Supporting Text
CLAS Selective Logging Analysis

The CLAS uses high spatial resolution satellite data for large-scale studies of forest
disturbance. CLAS is a processing approach that involves: (i) automated atmospheric correction
of satellite data; (ii) automated decomposition of each satellite image pixel into subpixel
fractional cover measurements of live forest canopy, forest debris, and bare substrates; (iii)
automated cloud, cloud-shadow, water, and deforestation masking; (iv) automated pattern-
recognition algorithms for forest disturbance mapping; and (V) directed manual auditing of initial
results to increase final product accuracy. The full description of CLAS was provided by Asner
et al. (1), along with a detailed uncertainty analysis and validation effort. An abbreviated
overview of the CLAS methodology is summarized below, which follows Fig. 4.

The current version of CLAS uses raw Landsat Enhanced Thematic Mapper Plus (ETM+)
satellite imagery and applies sensor gains and offsets to convert from image digital numbers
(DN) to top-of-atmosphere radiances. The radiance data are sent to an automated version of the
6S atmospheric radiative transfer model to estimate apparent surface reflectance for each image
pixel (2). The 6S program is integrated into the CLAS processing stream and uses monthly
averages of aerosol optical thickness (AOT) and water vapor (WV) values from the Moderate
Resolution Imaging Spectrometer (MODIS) sensor onboard the National Aeronautics and Space
Administration Terra spacecraft.

CLAS uses spectral mixture analysis to decompose each satellite image pixel (30 x 30 m)
into fractional cover estimates of photosynthetic vegetation (PV), nonphotosynthetic vegetation
(NPV), and bare substrate (0-100% cover). It is fully automated and uses the Monte Carlo
Unmixing (AutoMCU) approach to derive uncertainty estimates of the subpixel cover fraction
values (3-5). The method uses three spectral endmember “bundles” to unmix each image pixel
using the following equation:

p(k)pixel =2 [Ce 4 pO\a)e] +te= [va L4 p(k)pv + Cnpv 4 p(k)npv + Csubstrate b p(x)substratel] + €, [1]

where p(L). is the reflectance of each land-cover endmember (e) at wavelength A, and € is an
error term. Spectral reflectance bundles [ppy(A), prpv(L), and psubsirate(A)] Were developed from
field studies and space-based spectroscopic measurements taken by the Hyperion sensor onboard
the Earth Observing-1 satellite (1).

CLAS includes a series of automated masks to exclude clouds, water bodies, cloud
shadows, nonimage and nonforest areas (e.g., pasture, urban, and agriculture) from the
processing stream (Fig. 4). The thermal channel of the ETM+ sensor (band 6) is used as an
initial mask for clouds. Water bodies are masked by locating pixels in the calibrated Landsat
reflectance data in which bands 1-4 (blue, green, red, and near-infrared) have a negative slope.
Nonimage areas containing zero values are also masked. Cloud shadows are identified by using
the rms error image that results from the AutoMCU processing (4, 6). Other AutoMCU outputs
serve to mask nonforested areas as well as residual clouds and cloud shadows, and additional
adjustments are then made to the brightness of “intact” forest areas in 55-km? subsets of the
imagery, also described in detail by Asner et al. (1).

The above-described steps result in maps of forest areas adjusted for atmospheric effects
and with nonforest areas, including clouds, masked out. These forest maps are input into an



image differencing procedure where pairs of AutoMCU subpixel fractional cover images,
separated by ~1 year, are used to create “change images” of PV (forest canopy) and NPV
(surface woody and senescent vegetation material) that indicate areas of relative canopy
disturbance or recovery. Forest disturbances in these images always have reductions in PV with
concomitant increases in NPV fractional cover. A pattern-recognition analysis is then applied to
narrow the total area of disturbed forest areas to “probable logging events.”

