.

Each of the columns sums to 1. Because of the fine spatial scale of our data, these

transitions are not constant across the entire quadrat, or grid; instead, the entries in our 4

× 4 transition matrix are conditional on the abundances of each species in the cell’s local

neighborhood. This model differs from our survival/colonization model in that it makes

no assumptions about how row and column transitions are related. In other words, the

transition from state 1 to state 2 in this model is unrelated to the transition from state 3 to

state 2 or from state 1 to state 3. In contrast, in our survival/colonization model,

transitions from states 1 and 3 to state 2 are linked because both require species 2 to

colonize; similarly, transitions from state 1 to states 2 or 3 are linked because both require

species 1 to die.



Multinomial logit regression is a standard technique for estimating a categorical response

conditional on covariates. Because we have k = 4 possible states, the system of equations

is:
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Each β is a vector of regression coefficients for each of the three species, and the vector

of covariates, x, gives the abundances of each species in the neighborhood of the focal

cell, c, at time t. Note that we do not distinguish between cells belonging to the same

plant as the focal cell and cells occupied by other neighboring conspecific plants (as we

do in the survival/colonization model), because including these terms prevents Markov

Chain Monte Carlo (MCMC) convergence. The βs are unique for each year in the dataset,

as indicated by the subscript t. In addition, we expect that the influence of each species in

the neighborhood will depend on the state of the cell at time t, so we specify a different

set of βs for each possible previous state, j.

The hierarchical nature of the model is important for two reasons. First, in order to

estimate the strength of the storage effect, we needed to estimate the value of all βs in a

constant, average environment. We could simply average all year-specific βs, but this

weights all years equally. The hierarchical approach allows us to treat the βs as random

effects and estimate their underlying mean values, taking into account different degrees

of uncertainty in the different year-specific parameters (due, for example, to annual

variability in the abundance of a particular species). Second, the hierarchical approach

allows us to “borrow strength.” If a particular transition is not observed often in a



particular year, but when it is observed the outcome is unusual, the maximum-likelihood

approach might estimate an extreme value for the parameter. The hierarchical approach

will use information about the mean response for that transition to dampen such extreme

values. We fit the model by using Bayesian computational methods for practical reasons

(WinBUGS software) and to ensure a fitting procedure consistent with the original

survival/colonization model. We used the same prior distributions for year-specific and

mean parameters and the same diagnostics to check for convergence of the MCMC

chains (Supporting Methods).

Model Comparison. Although the multinomial regression model contained more

parameters than the survival/colonization model, the deviance explained was no lower at

convergence, and the deviance information criterion (DIC) was slightly higher. This

difference in DIC may indicate that the survival/colonization model better represents

biological processes, but it also reflects the inclusion of terms in the survival/colonization

model that distinguish between neighboring self and nonself conspecific cells. Regardless

of the outcome of this model comparison, we were interested in whether the multinomial

model would arrive at the same conclusion as the survival/colonization model when used

to test the storage effect.

Results and Discussion. 

Conditions 2 and 3 of the storage effect. We used the same simulations described in

Materials and Methods to test for conditions 2 and 3 of the storage effect, simply

substituting the multinomial regression model for the survival/colonization model to

calculate the expected abundances for each grid. Results were qualitatively consistent

with those from the survival/colonization model, providing evidence of species-specific

responses to interannual variation (compare Fig. 2 D–F with Fig. A1 D–F) and of more

severe competition in more favorable years (compare Fig. 2 G–I with Fig. A1 G–I).

However, there are some differences between the two sets of results. The range in yearly

intrinsic growth rates projected by the multinomial model is greater than the range

predicted by the survival/colonization model. The multinomial model also produced a



much greater range in the effects of competition on growth, and it predicts many positive

values (facilitation), especially for Schizachyrium scoparium, presumably because in the

multinomial model we could not separate within- and between-plant conspecific effects

as we did in the survival model. The wider ranges in predicted growth rates and

competitive effects projected by the multinomial model may indicate that over-

parameterization in this model generated some extreme values.



Fig. A1. Evidence for conditions 2 (D–F) and 3 (G–I) of the storage effect, based on

projections of the multinomial regression model.

Strength of the storage effect. In Materials and Methods, we describe the two stages of

simulation used to quantify the strength of the storage effect. First, we determine

equilibrium abundances for all possible pairs of the three species in a constant

environment (by using the across-year mean parameters) and in variable environments

(by randomly choosing year-specific parameters at each time step). Second, we introduce

the focal species at low density into grids initialized with its two competitors at their

equilibrium abundances and then project growth over 1 year for a constant or variable

environment.



When we repeated the first stage of simulation (pairwise equilibriums) using the

multinomial model, we found that in each case one species quickly filled the entire grid.

This result is biologically unrealistic because basal cover reached 100%, much higher

than the observed maximum basal cover. When we introduce the focal species at low

density into such fully occupied grids, the growth rates of these species are always

extremely negative. Because the multinomial regression model produces unreasonable

equilibrium densities, we chose to invade a community in which each pair of resident

species is fixed at an empirically realistic 20% cover.

By using these fixed resident species abundances, we found that the average low-density

growth rates for all three species were higher in variable than in constant environments,

consistent with the results of the survival/colonization model (Fig. A2). The purely

phenomenological approach thus supports the qualitative conclusions of the more

mechanistic model. In contrast to our survival/colonization model, population growth

rates when these species were rare were positive for all three species in the constant

environment. However, direct comparison of the growth rates is complicated by our fixed

definition of the resident community equilibrium for the analysis of the multinomial

model.



Fig. A2. The multinomial regression model predicts that all three species would have

higher average low-density growth rates in a variable than a constant environment.