Logging activity results in: (i) low-intensity forest disturbances from tree-felling gaps;
(il) moderate-intensity linear features from skid trails along which felled trees are dragged by
tractors or skidders; and (iii) high-intensity points of damage called log decks, where logs are
loaded onto trucks for transportation (7-10). The log decks are connected by logging roads, seen
as linear features causing large reductions in the fractional cover of PV, to local roads or rivers
for transportation to sawmills or markets. CLAS identifies points (e.g., treefall gaps and log
decks) and linear features (e.g., skid trails and logging roads) of recent disturbance occurring in
forested areas. Log decks are automatically detected by searching for pixels where PV decreases
significantly in a 30-m pixel centered on a 7 x 7 pixel kernel [4.41 hectares (ha)]. A positive
detection is flagged when pixels with large PV reduction are surrounded by three concentric
rings of incrementally greater PV cover surrounding the target pixel.

The strategy for detecting decks works well in areas logged at higher intensities, as the
decks tend to be abundant. However, in areas where the logging is more haphazard, or where the
roads themselves also function as loading zones, individual log decks are not always
distinguishable. Skids trails are a typological feature of selective logging practices, and they are
the single-most ubiquitous surface feature found in harvested areas (11, 12). The presence of
skid trails is quantifiable based on large decreases in PV fractional cover in linear or near-linear
patterns (1). A moving 6 x 6 pixel (3.24-ha) kernel is applied to each PV-change image to
enhance linear features in the N-S, E-W, NE-SW, and NW-SE directions (Fig. 4). The number
of directions in which the linear features are arranged, the spatial density of these linear features,
and the presence or absence of logging decks are calculated for each location.

After the linear feature and log deck pattern-recognition steps are completed, CLAS
automatically integrates the various results to identify contiguous pixel clusters of probable
logging events. Logged areas are refined using a moving kernel approach. A base kernel of 7 x
7 pixels (4.41 ha) and four 3 x 3-pixel (0.81-ha) subset kernels, one located at each corner of the
base kernel, are used. The base kernel begins at each logging node and tests for a specific set of
pattern-related criteria, as listed in Asner et al. (1). If the area in question tests positive, the
analysis kernel is moved to its 7 x 7-pixel neighbors to the north, south, east, and west, which are
then each tested against the same criteria (Fig. 4). The input layers and specific criteria tested
within the base and subset kernels are described by Asner et al. (1).

Initial maps of probable logging events are visually checked and audited. False positives
and negatives are manually removed and added by using audit criteria divided into high- and
low-damage, obvious, and nonobvious categories. These categories were identified after
extensive review of logging events identified in the field. A total of 24,378 polygons were
included in the final logging maps (Table 3).

The final CLAS output is a map of logging polygons, within which canopy damage is
quantified in each pixel by using the criterion that the PV must have decreased (Fig. 5). This
results in logging polygons that have relative amounts of canopy damage quantified on a pixel-
by-pixel basis. For the analysis of logging-to-deforestation dynamics, we simply used the
polygons and ignored the within-polygon information on canopy damage (Fig. 5). This is



justified here, because we are interested in quantifying the landscape-level overlap between
logging and deforestation, and because the deforestation data are provided in polygon format by
the Brazilian government (below). For the forest gap fraction analysis, we use gap statistics
taken from within each polygon, as described later.

Program for Monitoring Deforestation in the Brazilian Amazon (PRODES) Deforestation
Maps

The PRODES of the Brazilian National Institute for Space Research (INPE) provides
maps of deforestation obtained from the same Landsat system used in CLAS. The PRODES
deforestation maps are provided in polygon format at a scale of 1:250,000. Deforestation data
from the PRODES processing of Landsat ETM+ images are subject to a 4% error, as published
on the official web site of the program (13, 14). The maps are freely available on the World
Wide Web at www.obt.inpe.br/prodes. These constitute the best deforestation maps available for
the Brazilian Amazon and are widely regarded as the most accurate source of high-resolution
deforestation information in the country (15). We compiled the PRODES digital deforestation
maps for the years 2000-2004.

Logging-Deforestation Analysis

Interactions between the CLAS logging and PRODES deforestation products were
analyzed in a geographic information system (GIS). The total area included in the analysis was
~2,030,637 km” and spanned the Brazilian states of Pard, Mato Grosso, Rondonia, and Acre in
the years 2000-2004. Logged areas were included in our analyses if they were not obscured by
clouds in any study year (2000-2004). Application of this criterion, which resulted in the
removal of 11-16% of the original logged area (Table 4), ensured that our results would not be
biased by discontinuities in the time series. The PRODES deforestation layers were the
cumulative overlay of any area that had been deforested at any time during the study years. In
the final step, all logging and deforestation spatial data, along with state municipality borders,
were intersected in the GIS and exported as a data spreadsheet for tabulation of final logging-
deforestation statistics at the scale of state municipality.

We quantified our error in three areas: (i) atmospheric correction and auditor uncertainty
associated with the CLAS processing of the logging data; (ii) error associated with the PRODES
processing of the deforestation data; and (iii) logging-deforestation overlap registration error.
Asner et al. (1) showed that the error caused by uncertainty in atmospheric correction of the
Landsat imagery (aerosol and water vapor) was only +0.7% (Table 7). In addition, the error
caused by auditors was found to be £12.8%. The resulting rms error for the atmospheric
correction and auditor uncertainty was £12.8%.

Image registration error occurred when spatial data obtained from different satellite
images were mosaicked and/or juxtaposed by using slightly different reprojection
transformations in the GIS. Initial overlap analyses using 48 randomly located sample locations
spread throughout the study area showed that spatial data from different path/rows in each annual
mosaic of Landsat images, among annual mosaics for the same path/row, and between CLAS
logging and PRODES deforestation layers had a mean registration error of 96 m, with a standard
deviation of 55 m. To simulate the impact of registration error on our logging-deforestation
results, logging images for one logging-year/deforestation-year combination were shifted a



distance approximately equal to the mean misregistration plus one standard deviation (=150 m)
in eight cardinal directions, N, NE, E, SE. S, SW, W and NW, and the differences in
logging/deforestation overlap were tabulated. This analysis resulted in a rms annual registration
error (weighted by state logged area) of +0.7% (Tables 7 and 8). This value was then used to
calculate the rms of annual registration error for the overlap between logging and each
subsequent cumulative deforestation data, 1, 2, 3, and 4 years later. These were estimated at
+0.7%, £1.0%, £1.2%, and +1.4%, respectively. These sources of error were combined with all
other errors described above to calculate an overall error in the logging-deforestation overlap,
which averaged 13.45% (Table 7).

Conversion of Photosynthetic Vegetation to Canopy Gap Fraction

Forest canopy gap fraction, or the fractional canopy cover in the upward-pointing
hemisphere from any given ground location, has long served as a central measure of canopy
structure in forest ecosystems. Canopy gap fraction largely determines photosynthetic rates,
canopy energy and water balance, primary production, mammal and insect dynamics, and even
the probability of fire (16-21). It is therefore highly advantageous to convert a remotely sensed
radiometric measurement of fractional PV cover to the traditional canopy gap fraction measure.
The two measures are not the same. First, PV fraction is a planar metric, whereas canopy gap
fraction is hemispherical in nature (4, 12). Moreover, strong adjacency effects between satellite
pixels (caused by interpixel light scattering) result in a nonlinear component to vegetation
mixture modeling with multispectral data. This effect is maximum at forest gap values greater
than ~85%.

Asner et al. (4, 6) developed a set of equations relating PV cover fraction derived from
the AutoMCU subroutine of CLAS to field-based measurements of forest canopy gap fraction.
We have continued to improve the PV-gap fraction relationship, this time via a more extensive
comparison of PV fractions from CLAS to field-based forest canopy gap fractions collected
across a wide range of low-, medium- and high-impact logging sites (4, 11, 12). We have found
that no single equation can easily represent the nonlinear shape of the PV-gap relationship [e.g.,
as discussed in Asner et al. (6)], and thus we moved to a look-up table approach based on the
relationship presented in Fig. 6. In a densely forested region, remotely sensed PV values <67.5%
equate to total canopy opening or 100% gap fraction. Again, this is caused by strong interpixel
adjacency (light-scattering) effects, that is, satellite observations of a canopy opening, such as a
logging deck, contain minimal but consistent PV signatures contributed by neighboring closed-
canopy pixels (4, 10). When embedded spatially within a forest mosaic of high PV values, a
single pixel containing little to no green vegetation has a PV value >> 0% caused by interpixel
scattering of light (especially in the near-IR). This interpixel scattering effect diminishes in
importance as the local mosaic of pixel values becomes less diverse (68% < PV <90%). Canopy
gap fraction values then decrease linearly as PV values increase from 70% to 90% (4). At PV
values > 90%, the relation again changes slope across sites of differing logging intensity (4), as
shown in Fig. 6. Our experience indicates that the relationship does not saturate completely even
at PV values > 90% (6). Based on these effects, we used the look-up table approach to convert
PV estimates to forest canopy gap fraction for each pixel throughout the study region.

Canopy Damage and Closure Following Logging



A 1 x 1-km window was used to calculate the AIGF for all logged areas by using the
formula:

AIGF :%

: [2]

where f;is each logged pixel’s gap fraction value within each 1-km? area, and n is the total
number of logged pixels within that area. Because forest gap was greater in areas having been
disturbed by logging (i.e., felling gaps, skid trails, and logging decks), the AIGF provides a
consistent estimate of canopy damage within logged forest, where a higher AIGF value indicates
a more open canopy and thus more disturbance throughout the forest as a whole. Using this
information, all logged areas within each study state and for each study year were divided into 10
harvest AIGF classes: class 1 was 0-10% AIGF, class 2 was 11-20% AIGF, class 3 was 21-30%
AIGF, and so on (Fig. 1 and Table 5).

To understand the time dependence of forest canopy closure, logged areas subjected to
post logging deforestation (clear-cutting) were removed from our analysis by excluding pixels
with a gap fraction value of 100%. Postlogging canopy closure was then assessed at the Amazon
scale by using three methods: First, comparisons of the gap fraction distributions within each
AIGF class were made 1 year before, immediately after, and 1-2 years after logging (Fig. 7).
This approach allowed for a quick visual understanding of the distribution of forest gap damage
within the 10 AIGF classes. Second, postlogging forest canopy closure was assessed by using
the means and standard deviations of logged pixels whose individual gap fraction values
immediately after logging fell within the thresholds defined above for the AIGF classes. The
means and standard deviations used in this analysis were calculated from >180,000 pixels per
AIGF class. The mean and standard deviation gap fraction values 1 year before, immediately
after, and 1-2 years after logging were then calculated, and the results are reported in Fig. 8.
Third, we calculated the area-integrated gap fraction over the entirety of each AIGF class at the
scale of the Amazon for 1 year before, immediately after, and 1-2 years after logging, as
presented in Table 6. This approach, although providing similar temporal gap recovery trends,
differ importantly from those in method (2), because the integration process merges the values of
all logged pixels within each AIGF class to calculate a single area-integrated value, and thus it
provides no information on the variation of the individual pixels within the forest at that time.
For understanding the recovery of the logged forest within each gap class as a whole unit, the
AIGF approach is the most informative.

These assessments were conducted only for year-2000 logging, because 2-year
postlogging data were not available for the 2001 and 2002 logging maps. AIGF variation in
intact forest, measured to compare with that of logging and canopy closure, was assessed by
following the AIGF values of up to 8.76 million intact forest pixels for 3 years. Intact-forest
AIGF variation increased with larger gap fraction classes (Fig. 7), but in all cases, was far less
than that from logging. This same pattern is visible at the scale of individual logged pixels (Fig.
8). Multiple Kolmogorov-Smirnov analyses (480 pairs) were used to identify significant
differences (P > 0.05) between the gap fraction distributions of each AIGF class calculated by
the method (1) described above, before, immediately after, and 1 and 2 years after logging.
Nearly all gap fraction distributions were significantly different from one another. This was
found both between different gap classes and between the same gap classes of the four study
states. The only exceptions were for gap class 9 (80-89%), where a significant difference was not



found between logged and 1-year post logging gap fraction distributions in Acre, and for the
Para/Rondonia and Acre/Rondonia comparisons in which AIGF class 10 immediately after
logging and 2 years after logging.

Forest areas that underwent higher-intensity logging and were thus in higher AIGF
classes exhibited steeper slopes of canopy recovery within the first and second years after
logging (Table 6). As expected, considering the forest’s AIGF recovery, individual pixels with
higher logging-related canopy damage recovered at faster rates (Fig. 8).

Because overall logging intensity, by definition, occurs at a spatial scale greater than an
individual pixel (e.g., one tree fall gap, logging deck, or section of skid trail), we used AIGF
classes to estimate harvest intensities throughout the Amazon study area. We considered that the
primary source of error for calculation of AIGF class proportions was the scale over which AIGF
was calculated. To generate error estimates based on different scales, we recalculated gap class
proportions over the state of Mato Grosso in year 2000 (n > 15 million logged pixels) by using
eight unique square kernels with edge lengths ranging from 250 to 2,000 m in increments of 250
m. The standard deviation of the eight calculations per gap class was then used to generate
uncertainty estimates for each gap class. The standard deviations for the proportions of gap
classes 1-10 were 3.65, 2.26, 0.54, 0.56, 0.76, 0.39, 0.14, 0.27, 0.24, and 0.1%, respectively. For
example, the application of these uncertainty estimates to Amazon year 2000 estimates would
show an area of 4,264 + 722, 1470 + 150, and 16 + 19 km? for gap classes 1, 5, and 10,
respectively.

Is Logging a Precursor to Deforestation?

To compare the probability of deforestation after logging to the probability of
deforestation from intact forest, we developed a procedure that randomly selected a large number
of points (up to 1,000, depending on the total number of available logged or intact pixels) within
logged and deforested areas. This was performed separately for each of 10 5-km zones (0-4.9
km, 5-9.9 km, etc. ...) extending outward to 50 km from all major roads. The GIS coverage of
major roads was obtained from the Instituto do Homem e Meio Ambiente da Amazonia (Fig. 9).
The entire procedure was run at the state scale by using year-2000 logging and intact forest maps
and compared with year-2004 deforestation maps from PRODES (13). The pixel size of all input
data was 100 x 100 m. Areas having incomplete temporal PRODES or CLAS logging coverage
(caused by cloud interference or Landsat image problems) between the 2000 and 2004 study
years were not included in the analysis, nor were any areas within state or federally protected
areas. The final area, at the Amazon scale, included in this analysis was 757,514 km®. The
decision to have a maximum distance limit of 50 km from the nearest major road was based both
on previous analyses that have shown that the majority of deforestation occurs within this 50-km
buffer zone (22, 23), and the results of our analyses that showed that ~<95% of year-2000 logging
in the Amazon study area occurred within 15 km of the nearest road (Fig. 10).

A x* analysis was used to statistically compare the probability of year-2000 logging and
intact forest having been deforested by the year 2004. First, we scaled the state-level results to
the entire study region by weighting the state-level deforestation proportion results by the area
logged per distance class from each road in each state. The y” analysis was then run separately
for each distance-to-road class. The results of this analysis, presented in Fig. 3, show that logged
areas are significant precursors to deforestation, and that there is a strong distance interaction,



with closer distances to major roads having increased probabilities of deforestation for both
logged and intact forest areas.
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